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Abstract

We study the empirical measutg,, of the eigenvalues of non-normal
square matrices of the fordy, = U, TV, with U, V, independent Haar dis-
tributed on the unitary group ang real diagonal. We show that when the
empirical measure of the eigenvalueslpftonverges, and, satisfies some
technical conditiond, a, converges towards a rotationally invariant measure
[ on the complex plane whose support is a single ring. In pdatic we
provide a complete proof of Feinberg-Zee single ring theoj@]. We also
consider the case whetg,,V,, are independent Haar distributed on the or-
thogonal group.

1 The problem

Horn [17] asked the question of describing the eigenvalfiasquare matrix with
prescribed singular values. Ais an x n matrix with singular values; > ... >
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S, > 0 and eigenvaluek;, ..., A, in decreasing order of absolute values, then the
inequalities

k k n n
H gH sj, if k<n and H|)\,~|=HSJ' (1)
i -1

were shown by Weyl [28] to hold. Horn established that theseevall the rela-
tionships between singular values and eigenvalues.

In this paper we study the natural probabilistic versionha$ fproblem and
show that for “typical matrices”, the singular values alin@dstermine the eigen-
values. To frame the problem precisely, $ix> ... > s, > 0 and considen x n
matrices with these singular values. They are of the fBreaPT Q whereT is
diagonal with entries;j on the diagonal, anB, Q are arbitrary unitary matrices.

We makeA into a random matrix by choosing and Q independently from
Haar measure orii(n), the unitary group oh x n matrices, and independent
from T. LetAq,...,A, be the (random) eigenvalues Af The following natural
guestions arise.

1. Are there deterministic or random s¢ss}, for which one can find the exact
distribution of{A}?

2. LetLg = %Z?:lésj andLy = %Z?zl% denote the empirical measures
of S= {sj} andA = {Aj}. Supposes, are sets of siz& such thatlg,
converges weakly to a probability meas@rsupported ofR ;.. Then, does
L converge to a deterministic measyren the complex plane? If so, how
is the measurg determined byy?

3. For finiten, for fixed S, is La concentratedn the space of probability mea-
sures on the plane?

In this paper, we concentrate on the second question andearisin the affir-
mative, albeit with some restrictions. In this context, vetenthat Fyodorov and
Wei [8, Theorem 2.1] gave a formula for the mean eigenvaleesitly ofA, yet in
terms of a large sum which does not offer an easy handle ongsyimproperties
(see alsol]7] for the case whefeis a projection). The authors of|[8] explicitely
state the second question as an open problem.

Of course, questions 1-3. above are not new, and have bekedsia various
formulations. We now describe a partial and necessaribf listory of what is



known concerning questions 1. and 2.; partial results aoireg question 3. will
be discussed elsewhere.

The most famous case of a positive answer to question 1. iGithiere en-
semble see [9], and its asymmetric variant, seel[19]. (There arneespitfalls
in the standard derivation of Ginibre’s result. We refer18][for a discussion.)
Another situation is the truncation of random unitary neasi, described in [29].

Concerning question 2., the convergence of the empiricabore of eigenval-
ues in the Ginibre ensemble (and other ensembles relateckstign 1.) is easy to
deduce from the explicit formula for the joint distributioheigenvalues. Gener-
alizations of this convergence in the absence of such exfarnula, for matrices
with iid entries, is covered und&irko’s circular law, which is described in [10];
the circular law was proved under some conditions in [2] andllfy, in full gen-
erality, in [11] and [[24]. Such matrices, however, do notgess the invariance
properties discussed in connection of question 2. Sihgle ring theorenof Fein-
berg and Zee [6] is, to our knowledge, the first example whegvartial answer
to this question is offered. (Various issues of convergemeagylossed over in [6]
and, as it turns out, require a significant effort to overcon#es we will see in
Sectior[ B, the asymptotics of the spectral measure appeiariguestion 2. are
described by the Brown measureR®tliagonal operators. (The Brown measure is
a continuous analogue of the spectral distribution of nhonvral operators, intro-
duced in[[4].)R-diagonal operators were introduced by Nica and Speicljnfi2
the context of free probability; they represent the weaktitl (or more precisely,
the limit in x-moments) of operators of the forthT with U unitary with size
going to infinity andT diagonal, and were intensively studied in the last decade
within the theory of free probability, in particular in coeetion with the problem
of classifying invariant subspaces [14] 15].

2 Limiting spectral density of a non-normal matrix

Throughout, for a probability measupesupported ok or onC, we write Gy, for
its Stieltjes transform, that is

Gu(2) — / K(dx)

Z—X '

Gy is analytic off the support ofi. We let H; denote the Haar measure on the
n-dimensional unitary groug/(n). Let {P,, Qn}n>1 denote a sequence of inde-
pendent H,-distributed matrices. L€E, denote a sequence of diagonal matrices,
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independent ofP,, Qn), with real positive entrieS§, = {sfn)} on the diagonal, and
introduce theempirical measuref the symmetrizedersion ofT, as

n

1
L —_ n n| -
S 2n§[551<>+6—sf )]

We write Gr, for G4 . For a measur@ supported ok, we write |1 for its
symmetrized versiomhat is, for any < a < b < oo,

(-, b)) = fifa.b]) = Sulab).

Let Ap = PhThQn, letAp = {}\i(”)} denote the set of eigenvaluesAy, and set

1 n
i=

We refer toLa, as the empirical spectral distribution (ESD) Af. (Note that
the law ofL, does not change if one considé&sl, instead ofP,TnQn, since if
PaThQnw = Aw for some(w, A) then, withP, = Q,P, andv = Quw, it holds that
PnTav = Av, andP,, is again Haar distributed.) Finally, for any matéx we set
|A|| to denote theé? operator-norm of\, that is, its largest singular value.

To state our results, we recall the notionfode convolutionof probability
measures ofR, introduced by Voiculsecu. For a compactly supported podiba
measure of, define the formal power seri@(z) = >, [ X"du(x)z~ (Y, and
letKy(2) denote its inverse in a neighborhood of infinity, satisfy@gK(z)) = z
TheR-transformof pis the the functiorR(z) = K,(z) —1/z. The moments ofi
(and thereforgu itself, since it is compactly supported) can be recovereahfthe
knowledge ofK,,, and therefore froniR,, by a formal inversion of power series.
For a pair of compactly supported probability measyresgl, introduce theree
convolution 4B, as the (compactly supported) probability measure whose R-
transform isRy, (z) + Ry, (2). (That this defines indeed a probability measure needs
a proof, see [1, Section 5.3] for details and background.)

Forae R, introduce the symmetric Bernoulli measage= %(6a+6_a) with
atoms af{ —a,a}. All our main results, Theorefd 3 and Propositibhs 4[and @, wil
be derived from the following technical result.

