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HEAVINESS - AN EXTENSION OF A LEMMA OF Y. PERES

DAVID RALSTON

Abstract. We provide an elementary proof of Y. Peres’ lemma on the exis-
tence in certain dynamical systems of what we term heavy points, points whose
ergodic averages consistently dominate the expected value of the ergodic av-
erages. We also derive several generalizations of Peres’ lemma by employing
techniques from the simplified proof.

1. The Lemma of Peres and its Immediate Generalizations

The following lemma is derived by Yuval Peres [7] using the maximal ergodic
theorem. While this original proof is quite short and natural, we will see that
elementary methods yield more general results. Before proceeding to these broader
results, however, the original lemma deserves mention.

Lemma 1 (Peres). Let T : X → X be a continuous transformation of a compact
space, and let µ be a probability measure preserved by T . For every continuous
f : X → R there exists some x ∈ X such that

(1) ∀N ∈ N
1

N

N−1
∑

i=0

f(T ix) ≥

∫

X

fdµ.

Proof (due to Peres). For any ǫ > 0, let

Eǫ =

{

x ∈ X : ∀N ∈ N
1

N

N−1
∑

i=0

f(T ix) ≥

∫

X

fdµ− ǫ

}

and define g,M by

g =

∫

X

fdµ− f − ǫ, M(x) = sup
N∈N

{

1

N

N−1
∑

i=0

g(T ix)

}

,

so that Eǫ = {x : M(x) ≤ 0}. The maximal ergodic theorem states that

0 ≤

∫

M(x)>0

gdµ =

∫

X\Eǫ

gdµ.

Now, as
∫

X
gdµ = −ǫ, we must have that Eǫ 6= ∅. Furthermore, as f is continuous,

Eǫ is closed. By intersecting the (nested) sets Eǫ as ǫ → 0 in our compact space
X , we obtain our desired point. �
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A point x which satisfies inequality (1) we term heavy for f (under T ). If f = χA,
the characteristic function of a set A, we will simply call the point x heavy for A.
We may also define heaviness in measure spaces without the luxury of a measure-
preserving T : given any sequence {xi}i=0,1,... in a probability space {X,µ}, and
a function f ∈ L1(X,µ), we say that the sequence is heavy for f if the following
inequality, similar to (1), holds:

(2) ∀N ∈ N

N−1
∑

i=0

f(xi) ≥ N

∫

X

fdµ.

In Section 4, we will use tools of ergodic theory to investigate one interesting such
situation where heaviness is absent, and Example 2 similarly uses a construction of
ergodic theory to produce heaviness in another non-obvious setting.

Remark. We note that in a nonperiodic ergodic system, if µ(A) /∈ Q, then the set
of points heavy for A must be a null set. Theorem 4 in [5] states that the quantity

(3)
1

N

N−1
∑

i=0

f(T ix)−

∫

X

fdµ

cannot be ultimately strictly positive or ultimately strictly negative except on a null
set (provided T is ergodic and nonperiodic), and we omit the proof.

This remark should not be overextended, however:

Example 1. There are nonperiodic ergodic systems and sets A of nontrivial mea-
sure (µ(A) /∈ {0, 1}) for which the set of heavy points is of positive measure.

Proof. Let X be the space generated by the shift map on the Morse Sequence (see
[1] for background and further details):

x = x1x2x3 . . . = 01101001 . . .

The sequence x is formed by the substitution 0 → 01, 1 → 10:

0 → 01 → 0110 → 01101001→ . . .

It is a short exercise to verify that T , the shift map (T (x)n = xn+1), is uniquely

ergodic in the resulting nonatomic system
{

O+(x), T
}

, and that µ(A) = 1/2, where

A = {y : y1 = 1} and µ is the unique preserved measure. It is quick to show that
any word in B = {y : y1y2 = 11} will be heavy for A, and that µ(B) > 0. This
system does not contradict the results in [5]; in this example, the quantities (3) are
not ultimately positive on B - they are zero for infinitely many N . �

Remark. We do not need in Lemma 1 that f be continuous - upper semi-continuity
would imply that the sets Eǫ are closed.

