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AN ENERGY GAP FOR YANG-MILLS CONNECTIONS

CLAUS GERHARDT

Abstract. Consider a Yang-Mills connection over a Riemann mani-

fold M = M
n, n ≥ 3, where M may be compact or complete. Then its

energy must be bounded from below by some positive constant, if M
satisfies certain conditions, unless the connection is flat.
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1. Introduction

We consider the problem: When is a Yang-Mills connection non-flat? Of
course, the trivial answer Fµλ 6≡ 0 is unsatisfactory. Bourguignon and Law-
son proved in [3, Theorem C], among other results, that any Yang-Mills
connection over Sn, n ≥ 3, the field strength of which satisfies the pointwise
estimate

(1.1) F 2 = − tr(FµλF
µλ) <

(
n

2

)

is flat.
We want to prove that under certain assumptions on the base space M ,

which is supposed to be a Riemannian manifold of dimension n ≥ 3, the
energy of a Yang-Mills connection has to satisfy

(1.2)
( ∫

M

|F |n2
) 2

n ≥ κ0 > 0,

where κ0 depends only on the Sobolev constants of M , n and the dimension
of the Lie group G, unless the connection is flat.
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2 CLAUS GERHARDT

Here,

(1.3) |F | =
√
F 2,

and we also call the left-hand side of (1.2) energy though this label is only
correct when n = 4. However, this norm is also the crucial norm, which has
to be (locally) small, used to prove regularity of a connection, cf. [4, Theorem
1.3].

The exponent n
2
naturally pops up when Sobolev inequalities are applied

to solutions of differential equations satisfied by the field strength or the
energy density of a connection in the adjoint bundle.

We distinguish two cases: M compact and M complete and non-compact.
When M is compact, we require

(1.4) R̄αβΛ
α
λΛ

βλ − 1
2
R̄αβµλΛ

αβΛµλ ≥ c0ΛαβΛ
αβ

for all skew-symmetric Λαβ ∈ T 0,2(M), where 0 < c0, while for non-compact
M the weaker assumption

(1.5) R̄αβΛ
α
λΛ

βλ − 1
2
R̄αβµλΛ

αβΛµλ ≥ 0

and in addition

(1.6)
( ∫

M

u
2n

n−2

)n−2

n ≤ c1

∫

M

|Du|2 ∀u ∈ H1,2(M)

should be satisfied.

1.1. Remark. (i) If M is a space of constant curvature

(1.7) R̄αβµλ = KM (ḡαµḡβλ − ḡαλḡβµ),

then

(1.8) R̄αβΛ
α
λΛ

βλ − 1
2
R̄αβµλΛ

αβΛµλ = (n− 2)KMΛαβΛ
αβ .

In case n = 2 the curvature term therefore vanishes, and this result is also
valid for an arbitrary two-dimensional Riemannian manifold, since the cur-
vature tensor then has the same structure as in (1.7) though KM is not
necessarily constant.

(ii) If M = R
n, n ≥ 3, the conditions (1.5) and (1.6) are always valid.

1.2. Theorem. Let M = Mn, n ≥ 3, be a compact Riemannian for which

the condition (1.4) with c0 > 0 holds. Then any Yang-Mills connection over

M with compact, semi-simple Lie group is either flat or satisfies (1.2) for

some constant κ0 > 0 depending on the Sobolev constants of M , n, c0, and

the dimension of the Lie group.

1.3. Theorem. Let M = Mn, n ≥ 3, be complete, non-compact and

assume that the conditions (1.5) and(1.6) hold. Then any Yang-Mills con-

nection over M with compact, semi-simple Lie group is either flat or the

estimate (1.2) is valid. The constant κ0 > 0 in (1.2) depends on the constant

c1 in (1.6), n, and the dimension of the Lie group.
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2. The compact case

Let (P,M,G,G) be a principal fiber bundle where M = Mn, n ≥ 3 is a
compact Riemannian manifold with metric ḡαβ and G a compact, semi-simple
Lie group with Lie algebra g. Let fc = (fa

cb) be a basis of ad g and

(2.1) Aµ = fcA
c
µ

a Yang-Mills connection in the adjoint bundle (E,M, g,Ad(G)).
The curvature tensor of the connection is given by

(2.2) Ra
bµλ = fa

cbF
c
µλ,

where

(2.3) Fµλ = fcF
c
µλ

is the field strength of the connection, and

(2.4) F 2 ≡ γabF
a
µλF

bµλ = RabµλR
abµλ

the energy density of the connection—at least up to a factor 1
4
.