Theorem 1. Assume{Lt, }n converges weakly to a probability meas@ecom-
pactly supported ofR ;. Assume further
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1. There exists a constant M0 so that

lim P(|[Thl| > M) =0. @

2. There exist a sequence of evefi } with P(G5) — 0 and constants, & >
0 so that for Lebesgue almost anyg £, with o the minimal singular value

of zI — Ay,
. E(l:1 loga?)?) < & 3
Gn {cﬁ<n*5}(ogon> ) <9&. 3)

3. There exist constanksk, > 0 such that

|I0Gt, (2| <k1 on {z:0(z) >n*}. 4)

Then the following hold.
a. La, converges in probability to a limiting probability measyig:

b. The measurejgipossesses a radially-symmetric dengpitywith respect to
the Lebesgue measure @nsatisfyingpa(z) = %[Az(f log|x|dv?(x)), where
Az denotes the Laplacian with respect to the variable z ahg= ©@HA |, .

c. The support of pis a single ring: there exist constan®s< a < b < o so
that _
suppua = {re'® :a<r <b}.

Further, a= 0if and only if [ X 2d©(x) = .

See Remarlk]7 for an explicit characterization of the freezalution appearing
in Theorenti L, and [1, Ch. 5] for general background. A diffé&haracterization
of pa, borrowed from([1B] and instrumental in the proof of part@€)rheorentL,
is provided in Remarkl8 in Section 3.1.

Remark 2. We do not believe that the conditions in Theoreim 1 are shamp. |
particular, we do not know whether condition 4, which prasehe existence of
an atom in the support @, can be dispensed of; the examjBie= | shows that

it is certainly not necessary.

Theorentl 1 is generalized to the case wHhégeV,, follow the Haar measure on
the orthogonal group in Theordm]|18. Note that, since for kgbe almost every
x € R, the imaginary part of the Stieltjes transform of an absdutontinuous
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probability measure converges, as; X+ ig, towards the density of this measure
atx, (4) is verified as soon & has a bounded continuous density.
As a corollary of Theorerhl1, we prove the Feinberg-Zee “singlg theo-

rem-.

Theorem 3. Let V denote a polynomial with positive leading coefficiemt the
n-by-n complex matrix xbe distributed according to the law

iexp(—ntrV(XX*))dX,
Zn

where % is a normalization constant and dX the Lebesgue measure lmyrm-
complex matrices. Lety, be the ESD of X Then{Lx, }n satisfies the conclusions
of Theoren 1 witl® the unique minimizer of the functional

I = / V(@)du(x) - / / l0g %% — 2| dp(x)du(x)

on the set of probability measures B

Theorem B will follow by checking that the assumptions of dteen[1 are
satisfied for the spectral decompositin= U,TnV,, see Sectionl6.

The second hypothesis in Theorem 1 may seem difficult towearifeneral;
we show in the next proposition that adding a small Gaussiatnixguarantees
it.

Proposition 4. Let (T,)n>0 be a sequence of matrices satisfying the assumptions
of Theorenfll except f@B) and assume thafT,;%|| is uniformly bounded. Let,N

be a nx n matrix with independent (complex) Gaussian entries af mezan and
covariance equal identity. Letd M, follow the Haar measure on unitary>an
matrices, independently of,,N,. Then, the empirical measure of the eigenvalues
of Y, := UnThVh + N7 YN, converges weakly in probability tozlas in Theorenall

for anyy € (3, ).

Example 5. An example of sequend@n)n>o satisfying the hypotheses of Propo-
sition[4 is given as follows: takg a compactly supported probability measure
onR*. Assume the inversg —! of the distribution functiorF (x) = u([0,]) is
Holder continuous and that the imaginary part of the $&éigltransform ofu is
uniformly bounded o€ . Then the diagonal matrik, with entries

& —inf{s: u([0,g)) > ln}, 1<i<n,
satisfies the hypotheses of Proposifidn 4.
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A rather straightforward generalization of Theorem 1 conséhe limiting

spectral measure &, + B, whereP, is #, distributed and the sequencerok
n matricesBy, converges ink-moments to an operatdr in a non-commutative
probability spacd 4,1). (The latter means that for all polynomilin two non-
commutative variables,

1

lim —tr (P(Bn, Bp)) = T(P(b,b7)),
which is the case if e.8, is self-adjoint, with spectral measure converging to a
probability measur®, which is the law of a self-adjoint operatos) In particular,
for anyw € C, the spectral measure &f(w) = |[wl —Bp| = /(wl — Bp) (Wl — By)*
converges to the law®,, of |wl —b|. By Voiculescu’s theorem [26, Theorem
3.8], if the operator norm oB,, is uniformly bounded, then the coup(8,, P,)
converges ink-moments towardsb, u), a couple of operators living in a non-
commutative probability spade?, 1) which are freeu being unitary. The Brown
measuregl,, is studied in[[3, Section 4].

Proposition 6. Assume that[0) satisfieg(2) and that there exists a s& c C

with full Lebesgue measure so that for allanQ, T,(w) satisfies). Let N, be

a nx n matrix with independent (complex) Gaussian entries ad reean and
covariance equal identity. Then, for any> % the spectral measure of,B-

n—YN, + P, converges in probability to the Brown measugg gof b+ u.

An example of matrice8, which satisfy the hypotheses of Propositidn 6 is
given by the diagonal matric&, = diag(s], ..., sn) with entriess satisfying the
hypotheses of Example 5. This is easily verified from the thaat the eigenvalues
of Dn(w) are given by(jw—s]|,...,|lw—sj|).

2.1 Background and description of the proof

The main difficulty in studying the ESD,, is thatA, is not a normal matrix,
that isAnA;, # AAn, almost surely. For normal matrices, the limit of ESDs can
be found by the method of moments or by the method of Stiéltjessforms.
For non-normal matrices, the only known method of proof igenadirect and
follows an idea of Girko [10] that we describe now (the detaile a little different
from what is presented in Girko [110] or Bai[2]).

From Green'’s formula, for any polynomiB(z) = H?:l(z—)\j), we have

%[/ALU(Z) log|P(2)|dm(z) = ;w]), for anyy € C2(C),
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wherem(-) denotes the Lebesgue measure(@n Applied to the characteristic
polynomial ofAy, this gives

/qJ(z)dLAn(z) _ %m/AqJ(z)IOgMel(zl—An)ldm(z)
C
_ %{n/mp(z) logdetzl — An) (2l — An)*dm(z).
C

It will be convenient for us to introduce th& X 2n matrix

z. 0 zl— A,
Hy = { (21— An)* 0 : (5)
It may be checked easily that eigenvaluedigfare the positive and negative of
the singular values dfl — A,. Therefore, if we levy denote the ESD dfi?,

1 1 _
yTXdVﬁ(X) = %tr (y-HYH ™,

then
1 . 1 z z
n logde{zl — An)(zl — An)* = n logdetH;| =2 [ log|x|dvy(X).
R
Thus we arrive at the formula

[v@dLa@ / 8(2) [ Togiaviodm). ©)

This is Girko’s formula in a different form and its utilityds in the following
attack on finding the limit oL, .

