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Abstract: In this work we present a new approach on studying dynamical systems.
Combining the two ways of expressing the uncertainty, using probabilistic theory and cred-
ibility theory, we have research the generalized fractional hybrid equations. We have
introduced the concepts of generalized fractional Wiener process, generalized fractional
Liu process and the combination between those two, generalized fractional hybrid process.
Corresponding generalized fractional stochastic, respectively fuzzy, respectively hybrid dy-
namical systems were defined. We applied the theory for generalized fractional hybrid
Hamilton-Pontryagin (HP) equation, generalized fractional Hamiltonian equations. From
the general fractional hybrid Hamiltonian equations, fractional Langevin equations were
found and numerical simulations were done.

Keywords: HP equations, (generalized) fractional stochastic equations,
(generalized) fractional fuzzy differential equations, (generalized) fractional
hybrid equations, generalized fractional hybrid Hamiltonian equations, Euler
scheme.

1 INTRODUCTION

Fractional theory has applicability in many science fields. This approach presents frac-
tional derivatives, fractional integrals, of any real or complex order. Fractional calculus
is used when fractional integration is needed. It is used for studying simple dynamical
systems, but it also describes complex physical systems. For example, applications of
the fractional calculus can be found in chaotic dynamics, control theory, stochastic mod-
eling, but also in finance, hydrology, biophysics, physics, astrophysics, cosmology and
so on ([6], [10], [11], [12]). But some other fields have just started to study problems
from fractional point of view. In great fashion is the study of fractional problems of
the calculus of variations and Euler-Lagrange type equations. There were found Euler-
Lagrange equations with fractional derivatives, and then Klimek found Euler-Lagrange
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equations, but with symmetric fractional derivatives [18]. Most famous fractional in-
tegral are Riemann-Liouville, Caputo, Grunwald-Letnikov and most frequently used is
Riemann-Liouville fractional integral. The study of Euler-Lagrange fractional equations
was continued by Agrawal [2] that described these equations using the left, respectively
right fractional derivatives in the Riemann-Liouville sense. This fractional calculus has
some great problems, such as presence of non-local fractional differential operators, or the
adjoint fractional operator that describes the dynamics is not the negative of itself, or
mathematical calculus may be very hard because of the complicated Leibniz rule, or the
absence of chain rule, and so on. After O.P. Agrawal’s formulation [2] of Euler-Lagrange
fractional equations, Băleanu and Avkar [3] used them in formulating problems with La-
grangians linear in velocities. Standard multi-variable variational calculus has also some
limitations. But in [31] C. Udrişte and D. Opriş showed that these limitations can by
broken using the multi-linear control theory.

Another aspect that we use is the stochastic approach. Stochastic concepts were firstly
introduced by J.M. Bismut, in his work from 1981, when stochastic Hamiltonian system
was introduced. Since then, there has been a need in finding out tools and algorithms
for the study of this kind of systems with uncertainty. Bismut’s work was continued
by Lazaro-Cami and Ortega ([21], [22]), in the sense that his work was generalized to
manifolds, stochastic Hamiltonian systems on manifolds extremize a stochastic action
on the space of manifold valued semimartingales, the reduction of stochastic Hamiltonian
system on cotangent bundle of a Lie group, a counter example for the converse of Bismut’s
original theorem.

A new way for expressing the uncertainty is given in credibility theory. In this case we
are not working on a probability space, like in the stochastic case, but on a credibility one.
Credibility theory is based on five axioms from which the notion of credibility measure
is defined, and it was introduced in order to measure a fuzzy event. This was first given
by Li and Liu in their work [23]. This is a new theory that deals with fuzzy phenomena.
Fuzzy random theory and random fuzzy theory can be seen as an extensions of credibility
theory. A fuzzy random variable can be seen as a function from a probability space to the
set of fuzzy variables, and a random fuzzy variable is a function from a credibility space
to the set of random variables [25]. In our actual research, we will use fuzzy differential
equations, that were firstly proposed by Liu [24]. This is a type of differential equation,
driven by a Liu process, just like a stochastic process is described by a Brownian motion.

