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On the Decay of the Determinants of Multiuser
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Abstract—In a recent work, Coronel et al. initiated the study  spherically shaped signal set instead will not matter. A GAM
of the relation between the diversity-multiplexing tradedf (DMT)  oriented reader may then view encoding as linear dispersion

performance of a multiuser multiple-input multiple-outpu t (MU- of o — Unf independently chose?2-QAM symbols. On

MIMO) lattice code and the rate of the decay of the determinans th 2 ther hand h t it at a diff t rat
of the code matrix as a function of the size of the signal € other hand, each user may fransmit at a ditierent rate

constellation. In this note, we state a simple general upper Of, equivalently, have his/her own rate parameter. We d@enot
bound on the decay function and study the promising code these byN;, Ns,..., Ny, and byL;(N;) the finite signal
proposed by Badr & Belfiore in close detail. We derive a lower constellation obtained by restricting the coefficients loé t

bound to its decay function based on a classical theorem duet basis matrices of latticd.. to have absolute value at most
Liouville. The resulting bound is applicable also to other odes N J
iz

with constructions based on algebraic number theory. Furtler, ) )
we study an example sequence of small determinants within ¢n  Typical values of/V; are set in terms of the DMT. Assume
Badr-Belfiore code and derive a tighter upper bound to its deay that thejth user transmits at multiplexing gaify. It in turn
function. The upper bound has certain conjectural asymptoic means that the size of; equals

uncertainties, whence we also list the exact bound for sewvar

finite data rates. |X;| = SNR#U™,
Note that by definitionX;| = (N;)" andn = 2Un?. Hence
|. BACKGROUND AND THE DECAY FUNCTION to achieve multiplexing gain; for the]th user we have to set
Assume that we are to design a systemifasimultaneously N; = SNR"‘%’?. 2

transmitting synchronized users, each transmitting with
transmit antennas and, for simplicity so that we end up wilYe will say more about the cod&; when we examine the
square matrices, ovéfn; channel uses. We can describe eadAMT performance of the Badr-BeIﬁore code in Section IV.
user's signals as; x Un, complex matrices. A multiuser An important class of error events is formed by those,
MIMO signal is then viewed as &n, x Un, matrix obtained where the receiver is about to make an error in estimating
by using the signals of the individual users as blocks. St eagvery users signal. This is dominating the system perfor-
user is occupying; rows in this overall transmission matrix.mance in some cases, because with even a relatively well
Any study of DMT questions calls for a scalable set of finitéesigned code the channel state may make the received linear
signal constellations. For the sake of convenience mobbasit combination of individual error vectors cancel each other
assume that these signal sets of individual users are cantedout to a significant extent. Such a cancellation is easier to
of a user specific lattic&; C M., xpn,,j = 1,...,U. arrange when all the users are using a large codebook at the
When studying DMT questions it is natural to assume th&gme time corresponding to the cases, where all the users
each user is maximally using the degrees of freedom availaBfe fransmitting at a relatively high rate. The standard-PEP
to him/her. Therefore, the lattices of the individual userdfiven space-time analysis shows that the probability ehsu
should be of full rank:. = 2Un2, so that each user’s signalsan error event can be related to the determinant of the matrix
consist of integral linear combinations ofuser specific basis X = M (X1, Xz,..., Xv) = (X{ X3 --- X{)", where
matrices. A natural scaling parameter is the range of tHee n: x Un,; block X; from user; |s_a non-zero matrix
integer coefficients. We assume that the range is paramederi€ L;. The following quantity is then of interest:
by a natural numbelN._Specmcally,.for thejth gser, let D(Ni, Ny, ..., Ny) = min et M(X1, ..., Xu)|.
B, 1, --,B,, be a basis for the lattick; of the jth user. X, €L, (N;)\{0}

Then the code associated with tlil user is given b . -
i 9 y As a natural special case, when all the users are transgnéttin

exactly the same rate we give special attention to the fancti

X =<X; = bBy; : b €Z-N<b <Ny (1)
= D(N)=D(N; = N, ..., Ny = N).

where each coefficiet, i = 1,...,n, could be freely chosen We call both these functions thiecay functiorof the MU-

from the interval[— N, N]. Alternatively, N-PAM coordinate MIMO code (L;), j = 1,...,U. We have tacitly made
set could be used. What is essential for our study is that tthe assumption that the code designer has provided us with
set of available signals for a user is of the ord§N™). Our a form of generalizedank criterion stating that the matrix
bounds are blind to constant multipliers, so for examplagisi M (X1, X, ..., Xy) is of a full rank, whenever all the blocks
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X;,7=1,2,...,U, are non-zero. Under the rank criterion theopic would show that the inverse square decay is essgntiall
decay function will then only take non-zero values. the best possible whelii = 2 andn, = 1.