1. Show that for (Lebesgue almost) everg C, the measures? converge
weakly in probability to a measur¢ asn — o, and identify the limit.
SinceH} are Hermitian matrices, there is hope of doing this by Heamit
techniques.

2. Justify thatflog|x|dvZ — [log|x|dv#(x) for (almost every). But for
the fact that “log” is not a bounded function, this would h&skowed from
the weak convergence of to v2. As it stands, this is the hardest technical
part of the proof.



3. A standard weak convergence argument is then used intardenvert the
convergence for (almost evergpf v; to a convergence of integrals over
Indeed, settind(z) := [ log|x|dv?(x), we will get from [6) that

[w@dLa@ 5. [ 842 h@dmia). @

C

4. Show thah is smooth enough so that one can integrate the previous equa-
tion by parts to get

[w@dLa@ - 5. [ W@ sn@dnia). ®
C

which identifiesAh(z) as the density (with respect to Lebesgue measure) of
the limit of La,,.

5. Identify the functiorh sufficiently precisely to be able to deduce properties
of Ah(z). In particular, show thaingle ring phenomenon which states
that the support of the limiting spectral measure is a siagleulus (the
surprising part being that it cannot consist of severabdtisjannuli).

Girko’s equation[(b) and these five steps give a generaledoipfinding limiting
spectral measures of non-normal random matrices. Whetigsran overcome the
technical difficulties depends on the model of random matne& chooses. For the
model of random matrices with i.i.d. entries having zero maad finite variance,
this has been achieved in stages by Bai [2], Gotze and TikioerfiL1], Pan and
Zhou [21] and Tao and VU [24]. While we heavily borrow from tlsaquence, a
major difficulty in the problem considered here is that therao independence
between entries of the matrk,. Instead, we will rely on properties of the Haar
measure, and in particular on considerations borrowed fremprobability and
the so calledschwinger—Dysofor master-loop equations. Such equations were
already the key to obtaining fine estimates on the Stieltpesstorm of Gaussian
generalized band matrices in [16]. I [5], they were usedudysthe asymptotics
of matrix models on the unitary group. Our approach combideas of [16]
to estimate Stieltjes transforms and the necessary adapab unitary matrices
as developped in_[5]. The main observation is that one canceedttention to
the study of the ESD of matrices of the forfi + U )(T +U)* whereT is real
diagonal andU is Haar distributed. In the limit (i.e., wheh andU are replaced
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by operators in £*-algebra that are freely independent, witlbounded and self
adjoint andJ unitary), the limit ESD has been identified by Haagerup and¢ma
[13]. The Schwinger—-Dyson equations give both a charaetioin of the limit
and, more important to us, a discrete approximation thabeansed to estimate
the discrepancy between the pre-limit ESD and its limit. Sehestimates play a
crucial role in integrating the singularity of the log in Stevo above, but only
once an a-priori (polynomial) estimate on the minimal siagwalue has been
obtained. The latter is deduced from assumption 3. In theezoof the Feinberg—
Zee single ring theorem, the latter assumption holds dua @daptation of the
analysis of([23].

Notation

We describe our convention concerning constants. Thrautgbhy the wordcon-
stantwe mean quantities that are independent ¢br of the complex variables
z, 7). Generic constants denoted by the let@ysor R, have values that may
change from line to line, and they may depend on other pamseConstants
denoted byC;, K, k andk’ are fixed and do not change from line to line.

3 An auxiliary problem: evaluation of v* and con-
vergence rates

Recall from the proof sketch described above that we areasited in evaluating
the limit v* of the ESDL{, of the matrixHy7, seel(5). Note thdty is also the ESD
of the matrixH; given by

Nz . 0 QOn z| 0 Py

o (29028
_ 0 1ZWE — T
L (1ZWE - Tw) 0 ’

whereW? = zQyP,/|2| is unitary and#, distributed. Throughout, we will write
p = |z|. We also will assume in this section that the sequéide deterministic.
We are thus led to the study of the ESD for a sequence of msiicte form

0 Bp
(s 7) o)
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with B, = pUn + Ty, Ty being a real, diagonal matrix of uniformly bounded norm,
andUp a #H, unitary matrix. BecausgTy|| is uniformly bounded, it will be enough
to consider throughout uniformly bounded.

We denote in short

0O u N 0 O 0 T,
n

3.1 Limit equations

We begin by deriving the limiting Schwinger-Dyson equasidar the ESD of
Y n. Throughout this subsection, we consider a non-commuetptivbability space
(4,*,1) on which a variabléJ lives and whereu is a tracial state satisfying the
relationsp((UU* — 1)?) = 0, u(U?) = 0 for ac Z\ {0}. In the sequel, 1 will
denote the identity itd. We refer to[[1, Section 5.2] for definitions.

LetT be a self-adjoint (bounded) elementdnwith T freely independent with
U. Recall the non-commutative derivativedefined on elements &(T,U,U*)
as satisfying the Leibniz rules

0(PQ =0Px (1®Q)+ (P®1) x0aQ, (12)

U=U®1l,dU*=-1xU" dT =0x0.

(Here,® denotes the tensor product and we w(itex B) x (C® D) = (AC) ®
(BD).) dis defined so that for ary € 4 satisfyingB* = —B, anyP € C(U,U*,T),

P(UEB e *BU* T) = P(U,U* T) +€0P(U,U* T)iB+o(e),  (13)

where we used the notatidnz BfC = ACB.
By the invariance oft under unitary conjugation, see [27, Proposition 5.17] or
[T, (5.4.31)], we have the Schwinger—-Dyson equation

MR U(0P) = 0. (14)

We continue to use the notatioh U,U* andT in a way similar to[(1D) and
(A1). So, we lety = p(U+U*)+T with

0 U \ 0 0 0T
UZ(O o)’ UI(U*O)’ T:(T o)' (15)

We extenduto the algebra generated byU* andT by putting foranyA, B,C,D €
ﬂl
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u((é 5)) = JW(A) + 2(D).

Observe that this extension is still tracial.