Here, γab is the Cartan-Killing metric acting on elements of the fiber g,
and Latin indices are raised or lowered with respect to the inverse γab or γab,
and Greek indices with respect to the metric of M .

2.1. Definition. The adjoint bundle E is vector bundle; let E∗ be the
dual bundle, then we denote by

(2.5) T r,s(E) = Γ (E ⊗ · · · ⊗ E
︸ ︷︷ ︸

r

⊗ E∗ ⊗ · · · ⊗ E∗

︸ ︷︷ ︸

s

)

the sections of the corresponding tensor bundle.

Thus, we have

(2.6) F a
µλ ∈ T 1,0(E)⊗ T 0,2(M).

Since Aµ is a Yang-Mills connection it solves the Yang-Mills equation

(2.7) F aα
λ;α = 0,

where we use Einstein’s summation convention, a semi-colon indicates co-
variant differentiation, and where we stipulate that a covariant derivative is
always a full tensor, i.e.,

(2.8) F a
µλ;α = F a

µλ,α + fa
bcA

b
αF

c
µλ − Γ̄ γ

αµF
a
γλ − Γ̄

γ
αλF

a
µγ ,

where Γ̄
γ
αβ are the Christoffel symbols of the Riemannian connection; a

comma indicates partial differentiation.
Before we formulate the crucial lemma let us note that R̄αβγδ resp. R̄αβ

symbolize the Riemann curvature tensor resp. the Ricci tensor of ḡαβ.
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2.2. Lemma. Let Aµ be a Yang-Mills connection, then its energy density

F 2 solves the equation

(2.9)
− 1

4
∆F 2 + 1

2
Faµλ;αF

aµλ α
; + R̄βµF

aβ
λF

µλ
a − 1

2
R̄αβµλF

αβ
a F aµλ

= −fa
cbF

c
αµF

bα
λF

µλ
a .

Proof. Differentiating (2.7) covariantly with respect to xµ and using the Ricci
identities we obtain

(2.10)
0 = −F aα

λ;αµ

= −F aα
λ;µα +Ra

bαµF
bα

λ + R̄α
βαµF

aβ
λ + R̄

β
λµαF

aα
β .

On the other hand, differentiating the second Bianchi identities

(2.11) 0 = F a
αλ;µ + F a

µα;λ + F a
λµ;α

we infer

(2.12) 0 = F aα
λ;µα + F a α

µ ;λα +∆F a
λµ,

and we deduce further

(2.13) −∆F a
µλF

µλ
a = −2F aα

λ;µαF
µλ

a .

In view of (2.10) we then conclude

(2.14)
0 = − 1

2
∆F a

µλF
µλ

a +Ra
bαµF

bα
λF

µλ
a + R̄βµF

aβ
λF

µλ
a

+ R̄
β
λµαF

aα
βF

µλ
a ,

which is equivalent to

(2.15)
0 = − 1

2
∆F a

µλF
µλ

a + fa
cbF

c
αµF

bα
λF

µλ
a + R̄βµF

aβ
λF

µλ
a

− R̄αµβλF
aαβF µλ

a ,

in view of (2.2).
Finally, using the first Bianchi identities,

(2.16) R̄αβµλ + R̄αµλβ + R̄αλβµ = 0,

we deduce

(2.17) R̄αβµλF
aαβF µλ

a + R̄αµλβF
aαβF µλ

a + R̄αλβµF
aαβF µλ

a = 0,

and hence

(2.18) R̄αβµλF
aαβF µλ

a = 2R̄αµβλF
aαβF µλ

a ,

from which the equation (2.9) immediately follows. �

Proof of Theorem 1.2 on page 2. Define

(2.19) u = F 2,

then

(2.20) R̄βµF
aβ

λF
µλ

a − 1
2
R̄αβµλF

αβ
a F aµλ ≥ c0u,

where c0 > 0, in view of the assumption (1.4) on page 2.
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Multiplying (2.9) with u and integrating by part we obtain

(2.21) 3
8

∫

M

|Du|2 + c0

∫

M

u2 ≤ c

∫

M

√
uu2,

where we used the simple estimate

(2.22) |Du|2 ≤ 4Faµλ;αF
aµλ α

; u2

and where c depends on n and the dimension of g; note that

(2.23) fc ∈ SO(g, γab).

