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THE LASCOUX, LECLERC AND THIBON
ALGORITHM AND SOERGEL’S TILTING ALGORITHM

STEEN RYOM-HANSEN

Abstract. We generalize Soergel’s tilting algorithm to singular weights and
deduce from this the validity of the Lascoux-Leclerc-Thibon conjecture on the
connection between the canonical basis of the basic submodule of the Fock
module and the representation theory of the Hecke-algebras at root of unity.

1. Introduction

In this paper we show that the Lascoux-Leclerc-Thibon conjecture [LLT] on the
connection between the canonical basis of the basic submodule of the Fock module
and the representation theory of Hecke-algebras at a root of unity follows from
the truth of Soergel’s tilting algorithm. This result was independently obtained
by Goodman and Wenzl [GW] and has also been proved by Leclerc-Thibon [LT].

Our proof (which has existed in various versions since 1997) differs in several
ways from the above proofs, first of all it relies notationally as wells as philosofi-
cally directly on the principle of graded representation theory as exposed in the
paper of Andersen, Jantzen and Soergel [AJS]. Indeed, as our first result we
explain how the AJS-formalism naturally leads to an extension of Soergel’s algo-
rithm so as to be able to deal with singular weights, i.e. weights lying on several
reflecting hyperplanes. This singular combinatorics is important from our point
of view, since the partitions appearing in the LLT-algorithm typically correspond
to very singular weights. However, it should be noted that since the basic setting
of [AJS] is that of Frobenius kernels, we cannot formally use the results of that
paper. Indeed, we only check in type A that the singular combinatorics does not
depend on the path of weights chosen and do so by comparing it with the LLT
algorithm for large values of l, the order of the root of unity.

We then go on to show that our singular combinatorics yields the correct tilting
characters using the correctness of the original Soergel algorithm together with
some known properties of tilting modules and translation functors. Finally, we
show that the LLT-algorithm is a special case of our singular combinatorics; this
involves a detailed analysis of the correspondence between partitions and weights.

I wish to thank B. Leclerc and W. Soergel for useful discussions.
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1051024.
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2. Preliminaries

In this section we shall setup the notation needed. Let g be a finite dimensional
semisimple Lie-algebra over the complex numbers and let Uq(g) be the associated
quantum group at an l-th root of unity, see e.g. [A] for the precise definition. The
representation theory of Uq(g) is labeled by the set of dominant weights P+ and
the blocks correspond under this labeling to orbits in P+ under the affine Weyl
group Wl. Thus, for every weight λ ∈ P+ there is a standard module ∆(λ), a
costandard module ∇(λ), a simple module L(λ) and a tilting module Q(λ). See
[A, AJS, S] for more details.

We shall make extensive use of the following notation on alcove geometry in-
troduced in [AJS]. Let Ω be a regular orbit of Wl in P+, i.e. one consisting of
regular weights (lying on no walls), and let Γ be a singular orbit. Following [AJS],
for λ ∈ Ω we denote by λΓ the unique element of Γ in the closure of the alcove
of λ. Furthermore, we set

u(λ,Γ) = |{H ∈ H|λΓ ∈ H, λ < H}|

o(λ,Γ) = |{H ∈ H|λΓ ∈ H, λ > H}|

where H denotes the set of reflecting hyperplanes for Wl. Using this we can define
Ωs by

Ωs := {λ ∈ Ω | u(λ,Γ) = 0}

Let us illustrate this on an A2 example:

Example 1.

sλ Ω

Γ

Let us briefly recall Soergel’s algorithm as well as the LLT-algorithm. Let A
be the set of alcoves, A+ the set of dominant alcoves. Then the Grothendieck
group of Ω can be identified with Z[A+]. Soergel’s algorithm produces for each
A ∈ A+ an “indecomposable pattern” PA ∈ Z[q][A+], by which we mean an
element PA ∈ Z[q][A+] on the form

PA(q) = A+
∑

B<A

PAB(q)

where PAB(q) ∈ qZ[q]. This pattern contains information about the character of
the tilting module Q(A) with highest weight λ where λ ∈ A ∩ Ω. In formulas:

[Q(A),∆(B)] = PAB(1)
2



where ∆(B) is shorthand for ∆(µ), where µ ∈ B ∩ Ω. The procedure for cal-
culating PA is a recursion on A. It involves for each wall s of the fundamental
alcove an operator Θs on Z[q][A+] taking the indecomposable pattern to a sum
of indecomposable patterns (i.e. patterns with more than one coefficient having
a constant term). This operator is defined through the formula

ΘsA =





A+ q(As) if As > A and As ∈ A+

A+ q−1(A) if As < A and As ∈ A+

0 if As 6∈ A+

and linearity; As is here the mirror alcove of A under the reflection given by
s. The following picture illustrates the first two cases of this action in a alcove
geometry of an type A situation, where the reflection is going upwards in the first
case, downwards in the second case.

Example 2.

θs θs −1

1

1

q

1 q
1

As

A

As

A

A

As

A

As

One then subtracts inductively known indecomposable patterns to arrive at
the new indecomposable pattern, whose top alcove is the only one with a coeffi-
cient involving a constant term. We illustrate the algorithm on the following A3
examples, and refer to [S1] for more details.

Example 3.

1

1

q

1 q

1
q q

2q

1
q q

q2

1q q

q2 q2
3q3q q+

q +12

Following the terminology introduced in [S1], we shall denote the above algo-
rithm a “combinatorics” for tilting modules.

We now briefly recall the LLT-algorithm. Let Fq =
⊕

λ∈ParQ(q)|λ〉 be the
q-Fock space with basis parameterized by the set of all partitions Par. It can be

3



made into an integrable module for Uq(ŝll) and thus has a crystal basis. The LLT-
algorithm calculates the global basis of the basic submodule M of Fq, which is
the one generated by the empty partition. Let L be the Z[q]-sublattice of Fq with
basis {|λ〉 | λ ∈ Par}. The lower global basis element G(λ) of M is characterized
by the following conditions

G(λ) = G(λ), G(λ) = |λ〉 mod qL (1)

for λ ∈ Parl, i.e. an l-regular partition, where · is the involution of M given by

∅ = ∅, fiw = fiw ∀i and q = q−1,

Let dλµ(q) be defined by

G(λ) =
∑

µ

dλµ(q)|µ〉 (2)

Then dλµ(q) ∈ Z[q], dλ,µ(q) = 0 unless λ E µ and dλ,λ(q) = 1. Call an element w
of M selfdual if it satisfies w = w. A selfdual element w can be written in the
form

w =
∑

λ

aλ(q)G(λ)

for some aλ(q) ∈ Z[q, q−1] satisfying aλ(q) = aλ(q). The LLT-algorithm first con-
structs for each regular partition λ a selfdual element wλ such that the coefficient
of G(λ) in wλ is 1 and such that µ < λ for all other occurring G(µ). From this,
G(λ) is obtained by linear algebra.

LLT conjectured that for λ an l-regular partition

dλµ(1) = [S(µ), D(λ)]

where S(µ) andD(λ) are the Specht and the simple modules for the Hecke algebra
of type A specialized at an l’th root of unity. This conjecture was first proved
by Ariki [Ar] using the geometric approach to the crystal/canonical basis. The
goal of this paper, however, is to demonstrate that it also follows from Soergel’s
algorithm.

3. Singular tilting modules

We first need to generalize some results of Andersen on singular tilting modules.

Let Ω be a regular Wl-orbit in P+ containing λ and let Γ be a singular orbit
containing µ. Let TΩ

Γ be the Jantzen translation functor from the Γ-block to the
Ω-block, see e.g. [A]. We then have the following proposition

Poposition 1. Assume λΓ = µ and λ ∈ Ωs. Then

TΩ
Γ Q(µ) ∼= Q(λ)

Proof: One can copy the proof of Proposition 5.6 in Andersen’s paper [A]. In that
paper Γ is assumed semiregular; however the proof carries over to our situation.

