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Hypersurfaces with constant sectional curvature of

Sn × R and Hn × R.

Fernando Manfio & Ruy Tojeiro

Abstract

We classify the hypersurfaces of Sn × R and Hn × R with constant sectional

curvature and dimension n ≥ 3.

1 Introduction

The submanifold geometry of the product spaces Sn×R and Hn×R has been extensively
studied in the last years. Here Sn and Hn denote the sphere and hyperbolic space of
dimension n, respectively. Emphasis has been given on minimal and constant mean
curvature surfaces in S2 × R and H2 × R, starting with the work in [1] and [15], among
others. See [11] for an updated list of references on this topic.

Surfaces of constant Gaussian curvature of S2 × R and H2 × R were investigated
in [2] and [3], with special attention to their global properties (see also [12] for a local
study in H2×R). In particular, nonexistence of complete surfaces of constant Gaussian
curvature c in S2 × R (respectively, H2 × R) was established for c < −1 and 0 < c < 1
(respectively, c < −1). It was also shown that a complete surface of constant Gaussian
curvature c > 1 in S2 × R (respectively, c > 0 in H2 × R) must be a rotation surface.
Moreover, the profile curves of such surfaces have been explicitly determined.

Our aim in this paper is to classify all hypersurfaces with constant sectional curvature
and dimension n ≥ 3 of Sn ×R and Hn ×R. It turns out that for n ≥ 4 a hypersurface
of constant sectional curvature c in Sn × R (respectively, Hn × R) only exists, even
locally, if c ≥ 1 (respectively, c ≥ −1), and for any such values of c it must be an
open subset of a complete rotation hypersurface. In the case n = 3, exactly one class
of nonrotational hypersurfaces of Sn ×R and Hn ×R with constant sectional curvature
arises. Each hypersurface in this class in S3 × R (respectively, H3 × R) has constant
sectional curvature c ∈ (0, 1) (respectively, c ∈ (−1, 0)), and is constructed in an explicit
way by means of a family of parallel flat surfaces in S3 (respectively, H3). An interesting
property of such a hypersurface is that its unit normal vector field makes a constant
angle with the unit vector field spanning the factor R. All surfaces in S2×R and H2×R
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with this property were classified in [8] and [9], where they were called constant angle
surfaces . Here we give a simple proof of a generalization of this result to constant angle
hypersurfaces of arbitrary dimension of both Sn × R and Hn × R.

2 Preliminaries

Let Qn
ǫ denote either the sphere Sn or hyperbolic space Hn, according as ǫ = 1 or ǫ = −1,

respectively. In order to study hypersurfaces f : Mn → Qn
ǫ ×R, our approach is to regard

f as an isometric immersion into En+2, where En+2 denotes either Euclidean space or
Lorentzian space of dimension (n+2), according as ǫ = 1 or ǫ = −1, respectively. More
precisely, let (x1, . . . , xn+2) be the standard coordinates on En+2 with respect to which
the flat metric is written as

ds2 = ǫ dx21 + dx22 + . . .+ dx2n+2.

Regard En+1 as
En+1 = {(x1, . . . , xn+2) ∈ En+2 : xn+2 = 0}

and

Qn
ǫ = {(x1, . . . , xn+1) ∈ En+1 : ǫ x21 + x22 + . . .+ x2n+1 = ǫ} (with x1 > 0 if ǫ = −1).

Then we consider the inclusion

i: Qn
ǫ × R → En+1 × R = En+2

and study the composition i ◦ f , which we also denote by f .
Given a hypersurface f : Mn → Qn

ǫ × R, let N denote a unit normal vector field to
f and let ∂

∂t
be a unit vector field tangent to the second factor. Then, a vector field T

and a smooth function ν on Mn are defined by

∂

∂t
= f∗T + νN.

Notice that T is the gradient of the height function h = 〈f, ∂
∂t
〉.

Two trivial classes of hypersurfaces ofQn
ǫ×R arise if either ν or T vanishes identically:

Proposition 1 Let f :Mn → Qn
ǫ × R be a hypersurface.

(i) If T vanishes identically, then f(Mn) is an open subset of a slice Qn
ǫ × {t}.

(ii) If ν vanishes identically, then f(Mn) is an open subset of a Riemannian product
Mn−1 × R, where Mn−1 is a hypersurface of Qn

ǫ .
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Let ∇ and R be the Levi-Civita connection and the curvature tensor of Mn, respec-
tively, and let A be the shape operator of f with respect to N . Then the Gauss and
Codazzi equations are

R(X, Y )Z = (AX ∧ AY )Z + ǫ((X ∧ Y )Z − 〈Y, T 〉(X ∧ T )Z + 〈X, T 〉(Y ∧ T )Z),
(2)

and

∇XAY −∇YAX −A[X, Y ] = ǫ ν(X ∧ Y )T, (3)

respectively, where X, Y, Z ∈ TM . Moreover, the fact that ∂
∂t

is parallel in Qn
ǫ ×R yields

for all X ∈ TM that

∇XT = νAX, (4)

and

X(ν) = −〈AX, T 〉. (5)

3 A basic lemma

Our main goal in this section is to prove the following lemma.

Lemma 2 Let f : Mn
c → Qn

ǫ × R be a hypersurface of dimension n ≥ 3 and constant
sectional curvature c 6= 0. Assume that T 6= 0 at x ∈ Mn

c . Then T is a principal
direction at x.