The integral on the right-hand side of (2.21) is estimated by

(2.24)

∫

M

√
uu2 ≤

(∫

M

u
n

4

) 2

n

( ∫

M

u
2n

n−2

)n−2

n

,

where

(2.25)
( ∫

M

u
n

4

) 2

n

=
( ∫

M

|F |n2
) 2

n

.

Applying then the Sobolev inequality

(2.26)
(∫

M

u
2n

n−2

)n−2

n ≤ c1

∫

M

|Du|2 + c2

∫

M

u2,

cf. [1], we obtain

(2.27)
( ∫

M

u
2n

n−2

)n−2

n ≤ c3

( ∫

M

|F |n2
) 2

n

( ∫

M

u
2n

n−2

)n−2

n

,

where c3 depends on c1, c2, c0 and c. Hence, we deduce u ≡ 0 or

(2.28) c−1
3 ≤

( ∫

M

|F |n2
) 2

n

.

Setting

(2.29) κ0 = c−1
3

finishes the proof. �

3. The non-compact case

We now suppose that M = Mn is a complete, non-compact Riemannian
manifold. Then there holds

(3.1) H1,2(M) = H
1,2
0 (M),

i.e., the test functions C∞

c (M) are dense in the Sobolev space H1,2(M), see
[1, Lemme 4] or [2, Theorem 2.6].

Since we do not a priori

(3.2) F 2 ∈ H1,2(M),

but only

(3.3) F 2 ∈ H
1,2
loc (M),



6 CLAUS GERHARDT

the preceding proof has to be modified.
Let η = η(t) be defined through

(3.4) η(t) =







1, t ≤ 1,

(2− t)q, 1 ≤ t ≤ 2,

0, t ≥ 2,

where

(3.5) q = max(1, 8
n
).

Fix a point x0 ∈ M and let r be the Riemannian distance function with
center in x0

(3.6) r(x) = d(x0, x).

Then r is Lipschitz such that

(3.7) |Dr| = 1

almost everywhere.
For k ≥ 1 define

(3.8) ηk(x) = η(k−1r).

The functions

(3.9) up−1η
p
k,

where

(3.10) p = n
4
,

then have compact support, and multiplying (2.9) on page 4 with up−1η
p
k

yields

(3.11)

(p
4
+ 1

8
− ǫ)

∫

m

|Du|2up−2η
p
k ≤ c

(∫

M

|F |n2
) 2

n

( ∫

M

(uηk)
n

n−2
p
)n−2

n

+ cǫ

∫

M

|Dηk|2ηp−2
k up,

where 0 < ǫ is supposed to be small.
Furthermore, there holds

(3.12)

∫

M

|D(uηk)
p

2 |2 =
p2

4

∫

M

|Duηk + uDηk|2(uηk)p−2

≤ (1 + ǫ)
p2

4

∫

M

|Du|2up−2η
p
k + cǫ

p2

4

∫

M

|Dηk|2ηp−2
k up.

Now, choosing ǫ so small that

(3.13) (1 + ǫ)p
2

4
≤ p(p

4
+ 1

8
− ǫ)

and setting

(3.14) ϕ = (uηk)
p

2
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we obtain

(3.15)

∫

M

|Dϕ|2 ≤ pc
(∫

M

|F |n2
) 2

n

(∫

M

ϕ
2n

n−2

)n−2

n

+ cǫ

∫

M

|Dηk|2ηp−2
k up,

where cǫ is a new constant.
We furthermore observe that

(3.16) |Dηk|2ηp−2
k ≤ q2k−2(2− k−1r)qp−2,

subject to

(3.17) 1 ≤ k−1r ≤ 2.

In view of (3.5) and (3.10)

(3.18) qp− 2 ≥ 0

and hence

(3.19) |Dηk|2ηp−2
k ≤ q2k−2.

Applying now the Sobolev inequality (1.6) on page 2 to ϕ and choosing

(3.20) κ0 = (c1cp)
−1

we conclude |F | ≡ 0, if

(3.21)
( ∫

M

|F |n2
) 2

n

< κ0.

Indeed, if the preceding inequality is valid, then we deduce from (3.15)

(3.22)
(

1− κ−1
0

(∫

M

|F |n2
) 2

n

)( ∫

M

|ϕ| 2n

n−2

)n−2

n ≤ cǫq
2k−2

∫

M

|F |n2 .

In the limit k → ∞ we obtain

(3.23)
(∫

M

|u|
pn

n−2

)n−2

n ≤ 0.
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