In the case when fuzziness and randomness simultaneously appear in a system, we will
talk about hybrid process. In this sense, we have the concept of fuzzy random variable
was introduced by Kwakernaak ([19], [20]). A random variable is a random variable
that takes fuzzy variable values. More generally, hybrid variable was proposed by Liu
[25] to describe the phenomena with fuzziness and randomness. Based on the hybrid
process, we will work with differential equations characterized by Wiener-Liu process.
This can computed using Itô-Liu formula [32]. In some situations, there exist many
Brownian motion (Wiener process) and Liu process in a system, therefore, we can take
into consideration also multi-dimensional Itô-Liu formula.

In this paper, we restrict our attention to stochastic fractional Hamiltonian systems
characterized by Wiener processes and assume that the space of admissible curves in
configuration space is of class C1. Random effects appear in the balance of momentum
equations, as white noise, that is why we may consider randomly perturbed mechanical
systems. It should be mentioned that the ideas in this paper can be readily extended to
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stochastic Hamiltonian systems [26] driven by more general semimartingales, but for the
sake of clarity we restrict to Wiener processes.

The paper is organized as follows. In Section 2 we present generalization of Riemann-
Liouville fractional integral, Wiener process, and we have defined the generalized fractional
stochastic equations. To get to a hybrid process, we have defined a generalized Liu pro-
cess and the generalization of fractional fuzzy equation. The mixture between generalized
Wiener process and generalized Liu process results as the generalization of hybrid frac-
tional differential equations. In the third section we used the notion presented in Section 2
for defining the generalized fractional hybrid HP equations. We have defined the general-
ized fractional Riemann-Liouville, respective Itô, respective Liu integrals and in Theorem
1 we gave generalized fractional hybrid HP equations. We have also defined generalized
fractional hybrid Hamiltonian equations. The first order Euler scheme is presented and
implemented for particular parameters.

2 GENERALIZED FRACTIONAL HYBRID EQUA-

TIONS

Let f : R → R be an integrable function, α : R → R a C1 function, ρ ∈ R, ρ > 0.
A Riemann-Liouville generalized fractional integral [12] is defined by

t0I
α
t f(t) =

∫ t

t0

1

Γ(α(s− t))
f(s)(t− s)α(s−t)−1e−ρ(s−t)ds, (1)

and

Γ1(α(s− t)) = Γ(α(z))|z=s−t, (2)

and Γ(α(z)) is Euler Gamma function given by

Γ(α(z)) =

∫ ∞

0

(s− t)α(z)−1e−(s−t)dt. (3)

If α(z) = a = const, 0 < a ≤ 1, ρ = 0, from (1), results that

t0I
a
t f(t) =

1

Γ(a)

∫ t

t0

f(s)(t− s)a−1ds. (4)

Formula (4) is the fractional Riemann-Liouville integral, [15].
Generalized fractional Riemann-Liouville is a mixture between a fractal action used

in physical theory and discount action with rate ρ, [12].
In the relations (1) and (4), s is called intrinsic time and t is called observed time,

t 6= s.

From (1), results that

t0I
α
t f(t) =

∫ t

t0

f(s)gαt (s)ds, (5)

where

gαt (s) =
1

Γ1(α(s− t))
e(α(s−t)−1)ln|t−s|−ρ(s−t), t 6= 0. (6)
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Let (Ω,F, Pr) be a probabilistic space characterized by the usual conditions, and
(W (t))t∈R a 1-dimensional Wiener process.

