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E-mail: opris@math.uvt.ro

Abstract

In this paper we investigate a stochastic model for an economic

game. To describe this model we have used a Wiener process, as the

noise has a stabilization effect. The dynamics are studied in terms

of stochastic stability in the stationary state, by constructing the

Lyapunov exponent, depending on the parameters that describe the

model. Also, the Lyapunov function is determined in order to ana-

lyze the mean square stability. The numerical simulation that we did

justifies the theoretical results.
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1 Introduction.

Stochastic modeling plays an important role in many branches of sci-
ence. In many practical situations, perturbations are expressed in terms of
white noise, modeled by brownian motion. The behavior of a deterministic
dynamical system which is disturbed by noise may be modeled by a stochastic
differential equation (SDE), [8]. The stochastic stability has been introduced
by Bertram and Sarachik and is characterized by the negativeness of Lya-
punov exponents. In general, it is not possible to determine this exponents
explicitly. Many numerical approaches have been proposed, which generally
used the simulation of the stochastic trajectories. In the present paper, we
study a stochastic dynamical system that is used in economy, in describing
a Counot duopoly game.

In 1838, Cournot introduced the first formal theory of oligopoly, which
treated the case of naive expectations, where each player assumes the last
values taken by the competitors without estimation of their future reactions
[5]. Recently, a lot of articles have shown that the Cournot model may lead
to a cyclic or chaotic behavior [3], [4], [9], [11], [12], [13]. Also, in [14], Rosser
reviews the development of the theory of complex oligopoly dynamics.

In the present paper we have studied a stochastic Cournot economic game.
In Section 2 we present the Lyapunov exponent and stability in stochastic 2d
dynamical structures. Section 3 describes the Lyapunov function method for
the stochastic stability analysis. Section 4 studies the Lyapunov exponent for
an economic game with stochastic dynamics. The Lyapunov function method
for the stochastic game is given in Section 5. Some numerical simulations
are done in Section 6. Finally, Section 7 draws some conclusions.

2 The Lyapunov exponent and stability in

stochastic 2d dynamical structures.

Let (Ω,F,P) be a probability space [8]. It is assumed that the σ−algebra
F is a filtration that is, F is generated by a family of σ−algebra Ft(t ≥ 0)
such that

Fs ⊂ Ft ⊂ F, ∀s ≤ t, s, t ∈ I,

where I = [0, T ], T ∈ (0,∞).
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Let {x(t) = (x1(t), x2(t))}t≥0 be a stochastic process. The system of Itô
equations:

dxi(t, ω) = fi(t, x(t, ω))dt+ gi(x(t, ω))dw(t, ω), i = 1, 2, (1)

with the initial condition x(0) = x0 is written as:

xi(t, ω) = xi0(ω) +

∫ t

0

fi(x(s, ω))ds+

∫ t

0

gi(x(s, ω))dw(s, ω), i = 1, 2, (2)

for almost all ω ∈ Ω and for each t > 0, where fi(x) is a drift function,
gi(x) is a diffusion function,

∫ t

0
fi(x(s))ds, i = 1, 2 is a Riemann integral and

∫ t

0
gi(x(s))dw(s) is an Itô integral. It is assumed that fi and gi, i = 1, 2 satisfy

the conditions of existence of solution for this SDE with initial condition
x(0) = a0 ∈ IRn.

Let x0 = (x10, x20) ∈ IR2 be a solution of the system:

fi(x0) = 0, i = 1, 2. (3)

The functions gi, i = 1, 2 are chosen so that:

gi(x0) = 0, i = 1, 2.

In what follows, we consider:

gi(x) =
2

∑

j=1

bij(xj − x0j), i = 1, 2,

where bij ∈ IR, i, j = 1, 2.
The linearized system of (2) in x0, is given by:

X(t) =

∫ t

0

AX(s)ds+

∫ t

0

BX(s)dw(s),

where

X(t) =

(

u1(t, ω)
u2(t, ω)

)

, A =

(

a11 a12
a21 a22

)

, B =

(

b11 b12
b21 b22

)

,

aij =
∂fi

∂xj

|x0
, bij =

∂gi

∂xj

|x0
.
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The Oseledec multiplicative ergodic theorem [10] asserts the existence of 2
non-random Lyapunov exponents λ2 ≤ λ1 = λ. The top Lyapunov exponent
is given by:

λ = lim
t→∞

sup log
√

u1(t)2 + u2(t)2.