4



✷

As a corollary, we obtain that the character of the singular tilting modules can
be calculated from the regular ones:

Corollary 1. Let µ, µ ∈ Γ. Then

[Q(µ),∆(µ] =
1

NΓ

∑

λ:λΓ=µ

[Q(λ),∆(λ)]

where λ ∈ Ωs with λΓ = µ. (As in [AJS] Nλ denotes the number of hyperplanes
in H such that λ ∈ H).

Proof: We know that

T Γ
Ω TΩ

Γ Q(µ) ∼= Q(µ)⊕NΓ .

Hence we obtain the Corollary from the Theorem using the standard properties
of translation functors.

✷

4. A combinatorics of graded translation functors

We saw in the previous section that the singular tilting characters can be
deduced from the regular ones. Now there may be no regular weights in the weight
lattice, so we still insist on constructing a combinatorics of graded translation
functors that works in the singular case. This section is devoted to that task. We
do it by assuming the existence of a formalism of graded translation functors for
our Uq(g)-representation theory having the same formal properties as the ones
in [AJS] for the Frobenius kernels. We then show that this naturally leads to a
combinatorics for singular tilting modules.

Let thus Ωτ = Ω, Γλ = Γ and Πµ = Π be the orbits under Wl of τ , λ and µ.
Assume furthermore τ regular and µ more singular than λ, i.e. Wλ ⊆ Wµ.

Example 4.

τ

λµ

Let K(τ), K(λ) and K(µ) be the corresponding Z-graded Grothendieck groups,
i.e. K(τ) = Z[q][Ω] etc. As mentioned above they so far have been constructed

5



only in the case of Frobenius kernels. According to the [AJS]-philosophy, they
should come with a system of operators (graded translation functors)

T ∗
µ,λ : K(µ) → K(λ), T ∗

λ,τ : K(λ) → K(τ), T ∗
µ,τ : K(µ) → K(τ)

T λ,µ
∗ : K(λ) → K(µ), T τ,λ

∗ : K(τ) → K(λ), T τ,µ
∗ : K(τ) → K(µ)

as well as a system of T ! and T! operators and a duality D relating the operators
as follows

D ◦ T ∗
µ,λ ◦D = T !

µ,λ

etc. Furthermore the duality should anticommute with the Z-shift in the cate-
gories, i.e. D ◦ 〈1〉 = 〈−1〉 ◦D.

Now [AJS] page 253 suggests that T ∗
µ,τ and T τ,µ

∗ should satisfy the following
rules:

T τ,µ
∗ ∆(τ) = ∆(τ

Π
) 〈o(τ,Π)〉

T ∗
µ,τ ∆(µ) =

∑

τ : τ
Π
=µ

∆(τ)〈o(τ,Π)〉

and similarly for T ∗
λ,τ and T τ,λ

∗ . We take this as our definition.

But then the transitivity forces us to define T λ,µ
∗ and T ∗

µ,λ by

T λ,µ
∗ ∆(λ) = ∆(λΠ) 〈o(λ,Π)〉

T ∗
µ,λ ∆(µ) =

∑

λ: λ
Π
=µ

∆(λ)〈o(λ,Π)〉

i.e. the very same formulas as translation to and from the regular orbits. One
should here notice that the expression 〈o(λ,Π)〉 makes sense for all weights and
that

o(τ,Ωλ) + o(τ
Γλ
,Πµ) = o(τ,Πµ)

Now T λ,µ
∗ = T λ,µ

! ; hence T λ,µ
∗ should preserve selfduality (i.e should commute

with D). On the other hand we have that T !
µ,λ = T ∗

µ,λ 〈−2(Nµ − Nλ)〉, so the
operator that preserves selfduality should be

T ∗
µ,λ 〈Nλ −Nµ〉

Using the convention that ∆(λ) = 0 whenever λ /∈ P+ and that

o(λ,Π) + u(λ,Π) = Nµ −Nλ

we arrive at the following first step for our combinatorics for tilting modules. We
first assume that the character of Q(ν) for ν ∈ K(λ) comes from an “indecom-
posable pattern” i.e. an element of Z[q]K(λ) on the form

ν +
∑

ν′<ν

Pν′,ν(q) ν
′

6



with Pν′,ν(q) ∈ qZ[q], We then assume that there are operators akin to the Θs of
the Section 2. The above considerations lead us to choosing these as follows.