Lemma 2 will follow by putting together Lemma 3 and Proposition 4 below:

Lemma 3 Let f : Mn → Qn
ǫ × R be a hypersurface. Suppose that T 6= 0 at x ∈ Mn.

Then f has flat normal bundle at x as an isometric immersion into En+2 if and only if
T is a principal direction at x.

Proposition 4 Any isometric immersion g : Mn
c → En+2 of a Riemannian manifold

with dimension n ≥ 3 and constant sectional curvature c 6= 0 has flat normal bundle.

Lemma 3 was first proved in [7] for n = 2 and ǫ = 1. A proof of the general case
can be found in [16]. For the proof of Proposition 4 we make use of standard facts
from [13] on the theory of flat bilinear forms. Recall that a symmetric bilinear form
β: V × V → W , where V and W are finite-dimensional vector spaces, is said to be flat
with respect to an inner product 〈 , 〉: W ×W → R if

〈β(X, Y ), β(Z, T )〉 − 〈β(X, T ), β(Z, Y )〉 = 0
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for all X, Y, Z, T ∈ V . Clearly, the standard example of a flat bilinear form is the
second fundamental form of an isometric immersion between space forms with the same
constant sectional curvature.

Denote by N(β) ⊂ V the nullity subspace of β, given by

N(β) = {X ∈ V : β(X, Y ) = 0 : Y ∈ V },

and by S(β) ⊂W its image subspace

S(β) = span{β(X, Y ) : X, Y ∈ V }.

The next result is a basic fact on flat bilinear forms (cf. Corollary 1 and Corollary 2 in
[13]) :

Theorem 5 [13] Let β:V × V → W be a flat bilinear form with respect to an inner
product 〈 , 〉 onW . Assume that 〈 , 〉 is either positive-definite or Lorentzian and, in the
latter case, suppose that S(β) is a nongenerate subspace of W , i.e., S(β)∩S(β)⊥ = {0}.
Then

dimN(β) ≥ dim V − dimS(β).

Another fact we will need in order to handle the case n = 3 in Proposition 4 is the
following consequence of Theorem 2 in [13]:

Theorem 6 [13] Let β:V × V → W be a flat bilinear form with respect to an inner
product 〈 , 〉 on W . Assume that dimV = dimW , that N(β) = {0} and that 〈 , 〉 is
either positive-definite or Lorentzian. Moreover, in the latter case suppose that there
exists a vector e ∈ W such that 〈β( , ), e〉 is positive definite. Then there exists a
diagonalyzing basis {e1, . . . , en} for β, i.e., β(ei, ej) = 0 for 1 ≤ i 6= j ≤ n.

Proof of Proposition 4: First recall that Rn+2 admits an umbilical inclusion i into both
hyperbolic space Hn+3

c and the Lorentzian sphere Sn+2,1
c of constant sectional curvature

c, according as c < 0 or c > 0, respectively, i.e., its second fundamental form α is

α(X, Y ) =
√

|c|〈X, Y 〉η,

where η is one of the two normal vectors such that 〈η, η〉 = −sgn(c), where sgn(c) =
c/|c|. Similarly, Lorentzian space Ln+2 admits umbilical inclusions into Hn+2,1

c or Sn+1,2
c ,

according as c < 0 or c > 0, respectively.
Then, the second fundamental form αφ = g∗α + i∗αg of φ = i ◦ g at every x ∈ Mn

c

is a flat bilinear form with respect to the inner product 〈 , 〉 on its three-dimensional
normal space. The inner product 〈 , 〉 is positive-definite if c < 0 and En+2 = Rn+2,
Lorentzian if either c > 0 and En+2 = Rn+2 or if c < 0 and En+2 = Ln+2, and has index
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two if c > 0 and En+2 = Ln+2. In the latter case, αφ is also flat with respect to the
Lorentzian inner product −〈 , 〉. Moreover, since

〈αφ(, ), i∗η〉 = 〈α(, ), η〉 = −sgn(c)
√

|c|〈 , 〉,

it follows that N(αφ) = {0}. Let us consider the two possible cases:

(i) S(αφ) is nondegenerate : in this case Theorem 5 gives

dimS(αφ) ≥ n− dimN(αφ) = n.

Since dimS(αφ) ≤ 3, this implies that n = 3 = dimS(αφ). Since 〈αφ(, ),−sgn(c)i∗η〉
is positive definite, it follows from Theorem 6 that there exists a basis {e1, . . . , en} of
TxM

n
c such that αφ(ei, ej) = 0 for i 6= j. In particular, we have

0 = 〈αφ(ei, ej), i∗η〉 = −sgn(c)
√

|c|〈ei, ej〉 for i 6= j,

that is, {e1, . . . , en} is an orthogonal basis. Since {e1, . . . , en} also diagonalizes αg, we
conclude that g has flat normal bundle.

(ii) S(αφ) is degenerate : in this case, there exists a nonzero vector ρ ∈ S(αφ)∩S(αφ)
⊥.

Writing ρ = η+ i∗ζ , with ζ a unit normal vector to g, we obtain from 0 = 〈αφ(X, Y ), ρ〉
for all X, Y ∈ TxM

n
c that

〈αg(X, Y ), ζ〉 = sgn(c)
√

|c|〈X, Y 〉,

for all X, Y ∈ TxM
n
c , i.e., g has an umbilical normal direction. Since g has codimension

two, the Ricci equation implies that its normal bundle is flat.