The non-commutative derivativen (13) extends naturally to the algebra gen-
erated by the matrix-valued, U*, T, using the Leibniz ruld.(12) together with the
relations

oU=U®p, oU'=-pxrU* JdT=0x0, (16)
where we denoteg = 8 2 In the sequel we will apply to analytic

functions ofU + U* and T such as products of Stieltjes functionals of the form
(z—bU — bU* — aT) ! with ze C\R anda, b € R. Such an extension is straight-
forward;0 continues to satisfy the Leibniz rule and, using the resdligentity

d(z—bU—bU*—aT) t=
b(z—bU—bU*—aT) ' (Uo p— poU*) (z—bU —bU* —aT)*

whereA(B® C)D = (AB) ® (CD). Further, [I#) extends also in this context.
Introduce the notation, far;,z, € C,

G(z.22) = H((m-Y) Hz-T)*

Gy (21,22) U@z -Y) Y z-T) D),
Gu(z1) uU@z-Y)™),
u+(21,22) LU z-Y) Y z-T)), (17)
GT(zl ) LT(@-Y) Hz-T)1),
G(z1) u((z-Y)™h,
Gr(z) = u(z-T™)

We apply the derivativé to the analytic functior® = (z, — Y) (z — T)~1U,
while noticing that, by[(12) and (16),

P=Pop+pz—Y) U pP-p(zz—-Y) pa U*P. (18)
Applying (14), withu(P) = Gy (z1,22) andp(p) = 1/2, we find

1

26u(z1,2) = pu((z1—Y) ) H(U'P) —pia((z1—Y) MU u(pP).  (19)
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Note thatPp = P and thusu(pP) = Wu(P). Further, for any smooth functio@,
H(U*QU) equalsp((1— p)Q) due to the traciality ot andUU* = 1— p. By
symmetry (note thatl — p)(z1 — Y) Y(zz—T) tandp(zz—Y) Xz —-T) tare
given by the same formula up to replacifig, U*) by (U*,U), which has the same
law) we get thaty(U*P) equals

H(A-P)@-Y) H2-T) Y = Ju(@-Y) Hz-T) Y = 56(@.2). @0)

The first equality holds without the last fact@e, — T)~1, thus implying that
U(ze—Y) 1p) =p((zs—Y) 1) /2= G(z1)/2 and so we get froni (19) that

1

50u(2,22) = %G(Zl, 2)G(z1) — pGu(z1,22)Gu (z) - (21)
Noticing thatGy (z1) is the limit of Gy (z1,22) asz, — «, we find by [21) that
1

5Gu (21) = —pCu (21)”+ 5G(20)%

and therefore, aGy (z1) goes to zero ag — o,

Gu(z) = 2—1p<—§ 13 +026(@)?) = 4—1p<—1+ J11402G6@)2).  (22)

Here, the choice of the branch of the square root is detedrigehe expansion
of Gy (z) at infinity and the fact that botB(z) andGy (z) are analytic infC*. This
equation is then true for ath € C™.
Moreover, by[(2ll) and (22), we get
_ pG(z1,2)G(z) _ pG(z1,22)G(z71)
21+2pGy(z1) 14 /1+4p2G(z)?
(Again, here and in the rest of this subsection, the propserdir of the square root

is determined by analyticity.) Ld®, denote ther-transform of the Bernoulli law

Ro(2) = V1+4p?22 -1 27p
2pz V1+4p22 41’

see([1, Definition 5.3.22 and Exercise 5.3.27], so that we hav

GU (Z]_, Zz) (23)

Gu(21,72) = 56(21,22Re(Gl2). (2
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Repeating the computation with,+, we haveGy- = Gy. Algebraic manipula-
tions yield

Gr(z1,22) = 2G(z1,22) —G(z1), (25)
20Gy (21,22) + G1(21,22) = 721G(z1,20) — G1(20). (26)

Therefore, we get by substituting (24) and](25) intd (26} tha
PG(z1,22)Rp(G(z1)) + 22G(71,22) — G(z1) = 21G(21,22) — Gt(22),  (27)

which in turns gives, for ang,z € Ct,

G(z1,2) (PRo(G(z1)) + 22— 271) = G(z1) — Gr(22). (28)

Thus,
Gr(z2) =G(z1) when z =271 —pRy(G(z1)). (29)

The choice of, as in [29) is allowed for ang, € C* becausés : C™ — C~ and
we can see thaR: C~ — C~. Thus(z) > 0(z) > 0, implying that suclz,
belongs to the domain @r.

The relation[(2PB) is the Schwinger-Dyson equation in owsett gives an
implicit equation forG(-) in terms ofGr(-). Further, forz with large modulus,
G(z) is small and thug — z— pR,(G(z)) possesses a non-vanishing derivative,
and further is close ta. BecauseGt is analytic in the upper half plane and its
derivative behaves like/¥ at infinity, it follows by the implicit function theorem
that (29) uniquely determiné3(-) in a neighborhood ok. By analyticity, it thus
fixes G(+) in the upper half plane (and in fact, everywhere except inrapact
subset ofR), and thus determines uniquely the lawvaf

Remark 7. Let pr denote thespectral measuref T, that is [ fdpr = u(f(T))
for any f € Cy(R). We emphasize thabt is not the Stieltjes transform qfr;
rather, it is the Stieltjes transform of the symmetrizedsigar of the law ofT, that
is of the probability measungr” With this convention,[(29) is equivalent to the
statement that the law of, denotedlty, equals thdree convolutiorof fir andA,

i.e. py = fir @A,

Remark 8. We provide, following[[13], an alternative characteripatiof s and
its support. We first introduce some terminology fram|[13JonGSider a tracial
non-commutativ&V*-probability spacé M ,1). Let u be Haar-distributed and let
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h be ax-free fromu self-adjoint element (whose law will be taken to ®g Let
VZ denote the law ofzl — uh|. TheBrown measuréor uhis defined as

/Iog|x|dv

c.f. [13, Pg. 333]. Recall th@({0}) = 0 by Assumptiof 4. By [13, Proposition
3.5] and Remark]7 above? = vZ, and thereforgya in the statement of Theorem 1
is the Brown measure farh. By [13, Theorem 4.4 and Corollary 4.5], the Brown
measuregly is radially symmetric and possesses a dersitthat can be described
as follows. Let®* denote the push forward & by the mapz — 72, i.e. @2 s
the weak limit of{Ly}. Let.S denote the S-transform & (see[[13, Section 2]
for the definition of the S- transform of a probability measanR and its relation
to the R-transform). DefinE(t) =1/,/S(t—1) on D = (0,1]. Then,F mapsD

to the interval
1 1/2
(a,b] = <<fxzd@(x))1/2’ (/dee(x)) ] ;

and has an analytic continuation to a neighborhoo®péandF’ > 0 onD. Fur-
ther, withpia as abovepa(re'®) = pa(r) and it holds that

1 b
_ ) meEy TE @bl 30
PA(r) { 0, otherwise (30)

Finally, pa has an analytic continuation to a neighborhoodab], andp, is a
probability measure, see [13, Pg 333].

In the next section, we will need the following estimate.
Lemma 9. If |OGt ()| <kgon{z:O(z) > ¢} then|OG(-)| <kgon{z:0(z) > €}.