Definition 1. Singular combinatorics for tilting modules: Step 1:

Let λ and µ be as above, i.e. with µ more singular than λ and let K(µ), K(λ)
be the corresponding graded categories. Then the graded translation functors Θ∗

and Θ∗ that take tilting modules to tilting modules, are:

Θ∗ : K(λ) → K(µ) : ∆(λ) 7→ ∆(λΠ) 〈o(λ,Π)〉

Θ∗ : K(µ) → K(λ) : ∆(µ) 7→
∑

λ : λ
Π
= µ

∆(λ)〈−u(λ,Π)〉

Let us illustrate this definition on an example

Example 5.

1

q
−1

q−2 1

q

q2

θ* θ*

We here used the convention that the shift 〈1〉 in the graded category K(λ)
corresponds to the multiplication by q−1.

The next step of our combinatorics is to explain how to obtain the indecom-
posable pattern with highest weight µ.

This is, like in the regular case, an inductive procedure, starting with the
weights ν of the fundamental alcove, for which the pattern Pν(q) equals ν it-
self. We then work ourselves upwards through the weight lattice with successive
functors Θ∗ and Θ∗ always trying to produce indecomposable patterns.

If P (µ) is an indecomposable pattern in K(µ) then it is clear from the definition
that Θ∗P (µ) will remain indecomposable.

Now applying Θ∗ to an indecomposable pattern P (λ) in K(λ) will generally
not produce an indecomposable pattern – and Θ∗P (λ) will generally not even
have coefficients in Z[q]. We can therefore not just mimic Soergel’s procedure of
subtracting inductively known patterns to arrive at something indecomposable.

On the other hand the coefficient of the leading (maximal) weight µ will be “1”
since Θ∗ does not lower the q-power when going upwards. For each occurrence in
the arising pattern of a qiν with i negative or zero, we then subtract γ(q)Pµ(q)
where γ(q) ∈ Z[q, q−1] satisfies γ(q) = γ(q−1). Repeating this eventually produces
an indecomposable pattern with leading coefficient “1”.

7



Since there may be no weights inside the alcoves we need to generalize the
previous considerations slightly to know what happens when translating between
arbitrary singular blocks. Since translation functors should depend only on the
alcove geometry, we may pretend that there exist regular weights. Then one finds
for any λ, λ′ ∈ P+ a µ such that

Wλ ⊇ Wµ, Wλ′ ⊇ Wµ, Wµ ⊇ Wλ ∩Wλ′

Let us illustrate this situation on an example

Example 6.

λ

µ

λ

Now for the ordinary translation functors we have transitivity in that case:
T λ′

λ = T λ′

µ ◦ T µ
λ . We can therefore take the composite Θ∗ ◦ Θ∗ as the graded

version of T λ′

λ .

Example 7.

λ

1

q
-1

Finally, we kill all weights which are not in the dominant Weyl chamber; this
is analogous to Soergel’s algorithm. Let us formulate all of this in one statement

Definition 2. Singular combinatorics, step two. Given λ ∈ P+. Let ν1, ν2, . . . νN
be the set of weights in P+ strictly less than λ in the usual order and assume
inductively given tilting patterns Pνi(q) ∈ Z[q]A for each νi. Let ν be a νi in the
closure of the alcove of λ. Perform the relevant functor Θ∗ or Θ∗ or composite
thereof on Pν(q) and subtract appropriate Pνi(q)’s as described to arrive at an
indecomposable pattern. This is Pλ(q).

8



5. Comparing the combinatorics

We now have a singular alcove combinatorics. It is clear that it gives Soergel’s
combinatorics if we only use semiregular orbits and translate through the walls.
We must check that it always leads to the same answer, independently of the
chosen path of weights. Once this has been established, the algorithm will be
correct, since we can choose a path

ν1, ν2, ν3, . . . νN , νN+1, . . . νN+K

such that ν1, ν2, ν3, . . . νN are regular and semiregular while νN+1, . . . νN+K have
increasing stabilizers. And for such a path, our algorithm yields the correct
answer, by the correctness of Soergel’s algorithm together with Corollary 1 and
the construction of Θ∗.