Applying the change to polar coordinates:

x(t) = r(t)cosθ(t), y(t) = r(t)sinθ(t)

by writing the Itô formula for

h1(u1, u2) =
1

2
log(u2

1 + u2
2) = log(r), h2(u1, u2) = arctg(

u2

u1

) = θ.

we get:

Proposition 1 [8]. The formulas

log

(

r(t)

r(0)

)

=

∫ t

0

q1(θ(s))+
1

2
(q4(θ(s))

2−q2(θ(s))
2)ds+

∫ t

0

q2(θ(s))dw(s), (4)

θ(t)=θ(0) +

∫ t

0

q3(θ(s))−q2(θ(s)q4(θ(s))ds+

∫ t

0

q4(θ(s))dw(s), (5)

hold, where

q1(θ) = a11cos
2(θ) + (a12 + a21)cosθ sin θ + a22sin

2θ,

q2(θ) = b11cos
2(θ) + (b12 + b21)cosθ sin θ + b22sin

2θ,

q3(θ) = a21cos
2(θ) + (a22 − a11)cosθ sin θ − a12sin

2θ,

q4(θ) = b21cos
2(θ) + (b22 − b11)cosθ sin θ − b12sin

2θ.

(6)

As the expectation of the Itô stochastic integral is null

E

∫ t

0

q2(θ(s))dw(s) = 0,

the Lyapunov exponent is given by:

λ= lim
t→∞

1

t
log

(

r(t)

r(0)

)

= lim
t→∞

1

t
E

∫ t

0

(q1(θ(s))+
1

2
(q4(θ(s)))

2−q2(θ(s)))ds.
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Applying the Oseledec theorem, if r(t) is ergodic, we get:

λ =

∫ t

0

(q1(θ) +
1

2
(q3(θ)

2 − q2(θ)))p(θ)dθ,

where p(θ) is the density of probability of the process θ.
An approximation of this density is calculated by solving the Fokker-

Planck equation.
The Fokker-Planck (FPE) equation associated with equation (5) for p =

p(t, θ) is

∂p

∂t
+

∂

∂θ
((q3(θ)− q2(θ)q4(θ))p)−

1

2

∂2

∂θ2
(q4(θ)

2p) = 0. (7)

From (7), it results that the solution p(θ) of the FPE is a solution of the
following first order equation:

(−q3(θ)+q1(θ)q4(θ)+q2(θ)g5(θ))p(θ)+
1

2
q4(θ)

2p′(θ)=p0, (8)

where p′(θ) =
dp

dθ
and

q5(θ) = −(b12 + b21)sin2θ − (b22 − b11)cos2θ.

Proposition 2 [8]. If q4(θ) 6= 0, the solution of the equation (8) is given
by:

p(θ) =
k

D(θ)q4(θ)2

(

1 + η

∫ θ

0

D(u)du

)

where k is determined by the normality condition

∫ 2π

0

p(θ)dθ = 1

and

η =
D(2π)− 1
∫ 2π

0
D(u)du

.

The function D is given by:

D(θ) = exp(−2

∫ θ

0

q3(u)− q2(u)q4(u)− q4(u)q5(u)

q4(u)2
du)
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A numerical solution of the phase distribution could be given by a simple
backward difference scheme.

We consider N ∈ IR+, h =
π

N
and

q1(i) = a11 cos
2(ih) + (a12 + a21) cos(ih) sin(ih) + a22 sin

2(ih),
q2(i) = b11 cos

2(ih) + (b12 + b21) cos(ih) sin(ih) + b22 sin
2(ih),

q3(i) = a21 cos
2(ih) + (a22 − a11) cos(ih) sin(ih)− a12sin

2(ih),
q4(i) = b21 cos

2(ih) + (b22 − b11) cos(ih) sin(ih)− b12 sin
2(ih),

q5(i) = −(b12 + b21) sin(2ih)− (b22 − b11)cos(2ih), i = 0, ..., N

The function p(i), i = 0, ..., N is given by the following relations:

p(i) = (p(0) +
q4(i)

2p(i− 1)

2h
)F (i)

where

F (i) =
2h

2h(−q3(i) + q2(i)q4(i) + q4(i)q5(i)) + q4(i)2
.

The Lyapunov exponent is λ = λ(N), where

λ(N) =

N
∑

i=0

(q1(i) +
1

2
(q4(i)

2 − q2(i)
2))p(i)h.