Is this a misnomer? After all, in the single user MIMO code, Let us now state two theorems from [5] that will be used for
lattices within cyclic division algebras such as the Goldestudying the BB-code. Both theorems are based on the pigeon
code and the Golden+ code enjoy the so called non-vanishimgje principle.
determinant (NVD) property stating that there is an absolut Theorem 1.1:(Pigeon hole bound, multiantenna case). For
constantw > 0 with the property thatD(N) > w for all any full-rate U-user code, each user transmitting with
values of N. In [1] it was shown that the NVD-property antennas, there exists a constant- 0 such that
guarantees the DMT-optimality of a single user code. As we K
shall see shortly, this is not possible in the multiuser casd D(Ny=N,Ny=N3z=---=Ny=1) < NO—Dmr-
the determinants will necessarily tend toward zero (unker t

assumption of the generalized rank critelﬂ))n In other words, the determinants of any full-rdte user n;

A natural goal for the research in MU-MIMO channel§ransrnit antenna (?ode decay with exppnent atlgiast 1)
would be to have at hand both an explicit criterion guaran-Theorem 1.2:(Pigeon hole bound, smgle. antenna case) For
teeing the DMT-optimality of the family of latticedL;),j = &V full-rateU-user codg(Ly, Ly, ..., Lyy) with n, = 1 there
1,2,...,U, and a class of constructions meeting this criterion‘?x's‘tS a constank’ > 0 such that
Some progress in these questions has been made in [4], [3], DNy =N,Ng=Ny=---=Ny=1) < K .

[2], and it is easy to believe that a condition expressed in ’ - NU-L

terms of the decay function is also out there [4]. In this nota other words the determinants of any single transmit argen
we state some interesting results from [5] about the availaljull-rate U-user code decay with exponeht> U — 1.

decay functions of all MU-MIMO lattice codes in general.

Based on them, and as the main contribution of this paper, we II. A LOWER BOUND TO THE DECAY OF THE

study in particular the decay function of the code proposed b BADR—BELFIORE CODE

Badr & Belfiore (BB-code, in short). .

What kind of decay functions should one expect? We haveLet. us recgll the c.ode co_n_structlon _from [6]. Sge also
shown in [5] that inverse polynomial decay is forced upon u%q“a“of‘ (49) in [4.]' This promising code is (_axpressed |m§er_
Al our upper and lower bounds foP(N) are of the form of certain algebraic number fields. Everything happensiasi

CN-?, whered > 0 is a real constant. the field E = Q(i, v/5). We shall also encounter its subfields

Definition 1.1: If the decay function of a MU-MIMO code By = Q(i), F» = Q(V5) and Fs = Q(iV’5). The respective

has an upper bound of the for(N) < C.,N—%, we say nngs of algebraic integers of‘these quadratic fields@ye=
; ; : Z[i], Oy = Z[7] and O3 = Z[i\/5], whereT = (1 + v/5)/2

that the determinants of this code decay with exponent at lea X . . .
IS the golden ratio. The ring of integers 6z = Z[i, 7] then

01. Similarly, if the decay function has a lower bound of the ~ ~ _ _
form D(N) > C,N~, then we say that the decay exponen%onS'Sts of numbers of the forit + bi) + (¢ + di)r, where

is at mostd,. Finally, if for a particular code we find lower a,b,c,d are any rational integers. )
and upper bounds of the for@N— < D(N) < CyN~3 The Galois groupG = Gal(F/Q) has four elements:

. . . lagip:i— —i, V5= V5, 0 :imi, Vb~ —/5, and
\(;ve say that the determinants of this catiray with exponent = 0p=po: i —i, /5 > —/B. The respective fixed
" Of course, asymptotically we prefer a code with a smallde\aS 0f,p andu are Iy, Fy, and F.
» asymp y P We are now ready to describe the BB-code. It fits into our

decay exponent. Equivalently, we say that the code decays . - - -
with exponen® wheneveim .o, — 22200 _ 5 Q/eneral framework with parametel's= 2 andn; =1 so it is

log N a single-antenna two-user code. Both users linearly disper

As a wo_rd of caution, it is not at all clear that any code h"’ﬁvo Gaussian integers. Useéf; first combines the Gaussian
a well defined decay exponent. For example, it may be tha

. . ) . ! mEegerSzlj,sz € O, into an elementr; = z1; + 29,7
one only gets results for limes superior or limes inferiorehe of the ring O. Then their methods differ a little bit, and

BBOnedof our ma|fr_1 (rjesult;fs to sh?wr(ttshat géhe caﬁethoft 0 er #1 transmits the vecto(z,,0(z1)), whereas the user
-code we can find positive constards andt, such tha #2 transmits the vectofyza,o(z2)). In [6] and [4] it is

for this promising code we have the bounds explained that the choice = i results in a code that satisfies

C C, i iterion. ' .
‘- D(N) < . the generahzed rank criterion. In other words, the contposi
N2 N5/3 matrix (1)
. . . . 1 o\
X = 3
We also give reasoning for our conjecture that, asymptibfjca < vtz olx2) > (3

for very large N we expectd = 2. In other words the _
determinants decay by the inverse square law. We view thisigdnvertible, whenever both, andz, are non-zero.
good news for the BB-code. Its decay function is under céntro Following [4] we shall study the determinant

in this sense. It would not surprise us if further work on this det(X) = z — vo(2) = & — io(z),

!It has been shown that in order to design DMT-optimal MAC @die  \wherey = z,0(z5). Next we describe our finite constellations
does not necessarily need to keep up with the generalizdd aréterion. It

; 4
is enough to satisfy the so-called conditional NVD propesse [2], [3] for more premse!y. Let(aj, ij G5 dj) € Z° correspond to the
details. Naturally for such code8(N) = 0, so they are not of interest here. Signal transmitted by use¥j, ; = 1 or j = 2. In other words,



z1; = aj +ib; and zp; = ¢; + id;. Then the constellations there is a positive constalt(¢), depending only o, such
L, (N) andLy (V) are obtained from the above constructionthat for all integersh andk with k£ > 0 we have

by restricting the integer coefficients;, b;,c;,d; (j = 1 or h C(0)
2) into the rangg—N, N]. ‘9 % > ——.
The determinant will now be of the form As an immediate corollary we get the following.

Corollary 2.3: There exists a constadt such that for all
integersh andk with k > 0 we havelkr — h| > £.
where R, S, T,V are quadratic homogeneous polynomi- 'A.‘S a corollary of Lemma 21 and Corollary 2.3 we get our
main result:

als with integer coefficients in the 8 integer unknown Theorem 2.4:There exists a constadf > 0 such that for
b1,b d1,ds. The result stating thatet(X) # 0 - o
@1, 42, 01,92, €1, €2, € » 02 g thatet(X) 20 sufficiently largeN, N, we haveD(Ny, Ny) > - In

can be rewritten in the form that these four polynomials cann™" ~ 4 = NN

vanish simultaneously, unless the input from one of thesus&@rticular asv — oo, we get a decay estimaie(N) > .

is all zeros. As we shall see, our estimate on the decay rifle?ther words the decay of the BB-code has a lower bound

will depend on the size of the integer coefficiedtss, 7, 1. corresponding to an estimate of the decay exponen.