Proof Recall that ifze C* thenG(z) € C~ and alsdR;(G(z)) € C~ because
Ro mapsC~ into C~ (regardless of the branch of the square root taken at each
point). Thus,y = z— R(G(z)) has(y) > [(z). Therefore, ifJ(z) > € then
10G(2)| = |0GT (y)] < K. 0

3.2 Finite n equations and convergence

We next turn to the evaluation of the law ¥f,. We assume throughout that the
sequencd, is uniformly bounded by some constavit thatLt, — pr weakly
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in probability, and further that{4) is satisfied. All constsin this section are
independent op, but depend implicitly oM, the uniform bound ofjT,|| and on
p.

Recall first, see |1, (5.4.29)], that by invariance of the Ha@asure under
unitary conjugation, witi? € C(T,U,U*) a noncommutative polynomial (or a
product of Stieltjes functionals),

1 1 .
This key equality can be proved by noticing that for any n matrix B such that
B* = —B, for any (k,¢) € [1,n], if we letUp(t) = U,€® and constructpn(t) and
Un*(t) with this unitary matrix,

0= E[(P(Tn, Un(t), Un(t)) )i /] = E[(OP(Tn,Un, Up)tB)y /] (32)

. 00
with B = < 0B
1i—x1j—¢, we can choose in the last equalBy= A(k, /) — A(¢, k) or
B=i(A(k ¢)+A(4,k)). Summing the two resulting equalities and then summing
overk and/ yields (31).

We denote byG" the quantities as defined in (17), but WElflz—lntr] replacingu
and the superscript or subscripattached to all variables, so that for instance

Letting A(k,¢) be then x n matrix so thatA(k,¢)ij =

G"(2) = E[Z—lntr (- Yn) Y],

We get by takind® = (z. — Yn) (22 — Tn) U, that
1
500 (21,22) = —PGY (1. 2)Gl) (2) + %G”(zl, 2)G"(21)+0(n,z1,25), (33)
with

1 1 1 1
O(n,z1,22) =E {(%tr — E[%tr]) ® (%tr - E[%tr])a(zl —Yn) Yz2—Tn) U .

Further, by the standard concentration inequalityfigr see([1, Corollary 4.4.30],
for any smooth functiof® : 1(n) — C,

e [(2—1ntr(P) - E[z—lntr](P))2

16
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with ||P||_ the Lipschitz constant d® given by
IPl[L = [[DP|e

if D is the cyclic derivative given by = mod with m(A® B) = BAand||DP||., de-
notes the operator norm. (The appearance of the cyclicatamin the evaluation
of the Lipshitz constant can be seen by approximagiy polynomials.) Apply-
ing (34) to each term aP (recall formulal[(18)), we get that fai(z ), 0(z) > 0,
and withaA b= min(a,b),

Cp?

100 2,22)| < o B AD

(The inequality uses that for any Hermitian matriXz —H) (| < 1/|0(2)|.)
Multiplying by z, and taking the limit ag, — c« we deduce froni (33) that

p(G"(z2))? = 2G{) (z1)(1+2pG{) (z1)) — O1(n, 1), (35)

where

B 1 1 1 1 .
Oi1(n,z;) = 4E [(Zntr E[Zntr])®(2ntr E[Zntr])a(zl Yn) "Un

p2
- O(nzm<z1>2<m<zl>A1>)'

In particular,

1
Gj(z) = 4—p(—1+ \/1+4PZG”(21)2+401(n721))7 (36)
with again the choice of the square root determined by aic#lyaind behavior at
infinity.

Recalling that[(25) and_(26) remain true when we add the sigtst and
combining these with (33), we get

n pZGn<Zl) _ /N N
G (21,22) <(1+ ZDGG (Zl)) +2— Zl) =G (Zl) — GTn(Zz) + O(n,Zl,Zz) , (37)
with 20( )
= . N,23,2
O 2.22) = (1 2060 (@)

17



Hence, if we define

_ PGz
2= W) =2 0 oG @) (38)
then N
Gn(Zl) = GTn(Zz) — O(n, 7, 22) ,
and therefore 3
G"(z1) = Gr,(Wn(z)) —O(n, 21, Yn(z1)) - (39)

Equation [(3P) holds at least whéf{z) > 0 for z, as in [38). In particular, for
0(z1) large (say larger than sonid), it holds thatG"(z) andG{j (z1) are small,
implying thatz, is well defined with(J(z;) > 0. AssumelLt, converges towards
Lt so thatGr, converges taGr on C*. Then, the limit points of the sequence
of uniformly continuous function§G"(z),G{}(z)) on {z: 0(z) > M} satisfy [22)
and [29) and therefore equ@b(z),Gy(2)) on {z: 0J(z) > M} by uniqueness of
the solutions to these equations. Hence, taking o then implies thaG" —

G in a neighborhood in the upper half plane closexto SinceG" and G are
Stieltjes transforms of probability measures, we have nioaws the following
(see Remark]7).

Lemma 10. Assume f, converges weakly in probability to a compactly supported
probability measure L Then, ly,, converges weakly, in probability, te = fir B

Ap. In particular, if Ly, converges weakly in probability to a probability measure
O, then for any = C, v§ converges weakly in probability t® & Az

(Recall that® is the symmetrized version @ and note that foz = 0, the state-
ment of the lemma is trivial.)

Lemmal10 completes the proof of Step one in our program. Tobheta
complete Step two, we need to obtain quantitative inforomafiiom the (finiten)
Schwinger—-Dyson equations (39): our goal is to show thatdfieside remains
bounded in a domain of the forfz € C* : (z) > n¢} for somec > 0. Toward
this end, we will show that in such a regiapy, is analytic,Cyn(z) > (0(z)/2) AC
for some positive constaft andO(n, z1, Pn(z1)) is analytic and bounded there.
This will imply that (39) extends by analyticity to this regi, and our assumption
on the boundedness Gir,, will lead to the conclusion.

As a preliminary step, note th&"(-) andG{)(-) are analytic inC*. We have
the following.

18



Lemma 11. There exist constants;@C, such that for all zz2 C* with 0(z) >
Cin~Y/3 and all n large, it holds that

11+ 2pGl} (2)| > Cop[d(2)3 A 1]. (40)

Proof SinceG} (2) is asymptotic to 1z at infinity, we may and will restrict at-
tention to some fixed baBr C C, whose interior contains the supportYof But

n d n
0@ =00 [ (e

and therefore, a§1(z) — x)? + 0(2)? < 4R? for all z x € B(O,R)

0@
4R2

G"(29)] = |0(G"(2)| = (41)

Moreover, sinceGl} (z)| < 1/|0(2)
cindependent of and alln large,

, we deduce fronl(35) that for some constant

n 2|1+ 2pG]} (2)| cp
C@F <= na *waRaC@AY

Combining this estimate and (41), we get that

21+20G(2) _ |0(2)? I = il

pl0(z)) = 16R* n20(22(0(z)Al1) = 32R (42)

as soon asl(z) > Cyn~Y/3 for an appropriate€C;, and|zl < R. The conclusion
follows.
0]

As a consequence of Lemrna 11 and the analyticitg®andG(} in C*, we
conclude thatpy is analytic in{z: 0(z) > C;n~1/3}, for all n large.