We check this independency in type A only. The idea is to identify the graded
translation functors with the action of the fi’s on the Fock space; thus our com-
binatorics is really the combinatorics that calculates the global crystal basis.
Since the global crystal basis is unique, the singular combinatorics will have no
ambiguity either.

Let us now therefore briefly review the correspondence between Young dia-
grams and weights in type An.

Let λi be the length of the i’th line of the Young diagram Y (λ). Then Y (λ) is
associated with the weight

λ = (λ1 − λ2, λ2 − λ3, . . . , λn−1 − λn, λn) ∈ P+

due to the fact that the simple root αi in type An has coordinates

αi = ( 0, 0, . . . ,
↓i

1 ,
↓i+1

−1 , 0, 0, . . . )

We conclude that λ + ρ lies on a wall corresponding to αi iff the last residues
of the i’th and the i+1’th rows are equal. This generalizes to other roots: if the
last residues of two rows are equal, the weight will lie on a wall. If one ends up on
a wall by removing one node from the upper of two lines, then the corresponding
weight lies above the wall and so on.

Example 8. (l = 3)

0
1
2
0
1
2
0

0
1
2
0
1

2
0
1
2

0
1
2
0

1
2
0
1

9



The 0-residues give rise to three walls containing this λ + ρ. The removable 1
node means that λ+ ρ is positioned above two walls and below one wall coming
from the 0-nodes.

Let us now focus on the n0 rows of Y having as last node a 0-node. Let Y ′

be the Young diagram obtained from Y by adding one node to one of the rows
(such a Y ′ may not exist).

We need to recall some facts on the modular representation theory of GLm(k).

Let ∆(λ) be the Weyl module given by λ ⊢ n. It is a module for GLm(k) for
any m ≥ n. According to the branching rule (α = λ, β = 1 in (2.30) of [J]) we
have the following identity in the Grothendieck group:

∆(λ) ⊗E =
∑

Young(λ) ⊆ Young(µ)
| Young(µ) \ Young(λ) |= 1

∆(µ)

Here E = ∆(1), i.e. the natural module for GLm(k). Using Donkin’s version
of the Nakayama conjecture [D] we obtain:

(∗) prλ′(∆(λ) ⊗ E) =
∑

Young(λ) ⊆ Young(µ)
| Young(µ) \ Young(λ) |= {1−node}

∆(µ)

Here prλ′ denotes projection onto the block of ∆(λ′); this is thus a formula for
T λ′

λ in the Grothendieck group.

We are now going to calculate a graded version of this formula, in other words
we are going to apply the operators Θ∗ and Θ∗ of the singular combinatorics of
the previous section.

Consider firstly the situation where the n0 ‘0’-nodes are all removable and
assume furthermore that n1 = 0; i.e. no row has a a ‘1’-node at the end.

Example 9. (l = 3)

λ =

0
1
2
3
0

2
3
0
1

3
0
1
2

0
1
2
3

1
2
3
0

2
3
0
1

0
1
2

2
3 00

The n0 ‘0’-nodes give rise to

(
n0

2

)
hyperplanes through λ. The other residues

also give rise to hyperplanes through λ; on the other hand, the components of
T λ′

λ ∆(λ) all stay fixed with respect to these other hyperplanes since we are adding
only ‘1’-nodes in (∗).

10



The components of T λ′

λ ∆(λ) lie on fewer hyperplanes than λ since n1 = 0 and
thus we are in position to apply Θ∗

λ,λ′ from our singular combinatorics.