We note the following obvious lemma without proof. We want to remark that the result of Corollaiy 2.3 is
Lemma 2.1:There exists a constarit; > 0 such that for €SSentially the best possible. For example, it is impoesibl

all 21 € Li(Ny), o2 € La(N2) we have the upper boundsreplace the exponentof t.he. parametek in t.he denom.mat_or

S| < K1N1N» and |[V| < K1 N, Ns. with a larger number._ This is because a S|mpI(_e qp_phcatmn of
We remark here that further limiting the choices of th(%he pigeon hole principle tell us that there are infinitelyrma

. 1 L
inputs of individual users (for example to the ideal of thgﬂeger pairs(h, k) such thatlk6 — h| < ¢ for any irrational

ring of integers ofE’ used in the construction of the Goldenreal numbe.
code) amounts to placing a family of congruences that the
input vector (a, b, c,d) must satisfy. This will not change
anything in what follows. After all, then the desired single
user constellation will be a subset of a set of the f@rfay),  We already know that the decay exponent of the BB-code
wherea > is a constant that does not depend®@nThus our 1S in the interval[l,2]. As the pigeon hole bound has the air
estimates will also be valid for such constellations, beeau®f suboptimality, we seek to replace it with something teght
the contribution froma can be absorbed into the coefficienfor this specific code.
K; (by replacing it with another positive constant). Neither
will replacing i with another non-norm element affect our A. An example sequence of small determinants in Badr—
conclusions — albeit naturally all the calculations havéoéo Belfiore code
carried out separately for eagh In this section we study a sequence of determinants appear

We already know from the pigeon hole bound that for sonmirg in the BB-code that converge towards zero. The example
constantC' the decay function of the BB-code has an uppaettilizes the fact that within the rin), there are arbitrary small
bound of the formD(Ny, N») < K/ max{Ni, N>} for some numbers. For example, becauge- /5| ~ 0.2369 < 1/4 its
constantk’ > 0, i.e., the determinant decays with exponent ggowers (2 — v/5)" = a,, — b,/5 can be made as small as
leasty > 1. required.

For a badly chosen code the decay could be very fast,Let us consider the simple case = 1 andz; = a +bv/5i,
indeed. We shall next show that the number theoretic strectwherea, b € Z. Thenz = z1,0(z) = a — bv/5i, sodet(X) =
of the BB-code can be used to derive an inverse polynomial io(x) = (a — bv/5)(1 — i).
lower bound too. Thus this code is promising in the senseln order to make this as specific as possible let us study the
that it belongs to a class of MU-MIMO codes with inverssequence of such matrices, with ¢ = a,, b = b,, where
polynomial decay. for all n > 0 the integersa,, and b,, are determined by the

equationa,, — b,v/5 = (2 — v/5)". We remark that this is by
no means the only sequence we could consider to achieve our

A. Approximatingr by rational numbers goal. We can form other such sequences by multiplying this

It is known that it is impossible to approximate algebrai#ith constants and also use other small algebraic integays:
integers too well by rational numbers in the sense madegeedic; b) € Z* pair such thata — bv/5) is small will yield small
by the following result by Liouville. Similar methods have determinants by this construction.
been used in e.g. [7], [8]. The_nurrllwbebz =2++/5 =73 is a unit in the ringZ[r]. Its

Theorem 2.2([9, p.146], Liouville’s approximation theo- NOM is Ny’ (a) = ao(a) = (2 - V5)(2 + v/5) = -1, and
rem) Letd be a real algebraic number of degree> 2. Then henceo(a) = 2 — v/5 = —1/a. This norm equation gives us

the identitya? — 562 = (—1)" that is valid for all integers

2For more general real algebraic numbers one should asyisgitptuse 7 > 0. At this time we infer from this formula thab,,| < |a,|
a deep result due to K. F. Roth stating that the expomenan be replaced for all n > 0.

with an exponent of the forr@ + ¢ for any e > 0. The price one pays when v I
doing this is that one no longer has any means of estimatiagdinstant in We also have use for the trace fundm@ I = Qe

the numerator. For asymptotic work Roth’s result is obvipissiperior. z + o(x). For example, ag(a,, — bn\/g) = a, + b,V/5 we

det(X) = (R+ S7) + (T + V)i,

IIl. M ORE ON THE DECAY EXPONENT OF THE
BADR—BELFIORE CODE



get the formula2a, = tr&?(a”) = o™ + (—=1/a)™. In this  As before, herex = 2+ /5, sou(e) = o) =2 -5 =
formula the second term always has absolute vatu¢, so —1/a. The numberu = 2" will appear frequently in our
the first term dominates for large valuessafand we get the calculations. We start our work ofy,, with