Corollary 1. Let X be compact and T : X → X be continuous. Let A ⊂ X be
closed. Then given any T -invariant measure µ, there exists some x ∈ X which is
heavy for A.

Proof. The function χA is upper semi-continuous, so we apply Lemma 1. �

Corollary 1 seems trivial, but implies the following example:
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Example 2. Fix α ∈ R and k ∈ N. Given Tk ∋ ~a = a0, a1, . . . , ak−1, let p
~a(x) =

αxk+ak−1x
k−1+. . .+a1x+a0. Let I ⊂ S1 be a closed set (for example, a connected

closed interval). Then there exists some choice of ~a (a choice of coefficients other
than α) such that the sequence {p~a(n)}∞n=0 is heavy for I (satisfies (2) with f = χI).
Specifically, for all N , we have

N−1
∑

i=0

χI(p(i)) ≥ Nµ(I).

Proof. The map T : Tk → Tk given by

T (x1, . . . , xk) = (x1 + α, x2 + x1, . . . , xk + xk−1)

clearly preserves Lebesgue measure. Define p~ak(x) = αxk+ak−1x
k−1+ . . .+a1x+a1

and p~ai−1(x) = p~ai (x + 1) = p~ai (x). Note that for any ~x ∈ Tk, we may find ~a such

that ~x = (p~a1(0), . . . , p
~a
k(0)). Then we have (all entries modulo one):

T n(p~a1(0), . . . , p
~a
k(0)) = (p~a1(n), . . . , p

~a
k(n))

Let I ′ = S1 × · · · × S1 × I and, as T is Lebesgue measure-preserving, and χI′

is upper semi-continuous (and integrates to µ(I)), there is some point ~x which is
heavy for I ′, which corresponds to a choice of ~a such that the sequence p~ak(n) is
heavy for I. �

Remark. It is possible to derive this result (with a few arguments) from knowing the
equidistribution of p~a(n) when α /∈ Q, but note that our proof relied only on our map
T being measure-preserving, and was therefore independent of the irrationality of
α, while equidistribution requires knowledge of T being uniquely ergodic, a stronger
result which requires α /∈ Q. For a proof of unique ergodicity of T , and therefore
equidistribution of p~a(n) for all choices of ~a (when α /∈ Q), we refer the reader to
[4].

In the next section we formalize our terminology and notation, and we obtain
a purely measure-theoretical version of Peres’ Lemma (Lemma 1). If we restrict
our attention to finding only points whose ergodic averages dominate the expected
value through some finite time N , we may disregard all topological information, and
even finiteness of µ in specific cases, and find a nontrivial set of such points. The
third section is devoted to extending these results for invertible actions to negative
times. Finally, the fourth section addresses further connections to the realm of
heavy sequences, using dynamical systems techniques to illustrate an interesting
counterexample.

2. Definitions and the First Theorem

Now let {X,µ, T } be a probability-measure-preserving system. Let f ∈ L1(X,µ).

The N th partial sum of a point x is given by SN (x) =
∑N−1

i=0 f(T ix). Define ψ(x)
by

ψ(x) = inf
n∈N

{

n : Sn(x) − n

∫

X

fdµ < 0

}

and then partition the spaceX into the countable collection of sets E(n) = {x : ψ(x) =
n}. If ψ(x) > n, we say that x is heavy through time n, and we denote such points
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by

H(n) =
∞
⋃

i=n+1

E(i)

(where the above union should be understood to include the set E(∞)) and if
ψ(x) = ∞, we simply say that x is heavy. We denote (here there is no H(∞) to
include in the intersection):

H = E(∞) =

∞
⋂

i=1

H(i).

The relation to the lemma of Peres is immediate: the sets H(n) represent points
whose ergodic averages through time n dominate the expected value. Then Lemma
1 becomes:

Lemma 2. If T : X → X is a continuous transformation on a compact space
preserving a probability measure µ, and f ∈ L1(X,µ) is upper semi-continuous,
then H 6= ∅.