The flat case c = 0 can also be handled by means of Theorem 5:

Lemma 7 Let f : Mn
0 → Qn

ǫ × R be a flat hypersurface of dimension n ≥ 3. Assume
that T 6= 0 at x ∈Mn

0 .

(i) If ǫ = 1, then ν vanishes at x.

(ii) If ǫ = −1, then either ν vanishes at x or AN = Aξ for one of the two possible
choices of a unit normal vector N to f at x.

In any case, T is a principal direction of f at x.

Proof: Regard f as an isometric immersion into En+2. Then, its second fundamental
form α is a flat bilinear map by the Gauss equation. Let ξ denote the outward pointing
unit normal vector field to Qn

ǫ × R. Then it is easily seen that the shape operator of f
with respect to ξ is given by

AξT = −ν2T and AξX = −X for X ∈ {T}⊥. (6)
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Assume that ν 6= 0 at x ∈ Mn
0 . Then Aξ, and hence α, has trivial kernel by (6). If

ǫ = 1, it follows from Theorem 5 that

2 ≥ dimS(α) ≥ n,

a contradiction that proves (i). If ǫ = −1, Theorem 5 in the Lorentzian case implies
that S(α) is a degenerate subspace of the two-dimensional normal space of f in En+2

at x. Hence S(α) is spanned by the light-like vector i∗N + ξ for one of the two unit
normal vectors N to f in Qn

ǫ × R at x. But the fact that i∗N + ξ ∈ S(α)⊥ just means
that AN = Aξ.

For the last assertion, notice that a point where ν vanishes is a local minimum for
ν, hence ANT = 0 at x by (5).

4 Rotation hypersurfaces

Rotation hypersurfaces of Sn × R and Hn × R have been defined and their principal
curvatures computed in [6], as an extension of the work in [4] on rotation hypersurfaces
of space forms.

With notations as in Section 2, let P 3 be a three-dimensional subspace of En+2

containing the ∂
∂x1

and the ∂
∂xn+2

directions. Then (Qn
ǫ ×R)∩P 3 = Q1

ǫ ×R. Denote by I
the group of isometries of En+2 that fix pointwise a two-dimensional subspace P 2 ⊂ P 3

also containing the ∂
∂xn+2

-direction. Consider a curve α in Q1
ǫ ×R ⊂ P 3 that lies in one

of the two half-spaces of P 3 determined by P 2.

Definition 8 A rotation hypersurface in Qn
ǫ ×R with profile curve α and axis P 2 is the

orbit of α under the action of I.

We will always assume that P 3 is spanned by ∂
∂x1

, ∂
∂xn+1

and ∂
∂xn+2

. In the case

ǫ = 1, we also assume that P 2 is spanned by ∂
∂x1

and ∂
∂xn+2

, and that the curve α is
parametrized by arc length as

α(s) = (sin(k(s)), 0, . . . , 0, cos(k(s)), h(s)),

where s runs over an interval I where cos(k(s)) ≥ 0, so that α(I) is contained in a closed
half-space determined by P 2. Here k, h: I → R are smooth functions satisfying

k′(s)2 + h′(s)2 = 1 for all s ∈ I. (7)

In this case, the rotation hypersurface in Sn × R with profile curve α and axis P 2 can
be parametrized by

f(s, t) = (sin(k(s)), cos(k(s))ϕ1(t), . . . , cos(k(s))ϕn(t), h(s)), (8)
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where t = (t1, . . . , tn−1) and ϕ = (ϕ1, . . . , ϕn) parametrizes Sn−1 ⊂ Rn. The metric
induced by f is

dσ2 = ds2 + cos2(k(s))dt2, (9)

where dt2 is the standard metric of Sn−1.
For ǫ = −1, one has three distinct possibilities, according as P 2 is Lorentzian,

Riemannian or degenerate, respectively. We call f , accordingly, a rotation hypersurface
of spherical , hyperbolic or parabolic type, because the orbits of I are spheres, hyperbolic
spaces or horospheres, respectively. In the first case, we can assume that P 2 is spanned
by ∂

∂x1
and ∂

∂xn+2
and that the curve α is parametrized by

α(s) = (cosh(k(s)), 0, . . . , 0, sinh(k(s)), h(s)). (10)

Then f can be parametrized by

f(s, t) = (cosh(k(s)), sinh(k(s))ϕ1(t), . . . , sinh(k(s))ϕn(t), h(s)). (11)

The induced metric is
dσ2 = ds2 + sinh2(k(s))dt2, (12)

where dt2 is the standard metric of Sn−1.
In the second case, assuming that P 2 is spanned by ∂

∂xn+1
and ∂

∂xn+2
, the curve α can

also be parametrized as in (10), and a parametrization of f is

f(s, t) = (cosh(k(s))ϕ1(t), . . . , cosh(k(s))ϕn(t), sinh(k(s)), h(s)), (13)

where t = (t1, . . . , tn−1) and ϕ = (ϕ1, . . . , ϕn) parametrizes Hn−1 ⊂ Ln. The induced
metric is

dσ2 = ds2 + cosh2(k(s))dt2, (14)

where dt2 is the standard metric of Hn−1.
Finally, when P 2 is degenerate, we choose a pseudo-orthonormal basis

e1 =
1√
2

(

− ∂

∂x1
+

∂

∂xn+1

)

, en+1 =
1√
2

(

∂

∂x1
+

∂

∂xn+1

)