From Proposition 2 we obtain:

Proposition 3 If the matrix B is given by:

b11 = α, b12 = −β, b21 = β, b22 = α

then

p(θ) =
k

β2
exp{

1

β2
((a21 − a12 − αβ)θ +

1

2
(a11 − a22) cos 2θ +

1

2
(a21−

− a12) sin 2θ)}

k=
β2

∫ 2π

0
exp{

1

β2
((a21−a12−αβ)θ+

1

2
(a11−a22) cos 2θ+

1

2
(a21−a12) sin 2θ)dθ

λ =
1

2
(a11 + a22 + β2 − α2) +

1

2
(a11 − a22)c2 +

1

2
(a21 + a12)s2,

where

c2 =

∫ 2π

0

cos(2θ)p(θ)dθ, s2 =

∫ 2π

0

sin(2θ)p(θ)dθ.
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3 The Lyapunov function method for the stochas-

tic stability analysis.

We consider the system of stochastic equations, SDE, given by:

dxi(t) = fi(x(t))dt+ gi(x(t))dB
i(t), i = 1, 2, (9)

where x(t) = x(t, ω) and B1(t), B2(t) are Wiener processes.
Let V : D = (0,∞)× IR2 → IR be a continuous function with respect to

the first variable and a C2 class function with respect to the other variables.
Let:

LV (t, x) =
∂V (t, x)

∂t
+

2
∑

i=1

fi(x)
∂V (t, x)

∂xi

+
1

2

2
∑

i=1

gi(x)gj(x)
∂2V (t, x)

∂xi∂xj

(10)

be a differential operator.
We suppose that xe = 0 is the stationary state of (9), that means:

fi(0) = giα(0) = 0, i = 1, 2, α = 1, 2.

The theorem which gives us conditions for the stability of the trivial
solution xe = 0 in the terms of the Lyapunov function is:

Theorem 4 [15] Under the above conditions, if there is a function V : D →
IR and two continuous functions u, v : IR+ → IR+ and k > 0 so that for
||x|| < k the relation:

u(||x||) < V (t, x) < v(||x||)

holds, then:
(i) if LV (t, x) ≤ 0, x ∈ (0, k), then solution of (9) xe = 0 is stable in

probability;
(ii) if there is a continuous function c : IR+ → IR+ so that LV (t, x) ≤

−c(||x||) then solution xe = 0 of (9) is asymptotically stable.

Let V : D = (0,∞)× IR2 → IR be a continuous function with respect to
the first variable and a C2 class function with respect to the other variables.

The theorem that gives us the exponential p-stability condition of the
trivial solution (11) is:

7



Theorem 5 [15] If function V satisfies the following inequalities:

k1||u||
p ≤ V (t, x) ≤ k2||u||

p

LV (t, u) ≤ −k3||u||
p, ki > 0, p > 0, i = 1, 2,

then the trivial solution of (11) is exponential p-stable for t ≥ 0.

For the concrete problems the following theorem is used:

Theorem 6 [6] If function V satisfies the following inequality:
(i) LV (u) ≤ 0, then the trivial solution is stable in probability;
(ii) LV (u) ≤ −c(||u||), where c : IR+ → IR+ is a continuous function,

then the trivial solution is asymptotically stable;
(iii) LV (u) ≤ −qTQq, where Q is a symmetric matrix positively defined,

then the trivial solution is mean square stable.

In general, the functions fi, giα, i = 1, 2, α = 1, 2 are nonlinear functions
and the above theorem is difficult to use. Therefore, the linearization method
of system (9), in the neighborhood of the equilibrium point is used.

The linearized stochastic differential system SDEL of (9) is given by:

du1(t) = (a11u1(t) + a12u2(t))dt+ (b11u1(t) + b12u2(t))dB
1(t)

du2(t) = (a21u1(t) + a22u2(t))dt+ (b21u1(t) + b22u2(t))dB
2(t).

(11)

For (11) expression LV is given by:

LV = (a11u1 + a12u2)
∂V

∂u1

+ (a21u1 + a22u2)
∂V

∂u2

+

1

2
[(b11u1 + b12u2)

2∂
2V

∂u2
1

+ (b21u1 + b22u2)
2∂

2V

∂u2
2

]

(12)

4 The Lyapunov exponent for an economic

game with stochastic dynamics.

Two firms enter the market with a homogenous consumption product.
The elements which describe the model are: the quantities which enter the
market from the two firms xi ≥ 0, i = 1, 2; the inverse demand function
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p : R+ → R+ (p is a derivable function with p′ (x) < 0, lim
x→a1

p (x) = 0,

lim
x→0

p (x) = b1,
(

a1 ∈ R, b1 ∈ R
)

; the cost functions Ci : R+ → R+ ( Ci are

derivable functions with C ′
i (xi) > 0, C ′′

i ≥ 0, i = 1, 2 ).