asymptotic formulaa, ~ (2 + v/5)". We shall also need  aip,  giong o100 sl 1004
an explicit expression dof,, in terms ofa, and the following aon a?ita—2n T wtu- L T uZtl
f(or;r}ul?n|s immediate from the definitior/5b,, = o" — = u4éao(u) = my(n)ma(n)ms(n)ma(n),
— Q .
Now if we set in the BB-coders — 1 andz; = 2, — Where forj = 1,2,3,4 we denotem;(n) = u"'pi(u) =

an + iv/5b,, then the logarithm of the resulting determinarft "p;j(a*") € Ok.
looks like log | det(X)| = log |(1 +4)(2—v5)"| =logv2+  AS p(u) = 1/u, we have for example
nlog|2 — V5| = k’% —nloga.

At the same time the range parametémgrows adog N =
nlog o — log 2. Therefore with this example sequence we g&imilarly p(mz(n)) = —ma(n), and asu® = 1 in the Galois
the limit lim,, . o W - _1. group we get thatn; (n)mg(n) andmaz(n)my(n) are invariant

Thus this examplegsequence of matrices simply makes t#faderu, and hence are integers in the figlg. Thus we may
single antenna pigeon hole bound explicit for the BB-cod€XPect that one of these pairs is a factorzgf. _
The obvious route to a better upper bound for the decqywe_ need one more pair of polynomial factorizations, this
function D(N) of the BB-code is to use this sequence dfme in the ringO, = Z{i;
determinants, but to split the energy more evenly t?etween th i = (z i)t Fird — 2 iz +1). ()
two users. After all, here (as in our proof of the pigeon hole
bound) one user was stuck with a low rate signal, while tighese arise similarly from factoring®® — 1, or rather its
other users data rate was unbounded. To do this we wanffagtors z°> + i and z° — i respectively, inFy[z]. They are
write the numbers,, = a,,+iv/5b,, in the formz,, = r10(22), needed in the following lemma that is the main result of this
wherez; and z, would both use if not equal then at leassubsection.
comparable amounts of transmission power. While we cannot-emma 3.1:The numbees,, is always divisible by:,,, and
do this for all the numbers,,, a useful factorization exists, it can be factored in the rin@r as zs, = z,ma(n)ma(n),

when5|n. This is the topic of the following subsection. ~ Whenn is odd, and ass,, = z,m1(n)ms(n), whenn is even.
Proof: Both of these identities follow from ther earlier

expressions fou,, andb,, in terms of powers ofv. These may
B. Certain factorizations irOg be compressed into formuta, = (1 +4)(a™ — i(—1/a)™).
Using our earlier abbreviation = o?” we see that

pimi(n)) = plu+i(l—7)—u™ ') = u ' —it—u = —ms(n).

Let ¢ = 27/ be a fifth root of unity. Our field of interest
E is a subfield of the twentieth cyclotomic field = Q(%, ¢), ma(n)ma(n) =u?—iv—1+iu"" +u2,
and[L : E] = 2. This follows from the fact that-¢ — ¢~ =
—2cos(27/5) < 0 is a zero of the polynomiat? —z — 1 =
(x —7)(x —1+7), and hencer = ¢ + 1+ ¢~ L. Let us consider the case odd. In this case we can write

The degreelL : Q] = 8 follows from the fact that the 2, = a™"(1 +i)(u +1i)/2. We also see thata(n)ma(n) =
minimal polynomial of any primitive twentieth root of unjty a4 (u* —iud —u® +iu+1). Therefore this case of the claim
such asi¢, is oo () = 28 — 2%+ 2% — 22 +1. This is, perhaps, follows from the first of the above polynomial factorizatton
easiest to see starting with the factorizatigm) := 21041 = by substitutingz = u. The even case follows similarly from
(22 + 1) oo (). the second polynomial factorization. [ |

There is an automorphism of L that is determined by
i~ i,¢ = ¢~'. We immediately see that is of order two, C. Sharper upper bounds to the decay function of the Badr—
and thatF is the fixed field ofv. So if w is any root of Belfiore code and numerical data
unity of order 20, then the polynomidk — w)(z — v(w))

mi(n)mz(n) =u®+iu—1—iu"t+u2

- . ) X : ) Let us take a closer look at the factorization in Lenima 3.1.
has cpefﬁment; |n.the fields. U_smg .th|s We arrive at the We want to say something about the sizes of the coordinates
foIIov_vmg factorization of gzo(x) into irreducible factors in of these algebraic integers with respect to the integraisbas
the ring B[z]: ¢20(z) = p1(2)p2(w)ps()pa(x), where {1,4,7,ir}. From all the previous identities it immediately
follows that the coordinates of the factorg (n),j = 1,2, 3,4,