By approaching Lemma 1 from a finite perspective (the sets H(n)), however, it
is possible to gain more information, and without needing topological data or the
Maximal Ergodic Theorem. Some elements of the following proof are similar to
the proof of the Maximal Ergodic Theorem due to Y. Katznelson and D. Ornstein,
given by K. Petersen in his book, [8, pp 27-30]. We now assume that

∫

X
fdµ = 0:

if µ(X) = 1, then we may adjust f by a constant to meet this criteria. However,
by forcing

∫

X
fdµ = 0, we are able to drop the condition that µ(X) <∞, and still

derive the following:

Theorem 1. Let {X,µ} be a measure space, T an action which preserves µ, and
let f ∈ L1(X,µ) be such that

∫

X
f(x)dµ = 0. Then ∀N ≥ 0, µ (H(N)) > 0. That

is, the set of points which are heavy through time N is of positive measure.

Proof. Without loss of generality, let T be invertible (otherwise, replace our system
with its natural invertible extension, as outlined in the book of Cornfeld, Fomin, and
Sinai [3, pp 239-241]). Assume that we may partition our space X up to measure
zero into sets E(1), . . . , E(N). Note that x ∈ E(i) ⇒ Si(x) < 0. Set n1 = N , and
let A1,0 = E(N) and T iA1,0 = A1,i for i = 0, 1, . . . , n1 − 1. Now, let X2 = X \B1,
where B1 =

⋃n
i=0A1,i. Let

n2 = max{i ∈ N : µ (E(i) ∩X2) > 0},

A2,0 = E(n2) ∩X2, A2,i = T iA2,0 for i = 1, 2, . . . n2 − 1.

Similarly define A3,i, A4,i, etc. As ni+1 < ni, this process terminates at some stage
m. See Figure 1.

As outlined in Petersen [8, p 29], the sets Ai,j are all disjoint. This fact may
be deduced by first observing that A1,0 ∩ A1,i must be empty (a point x in the
intersection would have to be heavy through time n1+ i−1 > n1−1, contradicting
x ∈ A1,0), and applying similar reasoning to other possibilities. Furthermore:

∫

Snj−1

i=0
Aj,i

f(x)dµ =

nj−1
∑

i=0

∫

Aj,i

f(x)dµ =

∫

Aj,0

nj−1
∑

i=0

f(T ix)dµ =

∫

Aj,0

Snj
(x)dµ < 0



HEAVINESS - AN EXTENSION OF A LEMMA OF Y. PERES 5

We have created a partition of X (up to a null set) into disjoint sets of nonzero

measure (the rows
⋃nk−1

i=0 A(k, i) in Figure 1), over each of which the function f
integrates to strictly less than zero, contradicting the fact that

∫

X
fdµ = 0. �

Figure 1. A partition of the space X into disjoint sets, where
each row integrates to strictly less than zero.

A1,0
T // A1,1

T // . . . T // A1,n1−2
T // A1,n1−1

A2,0
T // . . . T // A2,n2−2

T // A2,n2−1

...
...

...

Am,0
T // . . . T // Am,nm−1

Note that if T is continuous and our integrable f is upper semi-continuous,
then the closed sets H(n) are nonempty, as they are of positive measure. Further
assuming X to be compact, then, we derive Lemma 1 as a corollary to Theorem 1.

3. Generalizations for Negative Times

Recall that for n ∈ N we have defined Sn(x) = f(x)+f(Tx)+ . . . f(T n−1x). For
n ≥ 2, we clearly have the relation that Sn(x) − Sn−1(x) = f(T n−1x). Assuming
T is invertible, we extend this relation to derive that S0(x) = 0, and for n < 0:

Sn(x) = −
[

f(T−1x) + f(T−2x) + . . .+ f(T nx)
]

.

Define the sets H(n,m) = {x : Si(x) ≥ 0, i = n, n + 1, . . . ,m}, and H(Z) =
∩∞
n=1H(−n, n). Note that H(0) = X . Furthermore, there is the obvious relation

that Sn(T
mx) = Sn+m(x) − Sm(x). We immediately conclude the following:

Lemma 3. Let m < n be integers. Then (Tmx ∈ H(0, n)) ⇔ (Sm(x) ≤ Sm+i(x))
for i = 0, 1, . . . , n. Similarly, (Tmx ∈ H(−n, 0)) ⇔ (Sm(x) ≤ Sm−i(x)) for i =
0, 1, . . . n.