We must for each component ∆(µ) of T λ′

λ ∆(λ) calculate the number

u(µ,Γλ) = #{ hyperplanes H through λ with µ < H}

With the above λ, one of the occurring µ’s will be

0
1
2
3
0

2
3
0
1

3
0
1
2

0
1
2
3

1
2
3
0

2
3
0
1

0
1
2

2
3 0

λ

0
1
2
3
0

1
2
3
0
1

3
0
1
2

0
1
2
3

1
2
3
0

2
3
0
1

0
1
2

2
3 0

µ

One sees in this example (which is easily generalized to all µ) that

u(µ,Γλ) = #{0-nodes of λ above γ}

where γ = µ \ λ. Thus ∆(µ) occurs in the graded translation from λ to λ′ with
a shift of order:

−u(µ,Γλ) = −#{0-nodes of λ above γ}
= −#{ indent 1-nodes of λ above γ}+#{ removable 1-nodes of λ above γ}

We now consider the slightly more general situation where some of the ‘0’-
nodes of λ are allowed to be non-removable; on the other hand we will require
that there be no removable ‘1’-nodes in λ. One then gets that

n1 = #{ non-removable 0-nodes of λ}

Example 10. (l = 3)

2
0
1
2
0

0
1
2
0
1

2
0
1
2 0

λ =

2
0
1
2
0

0
1
2
0
1

1
2
0
1
2 0

= µ

The n0 ‘0’-nodes still give rise to

(
n0

2

)
walls passing through λ, but in this

situation Θ∗
λ,λ′ is not a graded version of T λ′

λ , since λ′ lies on walls not passing
through λ.

The correct graded version of T λ′

λ will be Θτ,λ′

∗ ◦ Θ∗
λ,τ , where τ ∈ X(T ) ⊗ R

is more regular than each of the weights λ and λ′. In our example τ can be
visualized by the following “diagram”.

11



2
0
1
2
0

0
1
2
0
1

2
0
1
2 0

τ =

where we have added “half a node”.

We then have

u(τ,Γλ) = #{0-nodes of λ above µ \ λ}

Furthermore we have that

o(τ,Γµ) = #{1-nodes of λ above µ \ λ}

So ∆(µ) appears in the graded translation functor from λ to λ′ with a shift of
size

−u(τ,Γλ) + o(τ,Γµ) = −#{indent 1-nodes of λ above µ \ λ}

= −#{indent 1-nodes of λ above µ\λ}+#{removable 1-nodes of λ above µ\λ}

Consider finally the general situation in which we allow removable ‘1’-nodes.

Our graded version of T λ′

λ will then behave like ⊕Θτ,λ′

∗ ◦Θ∗
λ,τ where τ ∈ X(T )⊗

R is chosen as before. Each ∆(µ) appearing in the graded translation corresponds
to a τ and the same calculation as before gives a shift of size

−#{ indent 1-nodes of λ above µ \ λ }

+#{ removable 1-nodes of λ above µ \ λ }

Hence we get in all cases exactly the number −N r
1 (λ, µ) of LLT. We can of

course repeat this argument for the other residues and we conclude that the fi
operators on the Fock space are really those graded translation functors in our
singular setup that are summands of the tensor product with the natural module.
Let us formulate this as a theorem:

Theorem 1. Let fi be one of the standard generators of Uq(ŝll) and let fiλ =∑
cµ(q)µ in the action of fi on Fq. Then

∑
cµ(q)µ equals Θ∆(λ) in the singular

combinatorics of the previous section, where Θ is the operator of the singular
combinatorics corresponding to λ and µ, with µ being obtained from λ by adding
an i-node.

Now recall the selfdual element wλ of Fq, which is the first step of the LLT-
algorithm. It is on the form

wλ = f
(n1)
i1

f
(n2)
i2

. . . f
(nk)
ik

∅

for some ik and nk where f
(n)
i = ([n]q!)

−1 fn
i is the usual divided power notation.

We therefore need to check that also the action of the higher divided powers

f
(n)
i = ([n]q!)