, ej =
∂

∂xj
,

for j ∈ {2, . . . , n, n+ 2}, and assume that P 2 is spanned by en+1 and en+2. Notice that
〈e1, e1〉 = 0 = 〈en+1, en+1〉 and 〈e1, en+1〉 = 1. Then, we can parametrize α by

α(s) =

(

k(s), 0, . . . , 0,− 1

2k(s)
, h(s)

)

,

with
k(s) > 0 and (ln k)′ 2(s) + h′(s)2 = 1, (15)
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and a parametrization of f is

f(s, t2, . . . , tn) =

(

k(s), k(s)t2, . . . , k(s)tn,−
1

2k(s)
− k(s)

2

n
∑

i=2

t2i , h(s)

)

, (16)

whose induced metric is
dσ2 = ds2 + k2(s)dt2, (17)

where dt2 is the standard metric of Rn−1.

Remark 9 Our definition of a rotation hypersurface in Qn
ǫ ×R was taken from [6], and

it naturally extends the one given in [4] for space forms. For ǫ = −1, it differs from that
used in [2], where only rotation surfaces of spherical type were considered.

We are now in a position to classify rotation hypersurfaces of Qn
ǫ ×R with constant

sectional curvature c and dimension n ≥ 3. We state separately the cases ǫ = 1 and
ǫ = −1:

Theorem 10. Let f : Mn
c → Sn × R be a rotation hypersurface with constant sectional

curvature c and dimension n ≥ 3. Then c ≥ 1. Moreover,

(i) if c = 1 then f(Mn
c ) is an open subset of a slice Sn × {t}.

(ii) if c > 1 then f(Mn
c ) is an open subset of a complete hypersurface that can be

parametrized by (8), with

k(s) = arccos

(

1√
c
sin(

√
c s)

)

(18)

and

h(s) = −
√

c− 1

c
ln

(

cos(
√
c s) +

√

c− sin2(
√
c s)

1 +
√
c

)

, s ∈ [0, π/
√
c]. (19)

Theorem 11. Let f : Mn
c → Hn ×R be a rotation hypersurface with constant sectional

curvature c and dimension n ≥ 3. Then c ≥ −1. Moreover,

(i) if c = −1 then f(Mn) is an open subset of a slice Hn × {t}.

(ii) if c ∈ (−1, 0) then one of the following possibilities holds:

(a) f(Mn) is an open subset of a complete hypersurface of spherical type that can
be parametrized by (11), with

k(s) = arcsinh

(

1√
−c sinh(

√
−c s)

)

(20)
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and

h(s) =

√

c+ 1

−c ln





cosh(
√
−c s) +

√

−c + sinh2(
√
−c s)

1 +
√
−c



 . (21)

(b) f(Mn) is an open subset of a complete hypersurface of hyperbolical type that
can be parametrized by (13), with

k(s) = arccosh
1√
−c cosh(

√
−c s) (22)

and

h(s) =

√

c+ 1

−c ln

(

sinh(
√
−c s) +

√

c+ cosh2(
√
−c s)

)

. (23)

(c) f(Mn) is an open subset of a complete hypersurface of parabolical type that
can be parametrized by (16), with

k(s) = exp
√
−c s (24)

and
h(s) =

√
1 + c s. (25)

(iii) if c = 0, then one of the following possibilities holds:

(a) f(Mn) is an open subset of a complete hypersurface of spherical type that can
be parametrized by (11), with

k(s) = arcsinh(s) (26)

and
h(s) = −1 +

√
1 + s2. (27)

(b) f(Mn) is an open subset of a Riemannian product Mn−1 × R, where Mn−1

is a horosphere of Hn.

(iv) if c > 0, then f(Mn) is an open subset of a complete hypersurface of spherical type
that can be parametrized by (11), with

k(s) = arcsinh

(

1√
c
sin(

√
c s)

)

(28)

and

h(s) = −
√

c+ 1

c
arctan

(

cos(
√
c s)

√

c+ sin2(
√
c s)

)

. (29)
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Remark 12 The hypersurfaces in Theorems 10 and 11 also occur in dimension n = 2.
In particular, those in parts (ii) − b) and (ii) − c) of Theorem 11 provide examples of
complete surfaces of constant Gaussian curvature c ∈ (−1, 0) in H2 × R that do not
appear in [2].

For the proof of Theorems 10 and 11 we make use of the following fact:

Proposition 13. Assume that the warped product I ×ρ Q
n
δ , n ≥ 2, δ ∈ {−1, 0, 1}, has

constant sectional curvature c.

(i) If c > 0, then δ = 1 and ρ(s) = 1√
c
sin(

√
c s+ θ0), θ0 ∈ R.

(ii) If c = 0, then one of the following possibilities holds:

(a) δ = 1 and ρ(s) = ±s + s0, s0 ∈ R.

(b) δ = 0 and ρ(s) = A ∈ R.

(iii) If c < 0, then one of the following possibilities holds:

(a) δ = −1 and ρ(s) = 1√
−c

cosh(
√
−c s+ θ0), θ0 ∈ R.

(b) δ = 0 and ρ(s) = exp(±
√
−c s+ s0), s0 ∈ R.

(c) δ = 1 and ρ(s) = 1√
−c

sinh(
√
−c s+ θ0), θ0 ∈ R.