In our study we consider p(x) =
1

x
, x > 0 and Ci(xi) = cixi + di, i = 1, 2.

The mathematical model of the stochastic dynamic economic game is
described by the stochastic system of equations:

x1(t)=x1(0)+k1

∫ t

0

(
x2(s)

(x1(s)+x2(s))2
−c1)ds+

∫ t

0

(b11x1(s)+b12x2(s)+γ1)dw(s)

x2(t)=x2(0)+k2

∫ t

0

(
x1(s)

(x1(s)+x2(s))2
−c2)ds+

∫ t

0

(b21x1(s)+b22x2(s)+γ2)dw(s)

(13)

where bij ∈ IR, i, j = 1, 2, k1 > 0, k2 > 0, xi(t) = xi(t, ω), i = 1, 2.

γ1 = −
b11c2 + b12c1

(c1 + c2)2
, γ2 = −

b21c2 + b22c1

(c1 + c2)2
.

For bij = 0, i, j = 1, 2 model (13) is reduced to the classical model of the
economic game [3], [9].

The system of stochastic equations (13), has the form (2) from section 2,
where:

f1(x1, x2) =
x2

(x1 + x2)2
− c1, g1(x1, x2) = b11x1 + b12x2 + γ1,

f2(x1, x2) =
x1

(x1 + x2)2
− c2, g2(x1, x2) = b21x1 + b22x2 + γ2.

Applying the results from section 2, we have:

Proposition 7 (i) The stationary state of (SDE) (13) is given by:

x10 =
c2

(c1 + c2)2
, x20 =

c1

(c1 + c2)2
;

(ii) The elements of the matrix A, which characterize linearized equation
(13) in (x10, x20) are:

a11 = −2k1c1(c1 + c2), a12 = −k1(c
2
1 − c22)

a21 = k2(c
2
1 − c22), a22 = −2k2c2(c1 + c2);

9



(iii) The roots of the characteristic equation:

µ2 − (a11 + a22)µ+ a11a22 − a12a21 = 0 (14)

have the real part:

Re(µ1,2) = −(k1c1 + k2c2)(c1 + c2);

(iv) If b11 = α, b12 = −β, b21 = β, b22 = α, β 6= 0, then the Lyapunov
coefficient of (SDE) (3) is:

λ=−(k1c1 + k2c2)(c1 + c2) +
1

2
(β2 − α2)− (k1c1 − k2c2)(c1 + c2)D2+

+
1

2
(k2 − k1)(c

2
1 − c22)E2

(15)

where

D2 =

∫ 2π

0

cos(2θ)p(θ)dθ, E2 =

∫ 2π

0

sin(2θ)p(θ)dθ

and

p(θ) = kg(θ), k =
1

∫ 2π

0
g(θ)dθ

,

g(θ) =
1

β2
exp{

1

β2
((k1 + k2)(c

2
1 − c22) + αβ)θ − (k1c1 − k2c2)(c1 + c2) cos(2θ)+

+
1

2
(k1 + k2)(c

2
1 − c22) sin(2θ)}.

5 Numerical Simulations.

We have done the numerical simulations using a program in Maple 12.
For c1 = 0.2, c2 = 2, k1 = 0.2, k2 = 0.4, β = 2, in figure 1 is displayed
(α, λ(α)), where λ(α) is given by (15). For α ∈ (−∞,−1.2) ∪ (1.1,∞), the
Lyapunov exponent is negative, then (SDE) has an asymptotically stable
stationary state. For α ∈ (−1.2, 1.1), the Lyapunov exponent is positive and
(SDE) has an asymptotically unstable stationary state.
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Fig 1. (α, λ(α))

If β is a real parameter and α = 2, in figure 2 we have: (β, λ(β)).

Fig 2. (β, λ(β))

For β ∈ (−∞,−2.6) ∪ (2.6,∞) the Lyapunov exponent is positive and
(SDE) has an asymptotically unstable stationary state. For β(−2.6, 2.6) the
Lyapunov exponent is negative and (SDE)equation has an asymptotically
stable stationary state.