By considering T−1 and the function−f , we reprove Lemma 1 to claimH(−∞, 0) 6=
∅, replacing the assumption of upper semi-continuity with lower semi-continuity.
Similarly, µ (H(−n, 0)) > 0 under the conditions of Theorem 1. Note that if f is
continuous, both H(−∞, 0) and H(0,∞) are nonempty. Is it possible to combine
both positive and negative times and retain either Lemma 1 or Theorem 1? In
general, it is not.

Example 3. X = {0, 1}, T = Id, f(0) = 1, f(1) = −1. Here we have Sn(0) = n
for all n ∈ Z, and Sn(1) = −n, so for each point, we may only claim heaviness in
one direction (positive or negative times, but not both).

This system is an unnatural example: the space X decomposes into two T -
invariant closed subspaces. Under the appropriate conditions, however, we may
reach our desired conclusions:
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Theorem 2. Assume X is compact, f is continuous, and T is transitive, invertible,
and continuous. Then H(Z) 6= ∅. This theorem is an extension of Lemma 1.

Proof. First, assume we have a point y ∈ H(0,∞) such that Sn(y) = 0 for infinitely
many n > 0. Then by taking xi = T ni(y) for an increasing sequence of such times,

a limit point x ∈ ∩∞
n=1{xi}

∞
i=n will work. We may construct a similar point if there

is z ∈ H(−∞, 0) with Sn(z) = 0 for infinitely many n < 0. So, without loss of
generality, we assume that there is no point. Therefore, there exist y ∈ H(0,∞)
and z ∈ H(−∞, 0) with no such times, and these points y and z now have the
property that for any N , there is a small open neighborhood that remains heavy
through time N (time −N for the point z).

Let x0 be a point with dense orbit. Let UN ∋ y be an open neighborhood of y
such that UN ⊂ H(0, N), and let VN ∋ z be an open neighborhood of z such that
VN ⊂ H(−N, 0). As the orbit of x0 is dense, for everyN > 0, there is an iN > 0 and
jN > iN +N such that T iNx ∈ VN and T jNx ∈ UN . Let xN be the point T k+1x0,
where iN ≤ k ≤ jN is the time where Sk(x0) is minimized. Then we find that
xN ∈ H(0, N + jN − k) ⊂ H(0, N), and also xN ∈ H(−N − k+ iN , 0) ⊂ H(−N, 0).

By letting x ∈ ∩∞
n=1{xi}

∞
i=n, we find that this x has the desired property. �

Note that all we needed to complete the proof was a point whose orbit was
guaranteed to land in the proper H(0, N) and H(−N, 0). Under the assumptions
of Theorem 1, both of these sets are of positive measure for every N . If we assume
ergodicity of T , then almost every orbit has this property, and therefore we conclude
the following:

Theorem 3. Let T be invertible and preserving probability measure µ. Then T is
ergodic if and only if for every integrable f and n1 < n2, the set H(n1, n2) is of
positive measure. This theorem is an extension of Theorem 1.

Proof. Assume first that T is ergodic. If n1 and n2 have the same sign, there is
nothing to do but apply Theorem 1. So, assume n1 < 0 < n2. Almost every point
orbits into this set (almost every point orbits into H(n1, 0) and later into H(0, n2),
so somewhere in between it must have orbited intoH(n1, n2), analogously to Lemma
2), and therefore the set cannot be of zero measure.