Proof: In a warped product I×ρQ
n
δ , n ≥ 2, the sectional curvature along a plane tangent

to Qn
δ is (δ − (ρ′)2)/ρ2, whereas the sectional curvature along a plane spanned by unit

vectors ∂/∂s and X tangent to I and Qn
δ , respectively, is −ρ′′/ρ. Therefore, I ×ρ Q

n
δ

has constant sectional curvature c if and only if

(ρ′)2 + cρ2 = δ. (30)

Notice that −ρ′′/ρ = c, or equivalently,

ρ′′ + cρ = 0, (31)

follows by differentiating (30). If c > 0, we obtain from (30) that δ = 1. Moreover, by
(31) we have that

ρ(s) = A cos
√
c s+B sin

√
c s

for some A,B ∈ R, which gives (ρ′)2+cρ2 = c(A2+B2). From (30) we get c(A2+B2) = 1,
hence we may write

A =
1√
c
sin θ0 and B =

1√
c
cos θ0

for some θ0 ∈ R. It follows that

ρ(s) =
1√
c
sin(

√
c s+ θ0).
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The remaining cases are similar.

Proof of Theorems 10 and 11: First we determine the possible values of c for a rotation
hypersurface f : Mn

c → Qn
ǫ ×R with constant sectional curvature c and dimension n ≥ 3.

If T vanishes on an open subset, then c = ǫ by Proposition 1. Otherwise, we can assume
that T is nowhere vanishing. Then f has exactly two distinct principal curvatures λ
and µ 6= 0, the first one being simple with T as principal direction (cf. [6]). Let
{T,X1, . . . , Xn−1} be an orthogonal basis of eigenvectors of A at x, with

AT = λT and AXi = µXi, 1 ≤ i ≤ n− 1.

From the Gauss equation (2) of f for X = Xi and Y = Z = Xj , i 6= j, we get

c− ǫ = µ2,

and hence c > ǫ. This proves the first assertions in Theorems 10 and 11.
Now assume that ǫ = 1. Then f can be parametrized by (8), with k(s) and h(s)

satisfying (7), and the metric induced by f is given by (9). Since c ≥ 1, by Proposition 13
we must have

cos(k(s)) =
1√
c
sin(

√
c s+ θ0)

for some θ0 ∈ R. Replacing s by s− θ0/
√
c, we can assume that θ0 = 0. If c = 1, then f

just parametrizes an open subset of a slice Sn × {t}. If c > 1, we obtain that k(s) and
h(s) are given by (18) and (19), respectively. The corresponding profile curve is exactly
that of the complete surface of constant sectional curvature c in S2 × R determined in
[2], and their argument also applies to show the completeness of f in any dimension
n ≥ 3.

From now on we deal with the case ǫ = −1. Assume first that f is of spherical type.
Then f can be parametrized by (11), with k(s) and h(s) satisfying (7), and the metric
induced by f is given by (12). By Proposition 13, the warping function sinh(k(s)) must
be equal to

1√
c
sin(

√
c s+ θ0),

1√
−c sinh(

√
−c s+ θ0), θ0 ∈ R, or ± s+ s0, s0 ∈ R,

according as c > 0, c < 0 or c = 0, respectively. After suitably replacing the parameter
s, we can assume that θ0 = 0 in the first two cases, and that sinh(k(s)) = s in the
last one. Each possibility gives rise to the expressions (20), (28) and (26) for k(s), and
(21), (29) and (27) for h(s), respectively. The corresponding profile curves are exactly
those of the complete rotation surfaces with constant sectional curvature of spherical
type determined in [2], and the completeness of the corresponding hypersurfaces can be
seen in the same way as in [2].
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Now suppose that f is of hyperbolical type. Then, it can be parametrized by (13),
with k(s) and h(s) satisfying (7), and the induced metric is (14). Since c ≥ −1, by
Proposition 13 we must have c ∈ [−1, 0) and

cosh(k(s)) =
1√
−c cosh(

√
−c s+ θ0), θ0 ∈ R.

As before, we can assume that θ0 = 0. If c = −1, then f(Mn) is an open subset of a
slice Hn × {t}. Otherwise, k and h are given by (22) and (23), respectively.

Finally, suppose that f is of parabolical type. Then, it can be parametrized by (16),
with k(s) and h(s) satisfying (15), and the induced metric is (17). By Proposition 13,
we must have c ≤ 0 and

k(s) = A ∈ R or k(s) = exp(±
√
−c s+ s0), s0 ∈ R,

according as c = 0 or c < 0, respectively. In the first case, f just parametrizes an
open subset of a Riemannian product Mn−1 × R, where Mn−1 is a horosphere of Hn.
In the second case, we can assume that k(s) = exp

√
−c s and then h is given by (25).

Completeness of the hypersurfaces in this and the preceding case is straightforward.

5 Constant angle hypersurfaces

Let g: Mn−1 → Qn
ǫ be a hypersurface and let gs: M

n−1 → Qn
ǫ be the family of parallel

hypersurfaces to g, that is,

gs(x) = Cǫ(s)g(x) + Sǫ(s)N(x), (32)

where N is a unit normal vector field to g,

Sǫ(s) =

{

cos s, if ǫ = 1

cosh s, if ǫ = −1
and Sǫ(s) =

{

sin s, if ǫ = 1

sinh s, if ǫ = −1.