Our next goal is to check the analyticity pf+ O(n, z, Pn(2)) for ze C* with
imaginary part bounded away from 0 by a polynomially decgyiim n) factor.
Toward this end, we now verify thdt,(z) € C* for zup to a small distance from
the real axis.

Lemma 12. There exists a constang@uch that if7(z) > Can~1/4, thend(n(2)) >
O(z)/2.
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Proof Again, because botB"(z) andG{}(z1) tend to O at infinity, we may and
will restrict attention toJ(z) < R for some fixedR. We divide the proof to two
cases, as follows. L&, = n~%/2, and sef\, = {z€ C* : |pG"(2) +i/2| > en}.

Then, for anyz € A, and whatever choice of branch of the square root made in
39), if eﬁl/zol(n, ) is small enough (smaller tha /2 is fine), then that choice
can be extended to include a neighborhood of the peiatG"(z) such that with
mlst choice, the functiony(w) = 4—1p(—1+ /1+4p2w?) is Lipschitz in the sense

a

G} (2) ~1(G"(2))| < Cen 0n(n.2)/p. (43)
On the other hand, again from (35),
' PG'(1  2Gj(9) [01(n, 2)|
1+20Gj(2) G"(2) |~ "IG"(2)(1+20G](2)|

Combining the last display with the relati®&g(8) = 2r,(0)/6, (43) and[(411), one
obtains that foz € Ap,

2r(G"(2) _2G((2)

pe"(2 : 0a'2) 262
T O] < Poe o |t raeE ot
04(n.2) 04(n2)
= o B 206 @)
02| IOxn.2)

pet?0(z)| PO@?

Cp 1 1
0@\ &2 T 0P

Cp 1/4
20 (” -

\D(lz)|3) '

Since the above right hand side is smaller thr) /2 for 0(z) > n~1/4, we con-
clude that forz € Ay N {0(z) > n~%/4}

pG"(2) 1
0 (m) < élj(Z) (44)

as, regardless of the branch taken in the definitioRydf), OR,(G"(z)) < 0.
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On the other hand, whene C*\ A, and(z) > n~%/4, then we have from
(38) that for alln large,

@l =

1
1pG( (2) +1/4| < SVent |01(n,2)| <
Thus, under these conditions,

G2\ 20G"(2)
D<1+2pea<z>) - D<1+4<pca{3<z>+1/4>)

< 2p0(G"(2)) +16p|0(G"(2))[IpGy (2) + 1/4],

where we used that fda| < 1/2, |a/(1—a)| < 2|al. Consequently, sincgG"(z)
is uniformly bounded of©™* \ An andJ(Gy(2)) < 0 there, we get

O (&Z)Z)) <Cy/en+[01(n,z)| <Cn Y4

14 2pG() (

We thus conclude from the last display afdl(44) the existefiGeconstantCs
such that if)(z) > Can~1/4 then

(Wn(2) = 0@) — (%) > 0(2)/2,

as claimed. O
From Lemma_IR we thus conclude the analyticityzofs O(n,z Wn(2)) in
{z:DO(2) > Can~Y/4}1, and thus, due td(38) and(3PGE"(2)/(1+2pG}(2)) is
also analytic there (compare with Lemmd 11). In particulae equality [(3P)
extends by analyticity to this region.
We have made all preparatory steps in order to state the raauitrof this
subsection.

Lemma 13. There exist positive finite constants, C;,Cg such that, for > Cq
and all z€ &, := {z: 0(2) > n~“7},

0G"(2)] < Ca. (45)

Proof This is immediate from Lemmialll, Lemral 12, the definitionpgf the
assumption(4) ofer,, and the equality (39). O
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4 Tail estimates forvy

ForR> 0, letBr= {ze C: |z € [0,R]}. Our goal in this short section is to prove
the following proposition.

Proposition 14. (i) Under the assumptions of Theoréimn 1, for Lebesgue almost
every zc C,

lim limsupE 1gn/ log|x|dV§ (X (46)

€l0 now

Consequently, for Lebesgue ang €,

/Iog\x\dvﬁ(x) —>/Iog|x|dvz(x), (47)

in probability.
(i) Fix R > 0. For any smooth compactly supported deterministic fumapien
Br

/ 5(2) / log |x|dvZ(x)dm(z) — / 5(2) / log x|dvi(x)dm(z),  (48)
in probability.

Before bringing the proof of Proposition|14, we recall thiédwing elemen-
tary lemma.

Lemma 15. Let 4 be a probability measure @ For any real y> 0, it holds that

H((—y.y)) < 2y|0G(iy)|. (49)

Proof We have

. y 1
06 = [ hen > [ oY = pu(vy).
from which (49) follows. O
We can now provide the
Proof of Proposition[14
(i) Assumez € Br for someR > 0. By (3), we can replace the lower limit of
integration in [46) witn—2. Let GZ denote the Stieltjes transform BfvZ]. B
LemmalIB and Lemmd 9, there exist positive constants c;(R),c; = c2(R)
such that whenever(u) > n~4, it holds that|JGf(u)| < c;. We may and will
assume that; < 0.
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SinceGj is the Stieltjes transform dE[v3], by Lemmd&_1b, we have for any
y > 0 that

ENVA((—=y,¥)] S ENVA((=yvn @yvn )] < 2coyvn .

Thus, we get that for any< Br and witha € [1,2],
€
el (llogx)avi()
-
n—c
< El[, (logd)®avix+ [ (1og) i)
n—9%

< (5|09n)°‘ VA((=n"%,n7%))]

+Z E[V;((—20"n~e, 20+ n7e) )j(log(2/n~®) )%,

where 2-1n"% < & < 2)n~%. Note that by LemmA&15 and the estimateGf
for j >0, . | |
EVA((—2'n,2In"))] < 21t eon @,

We conclude that
€
el llogxavi(x)] < Cellog(e)* (50)
n-9%

where the constai@ = C(R). To obtain the estimate (46), we will consider= 1
and argue as follows. Due tdl (3), far< 2 we have

-0

n
E[lgn/o [logx|*dv§(x)]

< E[16VA([-n"°n"%) 115z 5| logah|]
2
< B[ (V-2 )] Bl logod
by Holder’s inequality. The first factor goes to zero beeaus
2
E [(vﬁ([—né, n’é])) 2“} <E [vﬁ([—nfé,nfé])] < 2cn74,
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By @), the second factor is bounded @Y)%/2. We thus get[{46) froni(50). By
Chebycheff’s inequality, the convergence in expectatioplies the convergence
in probability and therefore for any, & > 0 there existg > 0 small enough so
that

n—-00

€
lim P(/ [logX|dvi(x) > ) < &
0

On the other hand/;”log|x|dv(x) converges tof,” log|x|dv%(x) by the weak

convergence off, to vZin probability for anye > 0, andfo8 log|x|dv#(x) converges

to 0 ase — 0 sincev? has a bounded density by Lemfda 9. Hence, welgét (47).
(i) Define the functiond : B —» R, i = 1,2 by