— ; =1\ 2
pi(n) = (@ - z‘C)(:v h z,< 1) B x2 * Z_(l —me-l, have absolute values bounded from above by a constant
p2(z) = (o +iQ)(z +iC") = 2% —i(l =)z — 1, multiple of a®". Therefore the coordinates of = z,m;(n)
p3(z) = (x — i) (x —iC2) =22 +irz — 1, (j = 1 or j = 2) can be approximated by a constant multiple
pa(z) = (z +iC?)(x +i¢2) = 2® —ite — 1. of o™ and the coordinates of, = o(m;;2(n)) by a constant

multiple of o>”. Recall that these choices yield a determinant
The task at hand is to factorize the numbgr= a,, +iv/5b,. of absolute valug/2a~5".
The symmetries of these humbers become more apparent, iAs any size parameteN can be approximated up to a
we take a detour vi&), so we start by considering tiig — Q constant £ o) multiplier with a power ofa® we have the

NOrM z,p(2z,) = a2 + 562 = agy, = 3 [@®" + 2] . following result.



Corollary 3.2: There exists such a constakit > 0 that for
all N the decay of the BB-code has an upper bound

K

D(N3/5,N2/5) < =
In particular, the decay exponefithen has the estimates

5/3 < §(BB-code < 2.

gaind*(r) = ds- (r (§*)) = max {df ,(r),d5 ,(2r)} can be
achievedS* is the set of the users that is dominant in the DMT
error performance. Specificallg” = {1} for r € [0, 2] and is
called single-user performance region in [10]. Foe [2,1]

we haveS* = {1,2} and this is termed the antenna-pooling
region.d; ,(z) is the point-to-point DMT withp transmit and

q receive antennas given multiplexing gaingiven in [11].

One way of getting better upper bounds for the decayote thatd] ,(z) = 2—2x for z € [0,1] andds 5(v) = 43z
exponent is to apply Lemm@a—3.1 repeatedly. After all, weor = € [0,1] andd; ,(z) = 2 — 2 for = € [1,2]. To achieve

get an even better balance between the facigrand z-,

diversity gaind*(r) = 2—2r, it is easy to show fo = {1, 2}

when n is a multiple of 25, because in the factorizationve have

Zasn = zsnm;(bn)m,y2(5n) we can factorzs, further.

Observe that when doing this, we effectively restrict our

scale to the sizes,, as, ass, ai2s, - . .. Thus we lose the ability

to estimate (up to a constant multiplier) an arbitrary scal
parameterN by a member of this sequence. Therefore the

following result is stated in terms of limes superior.
Corollary 3.3: For the BB-code we get the result

log D(N, N)

lim sup — =2.

N— . 1og .
We conclude this section by a table of numerical results )
lyghere the second equality follows from Corollary 3.3 and

based on the above factorization. Two things are obvio

The multiples of 25 stand out. Note also that the coordinat
of these factors are quite large (but the determinant is th

correspondingly very small), and surely beyond the range
all ongoing simulations.

TABLE |
SOME SMALL DETERMINANTS IN BB-CODE AND ESTIMATES OF§

n | m = max size ofz; a factor ofz, | & = —logdet(X)/logm
5 38 1.889
10 2880 1.769
15 219640 1.732
20 16692480 1.715
25 66563198 1.984

IV. DMT PERFORMANCE OF THEBADR-BELFIORE CODE

Recall that in Section Il, the rows of the BB code are formeqa)
by the lattices associated with each user with coordinates

a;,bj,cj,d;, j = 1,2 lying within the range of[—N, N].

Thus, following from [[2), assuming the users are to achieve

multiplexing gainr; = ro = r, the corresponding value for
N is
N = SNR:

since n;
elementsr and v are fixed and do not vary with SNR, it is
straightforward to see that the overall BB-code matkixin
@) has average powé || X|*> < N2 = SNR.