For ǫ = 1, write the principal curvatures of g as

λi = cot θi, 0 < θi < π, 1 ≤ i ≤ m,

where the θi form an increasing sequence. For X in the eigenspace of the shape operator
AN of g corresponding to the principal curvature λi, 1 ≤ i ≤ m, we have

gs∗X = g∗(cos sX − sin sANX) = (cos s− sin s cot θi)X =
sin(θi − s)

sin θi
X,

Thus, gs is an immersion at x if and only if s 6= θi(x)(mod π) for any 1 ≤ i ≤ m.
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For ǫ = −1, write the principal curvatures of g with absolute value greater than 1 as

λi = coth θi, θi 6= 0, 1 ≤ i ≤ m.

As in the preceding case, forX in the eigenspace of the shape operator AN corresponding
to the principal curvature λi, 1 ≤ i ≤ m, we have

gs∗X =
sinh(θi − s)

sinh θi
X,

Thus, gs is an immersion at x if and only if s 6= θi(x) for any 1 ≤ i ≤ m.
In the case ǫ = 1, set

U := {(x, s) ∈Mn−1 × R : s ∈ (θm(x)− π, θ1(x))}. (33)

For ǫ = −1, let θ+ (respectively, θ−) be the least (respectively, greater) of the θi that is
greater than 1 (respectively, less than −1), and set

U := {(x, s) ∈Mn−1 × R : s ∈ (θ−(x), θ+(x))}. (34)

In both cases, if V ⊂ Mn−1 is an open subset and I is an open interval containing 0
such that V × I ⊂ U , then gs is an immersion on V for every s ∈ I, with

Ns(x) = −ǫSǫ(s)g(x) + Cǫ(s)N(x) (35)

as a unit normal vector at x.
Now define

f : Mn := V × I → Qn
e × R ⊂ En+2

by

f(x, s) = gs(x) +Bs
∂

∂t
, B > 0. (36)

Then
f∗X = gs∗X, for any X ∈ TMn−1,

and

f∗
∂

∂s
= Ns +B

∂

∂t
,

where
Ns(x) = −ǫSǫ(s)g(x) + Cǫ(s)N(x). (37)

Since gs is an immersion on V for every s ∈ I, it follows that f is an immersion on Mn

with

η(x, s) = −B
a
Ns(x) +

1

a

∂

∂t
, a =

√
1 +B2 (38)
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as a unit normal vector field. Thus, f has the property that

〈η, ∂
∂t

〉 = 1

a

is constant on Mn. Following [8], f was called in [16] a constant angle hypersurface.
Constant angle surfaces in S2 ×R and H2×R have been classified in [8] and [9], respec-
tively. The next result was obtained in [16] as a consequence of a more general theorem.
For the sake of completeness we provide here a simple and direct proof.

Theorem 14. Any constant angle hypersurface f : Mn → Qn
ǫ × R is either an open

subset of a slice Qn
ǫ × {t0} for some t0 ∈ R, an open subset of a product Mn−1 × R,

where Mn−1 is a hypersurface of Qn
ǫ , or it is locally given by the preceding construction.

Proof: Let η be a unit normal vector field to f . By assumption, ν = 〈η, ∂/∂t〉 is a
constant on Mn, which we can assume to belong to [0, 1]. Since ‖T‖2 + ν2 = 1, the
vector field T has also constant length. By Proposition 1, the cases ν = 1 and ν = 0
correspond to the first two possibilities in the statement, respectively. From now on, we
assume that ν ∈ (0, 1), hence T is a vector field whose length is also a constant in (0, 1).
Since T is a gradient vector field, its integral curves are (not unit-speed) geodesics in
Mn. The fact that T is a gradient also implies that the orthogonal distribution {T}⊥
is integrable. Thus, there exists locally a diffeomorphism ψ: Mn−1 × I → Mn, where
I is an open interval containing 0, such that ψ(x, ·): I → Mn are integral curves of T
and ψ(·, s): Mn−1 → Mn are integral manifolds of {T}⊥. Set F = f ◦ ψ, with f being
regarded as an isometric immersion into En+2. Then

X〈F, ∂
∂t

〉 = 〈f∗ψ∗X,
∂

∂t
〉 = 〈ψ∗X, T 〉 = 0

for any X ∈ TMn−1. Thus 〈F (x, s), ∂
∂t
〉 = ρ(s) for some smooth function ρ on I.

On the other hand, it follows from

0 = dν(X) = −〈AX, T 〉 for all X ∈ TMn

that AT = 0, hence F (x, ·): I → Qn
ǫ × R are geodesics in Qn

ǫ × R, where F = f ◦ ψ.
Therefore, the projections Π1 ◦ F (x, ·): I → Qn

ǫ and Π2 ◦ F (x, ·): I → R are geodesics
of Qn

ǫ and R, respectively.
That Π2 ◦ F (x, ·): I → R are geodesics in R just means that ρ(s) = Bs, for some

constant B > 0, after possibly a translation in the parameter s and changing s by −s.
Now define g: Mn−1 → Qn

ǫ by

g(x) = Π1 ◦ F (x, 0).
Rescaling the parameter s so that the geodesics Π1 ◦ F (x, ·): I → Qn

ǫ have unit speed,
the fact that they are normal to g at g(x) for any x ∈Mn−1 just says that

Π1 ◦ F (x, s) = gs(x),

where gs denotes the parallel hypersurface to g at a distance s.