−1 fn
i can be described in the singular combinatorics. This is an

argument close to the above. Let us start with an example.
12



Example 11. (l = 3)

2
3
0

3
0
1

0
1
2

2
3

3
0

0
1 2 3 0

τ =

It corresponds to a Steinberg weight in the A2 situation. Translating to the
weight given by the diagram σ:

2
3
0

3
0
1

0
1
2

2
3

3
0

0
1

1
2 3 0 1

σ =

can be described in our combinatorics by the following picture

T*

q2

1

q

This is performed in the LLT-algorithm as a two step operation, adding one
node in each step. In the alcove geometry we get the following picture

q2

q+q -1

)( q+q -1

)( q+q -1

q

and so Θ∗ corresponds to f
(2)
1 = 1

[2]
f 2
1 .

The example generalizes to all n:

Theorem 2. The action of f
(n)
i on Fq corresponds to a Θ of the singular com-

binatorics.
13



Proof: We may assume that i ≡ 1 mod l. Assume first that the residues of
the end nodes of λ are all different from 1. Then the end nodes of residue 0 all
give rise to addable 1-nodes. Let us consider f

(n)
1 λ. Let I = {il1 , il2 , . . . , ilK}

be the lines of λ having 0 as end residue and let λJ for J ⊂ {l1, . . . , lK} with
|J | = n be the partition obtained from λ by adding one node to the lines of ilj
for j ∈ J . The pairs (a, b) of line numbers where a ∈ I such that a < j ∀j ∈ J
and b ∈ J correspond to the hyperplanes through λ that lie above λJ , i.e. those
contributing to −u(λJ ,Π) of Definition 1 where λ ∈ Π. But in the notation of

Lemma 6.2 of [LLT] there are exactly N(id) +

(
n
2

)
of these (where n = ks in

loc. cit.). Since this is also the coefficient of λJ in f
(n)
1 λ the proof is finished in

that case.

If there are 1-nodes occurring at the end of some lines, the situation is slightly
more complicated since the relevant operator in the combinatorics is a composite
of Θ∗ and Θ∗. Let J be as before. Let us first assume that these 1-nodes are
all removable and let us denote by K the corresponding line numbers. Then the
pairs (a, b) of line numbers where a ∈ K with a < j ∀j ∈ J and b ∈ J gives the
number of hyperplanes through λ lying below λJ , i.e. contributing to o(λJ ,Π).
By Definition 1 we should subtract this number from −u(λJ ,Π) and thus find

once more the exact correspondence with the formula for f
(n)
1 λ.

Actually, this argument also holds in the case where some of these 1-nodes are
non-removable, by our definition of Θ via “half”-nodes and we are done.

✷

We can now prove that the singular combinatorics is well defined:

Theorem 3. Let the root system be of type A. Then the singular combinatorics
is well defined, i.e. does not depend on the path of weights.

Proof: Let µ1, µ1, . . . , µk, . . . , µN be a path of weights in P+, starting with µ1

in the fundamental alcove C and finishing with µN = λ. We view the weights
as partitions and show that each of the operators Θµi,µi+1 of the singular combi-

natorics applied to µi can be identified with the action of f
(n1)
i1

f
(n2)
i2

· · · f
(np)
ip

on

νi ∈ Fq for some choice of fij and nij . But then the uniqueness of the crystal
basis of M ⊂ Fq shows that the crystal basis is independent of the choice of path.

Let T ⊂ G = Slm be a maximal torus so that µk defines a T -module. We
associate a partition (µi

1, µ
i
2, . . . , µ

i
m) with each of the µi by the rule 〈µi, α1〉 =

µi
1 − µi

2 etc. This partition is unique up to adding the first columns a number of
times.

As usual, we let ρ denote the half sum of the positive roots, the corresponding
partition being (m,m− 1, . . . , 1). Recall that l is the order of the root of unity.
Then the position of µi in the alcove geometry with respect to l is equal to the
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position of rµi+(r−1)ρ with respect to the alcove geometry defined by rl. Indeed
letting ωi denote the i’th fundamental weight we have that

〈rλ+ (r − 1)ρ+ ρ, ωi〉 = r〈λ+ ρ, ωi〉

and hence the end residues of rλ+ (r− 1)ρ equal the r-multiples of the residues
of λ. Thus increasing the size of r gives rise to more weights inside the alcoves
and makes it possible to “separate” hyperplanes through λ coming from different
residues.