-3

n
@) = Lodmien | loadvi(0),
7@ = lgdmam [ 0oV,
5

and setfy(2) = f1(2) + f2(z). Because? is supported irBr v on || Ta|| < M for
all z¢ Bg, fy is bounded above by I¢+ M). By (50), E[|f2(-)|? is bounded,
uniformly in z € Bgr. On the other hand, by](3), again uniformly e Bg,
E(f(2)?) < &, and therefore

;[uﬁm%wa<w

Br

Thus,E féR | fn(2)]2dm(z) < o, and in particular, the sequence of random variables
2
/g )1gn1|Tn|<M/|09XdVﬁ(X)) dm(z)
R
is bounded in probability. This uniform integrability andetweak convergence

(41) are enough to conclude, using dominated convergered28, Lemma 3.1]
for a similar argument). O

5 Proof of Theorem(1

It clearly suffices to prove the theorem for deterministiagtinal matrice3,,. (If
T, is random, use the independence(0f,,V,) from T, to apply the determin-
istic version, after restricting attention to matricgsbelonging to a set whose
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probability approaches 1). By Propositionl 14, deé (48), aeehwithh(z) :=
[log|x|dvZ(x), that for anyR and any smooth functiogy on Bg,

[w@dLad > 5 [ dwia hzdm),
C

in probability. Since the sequentg, is tight, it thus follows that it converges, in
the sense of distribution, to the measure

1

Ha i= ETAZh(Z)'

From Remark18 (based on [13, Corollary 4.5]), we have fhais a probability
measure that possesses a radially symmetric depgipatisfying the properties
stated in parts b and c of the theorem. O

6 Proof of Theorem(3

We let X, be as in the statement of the corollary and wiie= P,T,Qn with
Pn, Qn unitary andT, diagonal with entries equal to the singular valye$} of
Xn. Obviously,{P,, Qn}n>1 is a sequence of independef,-distributed matrices.
The joint distribution of the entries df, possesses a density Bfi which is given
by the expression

Zn H lo? — ojz\ze*”Zin:lV(oiz) H oidai,
i<j [
whereZ, is a normalization factor, see e.g] [1, Proposition 4.1TBjerefore, the
squares of the singular values possess the joint density

Z‘H 1% — X |Ze*n2?:1V(xi) Hd)q ,
i<j [
onR". In particular, it falls within the framework treated in [RBy part (i) of
Theorem 2.1 there, there exist positive const&hiS;; such thaP(o; > M —1) <
e Cu" and thus point 1 of the assumptions of Theofém 1 holds. Bytems{22,
(2.26) and (2.27)] and Chebycheff’s inequality, we get thaz with 0(z) > n%
wherek < (1-k')/2,

P (|GTn<z> —~Gp(2) > ZD(lz)nK) <C|0(z)| "™ *logn.
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As the derivative ofGt, — Gg is bounded by a constant multiple of|L(2)|?, a

covering argument and summation shows thakfor 1/2,

P| sup |Gr.(2)—Gg(z)| > < Mn*+2'~L|ogn,
z:|z\§5 ‘ Tn( ) @( )‘ = D(Z)nK — g

0@=>n—~

which goes to zero fok € (0, (1— 2«’)/4). Together with[[22, Equation (2.32)],
this proves point 3 of the assumptions. Thus, it remains tmgheck point 2 of

the assumptions. Toward this end, defiie= {0} < M + 1} and note that we
may and will restrict attention tig| < M + 2 when checking(3). We begin with
the following proposition, due to [23].

Proposition 16. LetA be an arbitrary n-by-n matrix, and let A A+ oN where

N is a matrix with independent (complex) Gaussian entriead mean and unit
variances. Leti,(A) denote the minimal singular value of A. Then, there exists a
constant G, independent o\, o or n such that

P(on(A) <) <Cuon (%), (51)

The proof of Proposition 16 is identical {0 [23, Theorem 3v@th the required
adaptation in moving from real to complex entries. (Speailfycin the right side
of the display in[[23, Lemma A.2E+/2/1t/0 is replaced by its square.) We omit
further detalils.

On the event;,, all entries of the matriX, are bounded by a constant multiple
of y/n. Let N, be a Gaussian matrix as in Proposition 16. Witk 2 a constant
to be determined below, set

Gy = {all entries ofn~%/2N, are bounded by }.

Note that because > 2, on Gy, we have that1 (n~%Ny,) < 1. DefineA, =zl — X,
An = An+n"%Nplg andAn = Ay +n~%Ny. Then, by [(B1), witton(An) denoting
the minimal singular value o4,, we have

P(0n(An) < X; Gn) < Crox2ntt2 (52)

If the estimate[(52) concerndg instead ofd, it would have been straightforward
to check that point 2 of the assumptions of Thedrém 1 holdh@vi appropriately
chosend, which would depend on). Our goal is thus to replace, in (52, by
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A,, at the expense of not too severe degradation in the rigbt Sithis will be
achieved in two steps: first, we will replaég by A,, and then we will construct
on the same probability space the ma¥pand a matrixy, so thaty; is distributed
like Xq+n—¢ Nnlg; butP(Yh # Xn) is small.

Turning to the construction, observe first that framl (52),

P(0n(An) < X; Gn) < C12@n*2% L P((G1)®) < CpoXPnt+2 4 n2e /2] (53)

Let X,S“) = Xn+ n*O‘angé. Let {6} and {l} denote the eigenvalues i, =
XX and of WY = (X (x{")*, respectively, arranged in decreasing order.
Note that the density of, is of the form

anlef ntr(v (xx*)) dx

)

where the variablex = {X j }1<i j<n is matrix valued andix = [ ], ;<,dX,j,
while that ofX\” is of the form

ZrTlEN [e—ntr(v((x+1%n*0Nn)(x+1%n*°Nn)*))]dx,

whereEy denotes expectation with respect to the lavwNgf andZ, is the same
in both expressions. Note thai(X,ga)) € [01(Xn) —1,01(Xn) +1]. Becaus&/(-)

is locally Lipschitz, we have that if either; (X,) <M +1 orcl(X,ﬁa)) <M-+1,
then there exists a constdbitz independent oft so that

tr(V (Wh) — VWD) < STIV(8) —V (W) < Cis > (6 — ]
i=1 i=1

IN

1

n 2

Cy3n'/? (Z 16 — 1 |2>
i—1

1

2

< G2 (tr((Wh—Wa")?)”
where the Cauchy—Schwarz inequality was used in the theduality and the
Hoffman—Wielandt inequality in the next (see e.gl [1, Lem2nh19]). On the
eventGy, all entries oV, — WS are bounded bp(®-%/2, Therefore,

[tr(V (Wh) —V (WA))| < nCre=)/2, (54)
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where the constar@;4 does not depend om. In particular, ifa > (Ci4+1) vV
2 we obtain that ong,, the ratio of the functiond, = e VW) and g, =

e V™) is bounded e.g. by 4 n(€+1-9)/2; in particular, it holds that

(1+ nCutl=0/2)p(gy(X,) < M)

Po1(X\") < M) <
< (14 n©at-90/22pg (XY < M).