14



Remark 15 The proof of Theorem 14 also applies to hypersurfaces of Rn+1 whose unit
normal vector field makes a constant angle with a fixed direction ∂/∂t. Namely, writing
Rn+1 = Rn × R, with the second factor being spanned by ∂/∂t, it shows that any such
hypersurface is either an open subset of an affine subspace Rn×{t0} for some t0 ∈ R, an
open subset of a product Mn−1×R, where Mn−1 is a hypersurface of Rn, or it is locally
given by (36), where gs is the family of parallel hypersurfaces to some hypersurface g in
the first factor Rn, namely, gs(x) = g(x)+ sN(x) for a unit vector field N to g. A proof
of this fact for surfaces in R3 was given in [14].

6 Nonrotational examples in dimension three

Here we use the construction of the previous section to produce a family of nonrotational
hypersurfaces of S3 × R (respectively, H3 × R) with constant sectional curvature c for
any c ∈ (0, 1) (respectively, c ∈ (−1, 0)).

Given a hypersurface g: Mn−1 → Qn
ǫ and the family gs: M

n−1 → Qn
ǫ of parallel

hypersurfaces to g, an easy computation shows that, whenever cotǫ(s) := Cǫ(s)/Sǫ(s)
is not a principal curvature of g at any x ∈ Mn−1, the shape operator As of gs with
respect to the unit normal vector field Ns given by (37) is

As = (cotǫs I − A)−1(cotǫsA+ ǫI). (39)

Let g: M2 → Q3
ǫ be a surface and let

f : M3 := V × I ⊂ M2 × R → Q3

ǫ × R ⊂ E5

be defined as in the previous section in terms of g. The normal space of f , as a sub-
manifold of E5, is spanned by the unit normal vector field η given by (38) and by the
unit normal vector field ξ(x, s) = gs(x), which is normal to Q3

ǫ × R at f(x, s). We have

a∇̃Xη = Bgs∗A
sX = Bf∗A

sX

and
a∇̃ ∂

∂s

η = ǫBgs = ǫBξ,

hence the principal curvatures of Af
η are

−B
a
ks1, −B

a
ks2 and 0,

where ks1 and k
s
2 are the principal curvatures of gs, the principal curvature 0 correspond-

ing to the principal direction ∂/∂s. On the other hand,

∇̃Xξ = gs∗X = f∗X
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and

∇̃ ∂

∂s

ξ = Ns =
1

a2
f∗
∂

∂s
− B

a
η.

Thus, the principal curvatures of Af
ξ are −1/a2 and −1, the first being simple with ∂/∂s

as principal direction, and the second having multiplicity two with TV as eigenbundle.
Now assume that M2 = M2

0 is flat. Then, the principal curvatures k1 and k2 of g
satisfy k1k2 = −ǫ everywhere. By (39), the principal curvatures of gs with respect to
Ns are

ksi =
cotǫski + ǫ

cotǫs− ki
, 1 ≤ i ≤ 2,

hence ks1k
s
2 = −ǫ, that is, gs is also a flat surface. It follows that the sectional curvature

of M3 along TV is

(−B
a
ks1)(−

B

a
ks2) + ǫ =

ǫ

a2
,

which is also the sectional curvature of M3 along any plane spanned by ∂/∂s and a
vector X ∈ TV .

Remark 16 It is easily seen that if the hypersurface f just constructed is regarded as
a submanifold of R5 for ǫ = 1, then it does not have any umbilical normal direction at
any point. Hence it provides a new example of a constant curvature submanifold of R5

with codimension two that is free of weak-umbilic points in the sense of [13].

Example 17 As an explicit example, consider the Clifford torus

g: M2

0 := S1(cos θ0)× S1(sin θ0) → S3

parametrized by

g(t1, t2) = (cos θ0 cos t1, cos θ0 sin t1, sin θ0 cos t2, sin θ0 sin t2),

which has

N(t1, t2) = (− sin θ0 cos t1,− sin θ0 sin t1, cos θ0 cos t2, cos θ0 sin t2)

as a unit normal vector field in S3. Then,

f : M2

0 × R → S3

given by (36) can be reparametrized by

f(t1, t2, s) = (cos s cos t1, cos s sin t1, sin s cos t2, sin s sin t2, Bs),

after replacing s + θ0 by s and a translation in the ∂/∂t-direction. This hypersurface
appears in [5] as an example of a weak-umbilic free doubly-rotation surface with constant
sectional curvature having the helix s 7→ (cos s, sin s, Bs) as profile, in the sense of [10].
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A similar example can be constructed in H3 × R, starting with the flat surface

g: M2

0 := H1(cosh θ0)× S1(sinh θ0) → H3

parametrized by

g(t1, t2) = (cosh θ0 cos t1, cosh θ0 sin t1, sinh θ0 cos t2, sinh θ0 sin t2).

In this case, the corresponding constant curvature hypersurface of H3 × R is

f(t1, t2, s) = (cosh s cos t1, cosh s sin t1, sinh s cos t2, sinh s sin t2, Bs),

These examples can be characterized as the only constant curvature hypersurfaces of
Q3

ǫ×R with 0 as principal curvature in the T -direction and whose two remaining principal
curvatures are constant along {T}⊥.

7 The main result

In this section we prove our main result, namely, we provide a complete classification
of all hypersurfaces with constant sectional curvature of Qn

ǫ × R, n ≥ 3. We state
separately the cases ǫ = 1 and ǫ = −1. For ǫ = 1 we have:

Theorem 18. Let f : Mn
c → Sn×R, n ≥ 3, be an isometric immersion of a Riemannian

manifold of constant sectional curvature c. Then c ≥ 0. Moreover,

(i) if c = 0 then n = 3 and f(M3
0 ) is an open subset of a Riemannian product M2

0 ×R,
where M2

0 is a flat surface of S3.