Ergodicity is very important, however, in assuring that almost every point orbits
into the desired sets. Let A be such that 1 > µA > 0 and A is T -invariant. Then
letting f(x) = χA(x)−µA, the only points heavy for positive times are those points
in A, and the only points heavy for negative times are those points in X \A, so we
cannot have µ (H(n1, n2)) > 0 when n1 < 0 < n2. �

4. The sequence x, 2x, 3x, . . .

We saw in Example 2 that given any closed set I ⊂ S1 and α, there exists some
choice of β such that the sequence nα+β is heavy for I. In fact, this β is just some
element ofHχI

Rα
(here Rα is the transformation of S1 = [0, 1) given by Rα(x) = x+α

mod 1). Suppose, however, that we wish to fix β = 0 and allow α to vary? That
is, is there always some point x such that the sequence x, 2x, 3x, . . . (taken modulo
one) is heavy for some closed set I? The answer is ‘no,’ and the proof follows from
an application of a Z2 version of the Rohlin-Halmos ‘stacking lemma:’

Example 4. There is some I, a finite collection of closed intervals, such that no
x ∈ S1 such that x, 2x, 3x, . . . is heavy for I.
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Figure 2. Rohlin-Halmos for our two maps T (x) = 2x mod 1
and S(x) = 3x mod 1: each set is disjoint from the others, and
altogether they fill the space up to ǫ. The selected setB (a ‘checker-
board’ subset of the N ×N subsquare) will be disjoint from T (B)
and S(B). In this example, N is odd.

tNA

T

��

tNsA

T

��

S
oo . . .

T

��

S
oo tNsN−1A

T

��

S
oo tNsNA

T

��

S
oo

tN−1A

T

��

tN−1sA
S

oo

T

��

. . .
S

oo

T

��

tN−1sN−1A
S

oo

T

��

tN−1sNA
S

oo

T

��

...

T

��

...S
oo

T

��

. . .
S

oo

T

��

...S
oo

T

��

...S
oo

T

��

tA

T

��

tsA
S

oo

T

��

. . .
S

oo

T

��

tsN−1A
S

oo

T

��

tsNA
S

oo

T

��

A sA
S

oo . . .
S

oo sN−1A
S

oo sNA
S

oo

Proof. The proof rests on a Zd version of the classical Rohlin-Halmos “stacking
lemma,” given by Y. Katznelson and B. Weiss [6]. Let T (x) = 2x mod 1, and
S(x) = 3x mod 1. These two maps clearly commute with one another and preserve
Lebesgue measure. Furthermore, for any m,n, the set of x such that T nSmx = x
is of zero measure (necessarily being rational), so the group action generated in the
corresponding natural extension (again, see [3, pp 239-241]) is totally aperiodic.
For convenience, we will write t = T−1 and s = S−1.

For anyN and ǫ > 0, by the Z2 version of the “stacking lemma” referenced above,
there is some set A, without loss of generality a finite union of closed intervals, such
that for all 0 ≤ n,m ≤ N , the sets tnsmA are all pairwise disjoint, and

µ

(

X \

(

N
⋃

n,m=0

tnsmA

))

< ǫ.

Define

B =
⋃

2|(p+q)
N≥p,q>0

tpsqA

and see that µ(B) = CµA, where C = N2/2 or (N2 + 1)/2, depending on N = 0
or 1 mod 2. Also, B is a finite union of closed intervals. For N = 5 and ǫ < 1/13,
then, µ(B) > 1/3. By construction, T (B) ∩ B = S(B) ∩B = ∅, so for any x ∈ B,
2x and 3x both belong to X \ A (here the p + q = 0 mod 2, p, q > 0 condition
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is used). Therefore, for x /∈ B, the sequence {ix}i=1,2,... violates inequality (2) for
N = 1, and for x ∈ B, inequality (2) fails for N = 3.

See Figure 2 for the construction of B. Note that such a set B as given in the
diagram is difficult to construct explicitly, consisting of very many intervals of very
small size. Also note that while we used the maps T and S, our end result is a
statement on the heaviness properties of the non-dynamic sequence {nx}∞n=1. �

While this example shows that we may not claim that any closed set A has some
point x ∈ A such that {ix}i=1,2,... is heavy for A, for certain choices of A, the
set of such x is of positive Hausdorff dimension. An investigation of this setting
is the topic of a forthcoming paper, joint with M. Boshernitzan [2]. In particular,
we develop the surprising characterization of the set of x such that {ix}∞i=1 (taken
modulo one) is heavy for the interval [0, 1

k
): it is exactly those x such that all odd-

indexed entries of the continued fraction expansion for x are divisible by k (where
the continued fraction terminates at an even index, if x ∈ Q).
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