Therefore, the variational distance between the laXpafonditioned oroy (X,) <
M and that oiX\") conditioned oro1(X\")) < M, is bounded by

An(Ciat1-a)/2

It follows that one can construct a mathix of law identical to the law ox,§“>
conditioned oro1(XY) < M, together withX,, on the same probability space so
that

P(Xn % Yn; Gn) < 4n(Crat+1-0a)/2 < nCis—a/2

Combined with[(5B), we thus deduce that
P(On(ﬂn) <X gn) S C12X2n1+20( + nclefd/z S nC17X2/5,

wherea was chosen as function of This yields immediately point 2 of the
assumptions of Theorelm 1,3f> 5C17/2.

We have checked now that in the setup of Thedrém 3, all thergstsans of
Theoreni Il hold. Applying now the latter theorem completesptioof of Theorem
3. O

Remark 17. The proof of Theoremi]3 carries over to more general situation
indeedV does not need to be a polynomial, it is enough that its growitfifiaity

is polynomial and that it is locally Lipschitz, so that theués of [22] still apply.
We omit further details.

7 Proof of Proposition[4

We takeT, satisfying the assumptions of Propositiéon 4 and consd,dernTnVn +
n—YN,, with matrix of singular valued,. Note thatYy = U, TV, with Upn, Vi,
following the Haar measure. We first show thiatalso satisfies the assump-
tions of Theorenill wheg > % except for the second one. Since the singular
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values ofN, follows the joint density of Theorerﬁ] 3 with (x) = %xz it fol-
lows from the prewous section th&(||n~ an|| > M) < e 1" and therefore
Tl < [ Tnl| +n~ er2||n 2Nn|| is bounded with overwhelming probability. More-

Ef|[Tn— Tall LN,/ s <m] < ClTw 1|| ||Tn||)n——y
10(2)|? - 10(2)|?

with C(||T; Y|, || Tn||) a finite constant depending only ¢ 2||, || Tn|| which we
assumed bounded. (In deriving the last estimate, we used(thaB)Y/2 —1| <
|B|| when||B|| < 1/2.) As a consequence, the third condition is satisfied since

e ()] < CUTT LT 5y, K <
G- Ch@l= " ogE ™ " w0e) = wine

with y = min{k, 1(y— 1)} and0(z) > n-ma20-2)%}, Hence, the results of
Lemmal1B hold and we need only check, as in Propodifion 14 il vz the
empirical measure of the singular valueszbf Y,

|Gr(2) - G+,(2)| <

n-o
In:= E[lgn/o log |x|dV§(X)]

vanishes as goes to infinity for som& > 0 and some sef, with overwhelming
probability. ButAn, = zl — Y;, = zI — Un Vi + N~ YN, with N, a Gaussian matrix,
and therefore we can use Proposition 16 to obfaih (51) with n~Y, and the
desired estimate olR. O
Proof of Example[8 The first and the third hypotheses of Theotédm 1 are veri-
fied sinceuis compactly supported and we assumed that the imaginarpfiie
Stieltjes transform of its symmetrized version is unifoyrobunded orC*. For
the third, note that iF ~* is Holder continuous with index,

|+1 i —a
ot -Gr(n) < 3ol > e ol <o f

n|t(2) n|D ~ B@)P

where we finally used th&t—1 is Holder continuous with index. O

8 Extension to orthogonal conjugation

In this section, we generalize Theoréin 1 to the case whereowjeigateT,, by
orthogonal matrices instead of unitary matrices.
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Theorem 18. Let T, be a sequence of diagonal matrices satisfying the assump-
tions of Theorerfil1. Let, OO, be two nx n independent matrices which follow
the Haar measure on the orthogonal group and set£0,T,On. Then, la, con-
verges in probability to the probability measurg giescribed in Theorefd 1.

Proof. To prove the theorem, it is enough, following Section 5, toverthe
analogue of Lemmp_13 which in turn is based on the approxif8atevinger—
Dyson equation (37) which is itself a consequence of equd8d) and concen-
tration inequalities. To prove the analogue [of](31) whinfollows the Haar
measure on the orthogonal group, observe {hat (32) remaiasnith B = —B
which only leaves the choid® = A(k, ¢) — A(4,k) possible. However, taking this
choice and summing ovér/, yields, if we denotenA® B) = AB',

1 1 1_1
E[%tr@@ %tr(aP(Tn,Un,U;‘,))] = %E[%tr((mo 0P)(Tn,Un, UY))].

The right hand side is small aaodP is uniformly bounded. In fact, taking
P=(zz1—Yn) Yz —Th)tUn we find thatnio dP is uniformly bounded by
2/(|0(z)|(|0(z)| A 1)?) and thereforel(33) holds once we addlm, z;, 2) the
above right hand side which is at most of ord¢n[I(z)|(|0(z)| A 1)%. Since
our arguments did not require a very fine control on the eewnt we see that this
change will not affect them. Since concentration ineqigglialso hold under the
Haar measure on the orthogonal group, sée [1, Theorem #ah@71, Corollary
4.4.28], the proof of Theore 1 can be adapted to this set up. O

9 Proof of Proposition[6
We use again Green’s formula
/qJ(z)d Le,+p,(2) = %[n /CAl]J(Z) logde(zl — By — Py)(zl — By — Py)*dm(2)

= % /Al]J(Z) log det |21 — Bn| — PaU (|2l — Bn| — PaU ) *dm(2)
C

where we used the polar decompositiorzlf- By, to write zl — B, = |zl — B,|U*
with U a unitary matrix. Sinc€,U has the same law &, we are back at the same
setting as in the proof of Theorém 1, wijtH — By | replacingTy. It is then straight-
forward to check that the same arguments work under our piregpotheses; the
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symmetrized empirical measwé of the singular values df,(z) + P, converges
to ©,HA1 by Lemmd 10, which guarantees the convergence of

~+o00
/ log x|V (X),
S

whereas our hypotheses allow us to bound uniformly the tfgtsetransform of
vl on{z : 0(z1) > n~%} as in LemmaI3, hence providing a control of the in-
tegral on the intervaln—%7,€]. The control of the integral fox < N~ uses a
regularization by the Gaussian matnxYN, as in Propositiohl4 . O
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