(ii) if c ∈ (0, 1) then n = 3 and f is locally given by the construction described in
Section 6.

(iii) if c = 1 then f(Mn
1 ) is an open subset of a slice Sn × {t}.

(iv) if c > 1 then f(Mn
c ) is an open subset of a rotation hypersurface given by Theorem

10-(ii).

The classification of constant curvature hypersurfaces of Hn × R with dimension
n ≥ 3 reads as follows:

Theorem 19. Let f : Mn
c → Hn×R, n ≥ 3, be an isometric immersion of a Riemannian

manifold of constant sectional curvature c. Then c ≥ −1. Moreover,

(i) if c = −1 then f(Mn
−1) is an open subset of a slice Hn × {t}.
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(ii) if c ∈ (−1, 0) then either n = 3 and f is locally given by the construction described
in Section 6, or f(Mn

0 ) is an open subset of one of the rotation hypersurfaces given
by Theorem 11-(ii).

(iii) if c = 0 then one of the following possibilities holds:

(a) n = 3 and f(M3
0 ) is an open subset of a Riemannian product M2

0 ×R, where
M2

0 is a flat surface of H3.

(b) f(Mn
0 ) is an open subset of a Riemannian product Mn−1

0 × R, where Mn−1

0

is a horosphere of Hn.

(c) f(Mn
0 ) is an open subset of the spherical rotation hypersurface given by The-

orem 11-(iii)-(a).

(iv) if c > 0 then f(Mn
c ) is an open subset of the spherical rotation hypersurface given

by Theorem 11-(iv).

Proof of Theorems 18 and 19: Assume that the vector field T does not vanish at x ∈Mn.
Then T is a principal direction of f by Lemma 2 and Lemma 7. Let {T,X1, . . . , Xn−1}
be an orthogonal basis of eigenvectors of AN at x, with

ANT = λT and ANXi = λiXi, 1 ≤ i ≤ n− 1.

From the Gauss equation (2) of f for X = Xi and Y = Z = Xj , i 6= j, we get

c− ǫ = λiλj , i 6= j. (40)

On the other hand, for X = T and Y = Z = Xi the Gauss equation yields

c− ǫ = λλi − ǫ||T ||2. (41)

Assume first that c = ǫ. By (40), we can assume that λi = 0 for all 2 ≤ i ≤ n − 1.
Then, applying (41) for i ≥ 2 yields a contradiction with T 6= 0. We conclude that for
c = ǫ the vector field T vanishes identically, and this gives part (iii) of Theorem 18 and
part (i) of Theorem 19.

Now suppose that c 6= ǫ. Then T can not vanish on any open subset. Thus, we can
assume without loss of generality that it is nowhere vanishing. If n ≥ 4, we obtain from
(40) that all λ′is coincide for 2 ≤ i ≤ n− 1. Denote all of them by µ. Then, the Gauss
equations now read

c− ǫ = µ2 (42)

and
c− ǫ = λµ− ǫ‖T‖2, (43)

which can also be written as
c = λµ+ ǫν2. (44)
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In particular, it follows from (42) that c > ǫ.
Now, since T 6= 0, it follows from (42) and (43) that λ 6= µ. Moreover, since T is

a principal direction, we obtain from (5) that ν is constant along the leaves of {T}⊥,
and hence the same holds for λ by (44) (since µ has multiplicity greater than one, one
can show using the Codazzi equation that it is constant along its eigenbundle; cf. the
proof of Theorem 1 in [6]). Then, one can use the following result to conclude that f
is a rotation hypersurface. It slightly generalizes Theorem 1 in [6], but actually follows
from its proof.

Proposition 20 Let f : Mn → Qn
ǫ × R be a hypersurface with n ≥ 3 and T 6= 0.

Assume that f has exactly two principal curvatures λ and µ everywhere, the first one
being simple with T as a principal direction. If λ is constant along the leaves of the
eigenbundle {T}⊥ of µ, then f(Mn) is an open subset of a rotation hypersurface.

Thus, the proofs of Theorems 18 and 19 for n ≥ 4 are completed by Theorems 10
and 11. This also applies to the case n = 3 when we have λ2 = λ3 everywhere. By (40)
and (41), this is not the case only if λ = 0. In this situation, equation (44) reduces to

ǫν2 = c. (45)

If c = 0, then ν vanishes identically, and thus f(M3
0 ) must be an open subset of a

Riemannian product M2
0 × R, where M2

0 is a flat surface in either S3 or H3, according
as ǫ = 1 or ǫ = −1, respectively. If c 6= 0, it follows from (45) that f is a constant
angle hypersurface. Therefore, by Theorem 14 it is locally given by (36) for some surface
g: M2 → Q3

ǫ . Moreover, if we write ν = 1/a, it was shown in Section 6 that the principal
curvatures of f are

−B
a
ks1 − B

a
ks2 and 0,

where ks1 and k
s
2 are the principal curvatures of gs. By the Gauss equation (40), we have

c− ǫ = (−B
a
ks1)(−

B

a
ks2).

Replacing c = ǫ/a2 and using that B2 + 1 = a2, it follows that ks1k
s
2 = −ǫ, hence g is a

flat surface.
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