It is called a generalized fractional Wiener process, the process

Jα(t) =

∫ t

t0

gαt (s)dW (s), t 6= s, (7)

where gαt is the function given in (6).
If x(t) = x(t, ω) is a stochastic n-dimensional process and a : R × R

n → R
n, b :

R× R
n → R

n, are deterministic functions, we will denote by

t0I
α
t a(t, x(t)) =

∫ t

t0
a(s, x(s))gαt (s)ds,

t0J
β
t b(t, x(t)) =

∫ t

t0
b(s, x(s))gβt (s)dW (s),

(8)

where α : R → R, β : R → R, C1 functions, the generalized fractional Riemann-Liouville
integral, respectively generalized fractional Itô integral.

We call generalized fractional stochastic differential equation, the functional Volterra
type equation given by

x(t) = x(t0) +

∫ t

t0

a(s, x(s))gαt (s)ds+

∫ t

t0

b(s, x(s))gβt (s)dW (s). (9)

Using the notations given (8), it results that

x(t) = x(t0) +t0 I
α
t a(t, x(t)) +t0 J

β
t b(t, x(t)). (10)

The equation (10) can be written formally in the following way

dx = a(s, x(s))gαt (s)ds+ b(s, x(s))gβt (s)dW (s). (11)

Let us consider a(t, x(t)) = µ(t)x(t), b(t, x(t)) = σ(t)x(t), where µ : R → R, σ : R →
R, x : R → R and α(z) = α1, β(z) =

1+α1

2
. Then equation (9) becomes

x(t) = x(t0) +
1

Γ(α1)

∫ t

t0

µ(s)x(s)

(t− s)1−α1

ds+
1

Γ(1+α1

2
)

∫ t

t0

σ(s)x(s)

(t− s)(1−α1)/2
ds. (12)

The equation (12) is called fractional differential equations that governs the stock model
(Black-Scholes), ([4], [10], [24], [27], [29]).

Let (Θ,P, Cr) be the credibility space with the usual conditions and (Lt)t∈R an 1-
dimensional Liu process [24].

We call a generalized Liu process, the following process

Kα(t) =

∫ t

t0

gαt (s)dL(s), t 6= s. (13)

If x(t) = x(t, θ) is an n-dimensional fuzzy process and a1 : R×R
n → R

n, b1 : R×R
n →

R
n, are deterministic functions, we will denote by

t0H
α
t a1(t, x(t)) =

∫ t

t0
a1(s, x(s))g

α
t (s)d(s),

t0L
β
t b1(t, x(t)) =

∫ t

t0
b1(s, x(s))g

β
t (s)dL(s),

(14)
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where α : R → R, β : R → R are C1 functions, and gαt , g
β
t are given by (6), the generalized

Riemann-Liouville integral, respectively the generalized Liu integral.
We call generalized fractional fuzzy differential equation, the functional Volterra type

equation given by

x(t) = x(t0) +
∫ t

t0
a1(s, x(s))g

α
t (s)ds+

∫ t

t0
b1(s, x(s))g

β
t (s)dL(s)

= x(t0) +t0 H
α
t a1(t, x(t)) +t0 L

β
t b1(t, x(t)).

(15)

Equation (15) can be written formally as

dx = a1(s, x(s))g
α
t (s)ds+ b1(s, x(s))g

β
t (s)dL(s). (16)

If a1(t, x(t)) = µ(t)x(t), b1(t, x(t)) = σ(t)x(t), µ : R → R, σ : R → R, x : R →
R, α(z) = 1, β(z) = β1, from (10) results that

x(t) = x(t0) +

∫ t

t0

µ(s)x(s)ds+
1

Γ(β1)

∫ t

t0

σ(s)x(s)

(t− s)1−β1

dL(s). (17)

The equation (17) is called fuzzy equation of a stock model [29].
Let (Θ,P, Cr) × (Ω,F, Pr) be the chance space [24], with the usual conditions, and

(Wt)t∈R an 1-dimensional Wiener process and (Lt)t∈R an 1-dimensional Liu process. Let
x(t) = x(t, ω, θ) an n-dimensional hybrid process and a2 : R×R

n → R
n, b2 : R×R

n → R
n,

c2 : R× R
n → R

n, deterministic functions.
It is called a generalized fractional hybrid differential equation, the functional Volterra

type equation given by

x(t) = x(t0) +
∫ t

t0
a2(s, x(s))g

α
t (s)ds+

∫ t

t0
b2(s, x(s))g

β
t (s)dW (s)