We choose r large enough for all of the operators Θ on the weights µi to be
on the form Θ∗ or Θ∗, that is involving no composites of such. Furthermore, we
obtain by choosing r big enough that all the occurring weights µi are l-regular
partitions.

Write µi = σ and µi+1 = τ and let us first assume that the operator that takes
σ to τ is of the type Θ∗. We check that it can realized through a sequence of

f
(k)
i ’s.

By assumption we have that τi − τj − i + j ≡ 0 mod l ⇒ σi − σj − i + j ≡
0 mod l. Let I0 ⊂ [1, . . . , m] consist of those indices i such that τi − i ≡ 0
mod l and let similarly J0 be those indices i such that σi − i ≡ 0 mod l. Then
I0 determines the hyperplanes passing through τ that come from the residue 0
mod l and similarly J0. Thus by assumption we have I0 ⊂ J0.

Let j ∈ I0 \ J0 be minimal. We can now add nodes to the j’th line of σ until
the last residue becomes 0. Each node added on the way does not give rise to any
new coinciding residues, since otherwise there would be a hyperplane separating
σ and τ . Similarly we deal with the other elements of ∈ I0 \ J0. But adding such
nodes corresponds to the operation of fi where i is the residue of the node. The
other elements of j ∈ I0 \ J0 are dealt with similarly.

At this stage, σ and τ are in the same facette and we can add or subtract
nodes to σ, without producing coinciding residues, to arrive at τ . Adding these
nodes corresponds to the operation of certain fi’s while subtracting of nodes

corresponds to certain ei’s. But using the relations of Uq(ŝll), these cancel out
and we are done in this case.

Assume now that the operator that takes µi to µi+1 is of the type Θ∗ and
write µi = τ and µi+1 = σ. Thus, there is a root α such that 〈τ + ρ, α〉 ≡ 0
while 〈σ + ρ, α〉 6≡ 0. We may assume that α is the only such root, by otherwise
passing to a larger l. Write α = ωk − ωl for k < l and assume wlog. that the
residues of the k’th and l’th line of τ are 0. Let I0 be as before, i.e. I0 defines the
hyperplanes passing through τ coming from the residue 0. Then the end residues
of the lines in σ of indices I10 := {i ∈ I0| i ≤ k } are constant and so are the end
residues of the lines in σ of indices I20 := {i ∈ I0| i ≥ l }. Let the first constant
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be n1 and the second be n2. Assume first that n1 = 1 and n2 = 0. Then using

Lemma 6.2 of [LLT] one checks that f
(|I1

0
|)

1 takes τ to σ.

For larger values of n1 we instead operate with the composite f
(|I1

0
|)

n1 · · ·f
(|I1

0
|)

2 f
(|I1

0
|)

1

on τ and for larger values of n2 we first operates with f
(|I0|)
n2 · · · f

(|I0|)
2 f

(|I0|)
1 on τ

and then with a sequence of the first type.

This finishes the proof of the Theorem.

✷

Remark. The paper [GW1] by Goodman and Wenzl contains a path algo-
rithm for affine Kazhdan-Lusztig polynomials valid for all Lie types. This gives
a different proof of the Theorem.

Using the argument from the beginning of section 5 we may now conclude
that the LLT-algorithm calculates [T (λ),∆(µ)] for λ a regular partition. But
by a q-analogue of Karin Erdmann’s result in [E], this number is equal to the
decomposition number dλµ for Hecke algebras at an l’th root of unity. In other
words, as claimed in the introduction of our paper, the LLT-conjecture follows
from Soergel’s algorithm.

Remark. The LLT conjecture only treats canonical basis coefficients dλ,µ(q)
for λ an l-regular partition. On the other hand, the singular combinatorics defined
in the present paper should work for arbitrary λ as well and produce decomposi-
tion numbers for the q-Schur algebra. In [LT1], canonical basis coefficients dλ,µ(q)
were defined for arbitrary λ and it was conjectured that their values at 1 coincide
with these decomposition numbers. This conjecure was proved in [VV].
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