In [4] Coronel et al. had provided some initial DMT analysis
of the BB code. They showed that the BB code will be MAC-¥!

DMT optimal if the following inequality is satisfied
2r+46 < rs(ds- (r(S))) (5)

wherers (ds- (r (8*))) is the maximum of the sum of multi-
plexing gains of users in sétsuch that the dominant diversity

1 is used in the BB code. Furthermore, as thg7)

242r 1
3 0,3

rs s () = { ) '3
ehe other parametef shown in [[3) is defined as
J min |det (X —X’)|2
XA£X'

re
re

)

T

—limsup loggnr
SNR—s00

where X and X’ are distinct overall matrix of the BB code.
In terms of the notionD (N, N) we have as SNR» oo

§ = —logen| D(N,N)* = loggug N* = 2r

where we have seV = SNR: such that both users achieve
ltiplexing gainr. Putting all of the above together into
shows that the BB code is MAC-DMT optimal when the
multiplexing gain falls in the interval of0, 1], but fails to
achieve the condition 15) by Coronel et al. for> % We
summarize the above in the following result.
Theorem 4.1:The BB-code is MAC-DMT optimal when
the multiplexing gain- < 1.

REFERENCES

P. Elia, K. R. Kumar, S. A. Pawar, P. V. Kumar, and H.-F. Lu,
“Explicit construction of space-time block codes achigvthe diversity-
multiplexing gain tradeoff, 1EEE Trans. Inf. Theoryvol. 52, no. 9, pp.
3869-3884, Sep. 2006.

H.-F. Lu and C. Hollanti, “Diversity-multiplexing tragbff-optimal code
constructions for symmetric MIMO multiple access chanj\éts Proc.
2009 IEEE Int. Symp. Inform. Thegrgeoul, South Korea, Jul. 2009.
C. Hollanti, H.-F. Lu, and R. Vehkalahti, “An algebraiedl for obtaining
conditional non-vanishing determinants,”fmoc. 2009 IEEE Int. Symp.
Inform. Theory Seoul, South Korea, Jul. 2009.

Coronel, Garner, and Bolcskei, “Selective-fading riplé-access MIMO
channels: Diversity multiplexing tradeoff and dominanttame event
regions,” submitted 2009, available from ArXiv.

H.-F. Lu, J. Lahtonen, R. Vehkalahti, and C. Hollanti,éfRarks on the
criteria of constructing mac-dmt optimal codes,” subnditte ITW 2009,
Cairo, Egypt, available from ArXiv.

6] M. Badr and J.-C. Belfiore, “Distributed space-time amdes for the
non-cooperative multiple-access channel,”"Hroc. 2008 International
Zurich Seminar on Communicatip@urich, Germany, Mar. 2008, pp.
132-135.

M. O. Damen and N. C. Beaulieu, “On two high-rate algebrspace-
time codes,”|IEEE Trans. Inf. Theoryvol. 49, no. 4, pp. 1059- 1063,
Apr. 2003.

M. O. Damen, A. Tewfik, and J.-C. Belfiore, “A constructioha space-
time code based on number theorl2EE Trans. Inf. Theoryvol. 48,
no. 3, pp. 753-760, Mar. 2002.

T. A. Apostol, Modular Functions and Dirichlet Series in Number
Theory Springer GTM series #41, 1990.

D. N. C. Tse, P. Viswanath, and L. Zheng, “Diversity-tiplexing
tradeoff in multiple-access channel$£EE Trans. Inf. Theoryvol. 50,
no. 9, pp. 1859-1874, Sep. 2004.

L. Zheng and D. Tse, “Diversity and multiplexing: a fiardental
tradeoff in multiple antenna channel$£EE Trans. Inf. Theoryvol. 49,
no. 5, pp. 1073-1096, May 2003.

(1]

(2]

(3]

[5]

(8]

[10]

(11]



	Background and the decay function
	A lower bound to the decay of the Badr–Belfiore code
	Approximating  by rational numbers

	More on the decay exponent of the Badr–Belfiore code
	An example sequence of small determinants in Badr–Belfiore code
	Certain factorizations in OE
	Sharper upper bounds to the decay function of the Badr–Belfiore code and numerical data

	DMT Performance of the Badr-Belfiore Code
	References