+
∫ t

t0
c2(s, x(s))g

γ
t (s)dL(s),

(18)

where α : R → [0, 1], β : R → R, γ : R → R, are C1 functions.
With the notations given in (8) and (13), equation (18) can be written as

x(t) = x(t0) +t0 I
α
t a2(t, x(t)) +t0 J

β
t b2(t, x(t)) +t0 K

γ
t c2(t, x(t)). (19)

Formally, the equation (18) can be expressed as

dx = a2(s, x(s))g
α
t (s)ds+ b2(s, x(s))g

β
t (s)dW (s) + c2(s, x(s))g

γ
t (s)dL(s). (20)

3 GENERALIZED FRACTIONAL HYBRID HP EQUA-

TION

Let Q be the paracompact configuration manifold and J1(R, Q) = R × TQ, T ∗Q
the associated bundle of Q. Let (Ω,P, P ) be a probability space and (W (t),Ft)t∈[a,b],
where [a, b] ⊂ R, W (t) is a real-valued Wiener process and Ft is the filtration generated
by the Wiener process [5]. The HP principle unifies the Hamiltonian and Lagrangian
description of a mechanical system. The classical HP integral action will be perturbed
using deterministic function γ : Q → R.
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Let L : J1(R, Q) → R be a C2 function, called Lagrangian for the mechanical system
and γ1, γ2 : Q → R two functions of class C1. It is called generalized fractional action of L,
with respect to the process (W (t))t∈R and (L(t))t∈R, the function Aα : Θ×Ω×C(PQ) → R

defined by

Aα(t, q, v, p) =
∫ b

a
(L(s, q(s), v(s))+ < p(s), dq

ds
− v(s) >)gαt ds+

∫ b

a
γ1(q(s))g

α
t dW (s)

+
∫ b

a
γ2(q(s))g

α
t dL(s).

(21)
The first integral in (21) is called generalized Riemann-Liouville fractional integral, the

second one is generalized fractional Itô integral and the third one is generalized fractional
Liu integral. Moreover,

C(PQ) = {(t, q, v, p) ∈ C0([a, b], J1(R, Q)), q ∈ C1([a, b],Rn), q(a) = qa, q(b) = qb},

[a, b] ⊂ R, qa, qb ∈ R
n.

We make the following notations q(t, θ, ω) = q(t), v(t, θ, ω) = v(t), p(t, θ, ω) = p(t).
Let c = (q, v, p) ∈ C([a, b], qa, qb) be curves on J1(R, Q) between qa and qb, and B =

(q, v, p, δq, δv, δp) ∈ C0([a, b], J1(R, Q)× J1(R, Q)) such that δq(a) = δq(b) = 0, and q, δq

are of class C1.

Let (q, v, p)(·, ǫ) ∈ C(J1(R, Q)) be a family of curves on J1(R, Q) such that they are
differentiable with respect to ǫ. The differential of the action Aα is defined by

dAα(δq, δv, δp) =
∂

∂ǫ
A

α(ω, θ, q(t, ǫ), v(t, ǫ), p(t, ǫ))
∣

∣

∣

ǫ=0
,

where
δq(t) = ∂

∂ǫ
q(t, ǫ)

∣

∣

∣

ǫ=0
, δq(a) = δq(b),

δv(t) = ∂
∂ǫ
v(t, ǫ)

∣

∣

∣

ǫ=0
, δp(t) = ∂

∂ǫ
p(t, ǫ)

∣

∣

∣

ǫ=0
.

(22)

Using (21), by direct calculus, we get the following theorem.