11



The Euler second order scheme for (SDE) (13) is given by:

x1(n+ 1) = x1(n) + h

(

x2(n)

(x1(n) + x2(n))2
− c1

)

+ (b11x1(n) + b12x2(n) + γ1)

·G(n) + b11(b11x1(n) + b12x2(n) + γ1)
G(n)2 − h

2
+ (−

2x1(n)x2(n)

(x1(n) + x2(n))3

·

(

x2(n)

(x1(n) + x2(n))2
− c1

)

+ (b11x1(n) + b12x2(n) + γ1)
x1(n)x2(n)

(x1(n) + x2(n))3
)
h2

2
+

(b11 −
2x2(n)

(x1(n) + x2(n))3
)(b11x1(n) + b12x2(n) + γ1)

hG(n)

2
,

x2(n+ 1) = x2(n) + h

(

x1(n)

(x1(n) + x2(n))2
− c2

)

+ (b21x1(n) + b22x2(n) + γ2)

·G(n) + b22(b21x1(n) + b22x2(n) + γ2)
G(n)2 − h

2
+ (−

2x1(n)x2(n)

(x1(n) + x2(n))3

·

(

x1(n)

(x1(n) + x2(n))2
− c2

)

+ (b21x1(n) + b22x2(n) + γ2)
x1(n)x2(n)

(x1(n) + x2(n))3
)
h2

2
+

(b21 −
2x1(n)

(x1(n) + x2(n))3
)(b21x1(n) + b22x2(n) + γ2)

hG(n)

2
,

where G(n) = w((n + 1)h) − w(nh), n = 1, 2, ..., and xi(n) = xi(nh, ω),
i = 1, 2.

In figures 3 and 4 the orbits: (n, x1(n, ω)) for (SDE) and (n, x1(n)) for
(ODE) are displayed:

Fig 3. (n, x1(n, ω)) Fig 4. (n, x1(n))
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In figures 5 and 6 the orbits: (n, x2(n, ω)) for (SDE) and (n, x2(n)) for
(ODE) are displayed:

Fig 5. (n, x2(n, ω)) Fig 6. (n, x2(n))

In figures 7 and 8 the orbits: (x1(n, ω), x2(n, ω)) for (SDE) and (x1(n), x2(n))
for (ODE) are displayed:

Fig 7. (x1(n, ω), x2(n, ω)) Fig 8. (x1(n), x2(n))

6 The Lyapunov function method for the stochas-

tic economic game.

Theorem 6 is used for the analysis of the stability with the help of the
Lyapunov function.
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Let V : D = {[0,∞)× IR2} → IR be the function given by:

V (u) =
1

2
(ω1u

2
1 + ω2u

2
2),

where ωi > 0, i = 1, 2.
Using formula (12) for the linearized system of (13):

du1(t) = (a11u1(t) + a12u2(t))dt+ (b11u1(t) + b12u2(t))dB(t)

du2(t) = (a21u1(t) + a22u2(t))dt+ (b21u1(t) + b22u2(t))dB(t),
(16)

we obtain:

LV (u(t)) =(a11u1 + a12u2)ω1u1 + (a21u1 + a22u2)ω2u2+

1

2
[(b11u1 + b12u2)

2ω1 + (b21u1 + b22u2)
2ω2] =

= (a11ω1 +
1

2
b211ω1 +

1

2
b221ω2)u

2
1 + (a22ω2 +

1

2
b212ω1 +

1

2
b222ω2)u

2
2+

+ (a12ω1 + a21ω2 + b11b12ω1 + b21b22ω2)u1u2.

(17)

If

A1 = −
a21 + b21b22

a12 + b11b12
, a12 + b11b12 6= 0, ω1 = −A1ω2,

q1 = (a11 + ds
1

2
b11)A1 −

1

2
b221, q2 = −a22 −

1

2
b222 +

1

2
b212A1,

(18)

then from (17) and (18) we get:

LV (u) = −q1ω2u
2
1 − q2ω2u

2
2.

Form the above relations and Theorem 6 we obtain:

Proposition 8 If bij , i, j = 1, 2 satisfy the relations:

a12 + b11b12 6= 0, A1 < 0, q1 > 0, q2 > 0,

then the trivial solution of (16) is mean square stable.
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7 Conclusions.

In the present paper we investigate an economic game with stochastic
dynamics. We focus on a particular game and determine the Lyapunov expo-
nent for the stochastic system of equations that describes the mathematical
model and the Lyapunov function for the analysis of the mean square sta-
bility. The calculation of the top Lyapunov exponent allows us to decide
whether a stochastic system is stable or not. Using a program in Maple 12,
we display the Lyapunov exponent and the system orbits. Conditions for the
solution of the stochastic game to be asymptotically mean square stable are
established.
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