Theorem 1 Let L : J1(R, Q) → R be a Lagrangian C2 function with respect to t, q

and v and the first order derivatives are Lipschitz functions with respect to t, q, v. Let
γ1, γ2 : Q → R be functions of class C2, and with the first order derivatives Lipschitz
functions. Then, the curve c = (q, v, p) ∈ C(J1(R, Q) × R

n) satisfies the generalized
fractional hybrid HP equations a.s.

dqi = vids,

dpi = ( ∂L
∂qi

− pih(s, t))ds+
∂γ1(q)
∂qi

dW (s) + ∂γ2(q)
∂qi

dL(s),

pi =
∂L
∂vi

, i = 1, ..., n, t 6= s,

(23)

where

h(s, t) =
d(α(s− t))

ds
ln|t− s|+ α(s− t)− 1

s− t
+ ρ− 1

Γ1(α(s− t))

dΓ1(α(s− t))

ds
.

✷
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From (23) we have:

(i) If α(z) = 1, ρ = 0, then

dqi = vids,

dpi =
∂L
∂qi

ds+ ∂γ1(q)
∂qi

dW (s) + ∂γ2(q)
∂qi

dL(s),

pi =
∂L
∂vi

, i = 1, ..., n, t 6= s;

(24)

(ii) If α(z) = a = const, 0 < a ≤ 1, ρ = 0, then

dqi = vids,

dpi = ( ∂L
∂qi

− pi
a−1
s−t

)ds+ ∂γ1(q)
∂qi

dW (s) + ∂γ2(q)
∂qi

dL(s),

pi =
∂L
∂vi

, , i = 1, ..., n, t 6= s.

(25)

For γ2 = 0, we get the fractional stochastic HP equations [9].

If L : M → R is hyperregular, that means det
(

∂2
L

∂vi∂vj

)

6= 0, from (23) results the

following proposition.

Proposition 2 (Generalized fractional hybrid Hamiltonian equations)
The equations (23) are equivalent with the equations

dqi = ∂H
∂pi

ds,

dpi = (−∂H
∂qi

− pih(s, t))ds+
∂γ1(q)
∂qi

dW (s) + ∂γ2(q)
∂qi

dL(s),

(26)

where
H = piv

i − L(t, q, v),

h(s, t) =
dα(s− t)

ds
ln|t− s|+ α(s− t)− 1

s− t
+ ρ− 1

Γ1(α(s− t))

dΓ1(α(s− t))

ds

✷

The equations (26) are called generalized fractional hybrid Langevin equations and can
be written to describe the movement equations for relativistic particles with white noise
and Liu process.

Proposition 3 If L = 1
2
gijv

ivj, where gij are the components of a metric on a manifold
Q, then the equations (23) take the form

dqi = vids,

dvi = −(Γi
jkv

jvk − h(s, t)vi)ds+ gij
∂γ1(q)
∂qj

dW (s) + gij
∂γ2(q)
∂qj

dL(s), i, j = 1, ..., n,
(27)

where Γi
jk are Cristoffel coefficients associated to the considered metric and h(s, t) is given

above.
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The equations (26) become

dqi = gijpjds,

dpi = (1
2
∂gkl
∂qi

pkpl − h(s, t)pi)ds+
∂γ1(q)
∂qi

dW (s) + ∂γ2(q)
∂qi

dL(s), i = 1, ..., n.
(28)

✷

Proposition 4 Let L : J1(R,R) → R be given by

L(q, v) =
1

2
v2 − V (q),

and V, γ1, γ2 : R → R. The equations (28) are given by

dq = pds,

dp = (−∂V
∂q

− h(s, t)p)ds+ ∂γ1(q)
∂q

dW (s) + ∂γ2(q)
∂q

dL(s).
(29)

✷

If V (q) = cos(q), γ1(q) = α1 sin(q) and γ2(q) =
1
2
α2q

2, the first order Euler scheme for
the equations (29) is given by

q(n+ 1) = q(n) +Kp(n),

p(n+ 1) = p(n) +K(sin(q(n))− h(nK, t)) + α1 cos(q(n))G(n) + α2q(n)L(n, z2),
(30)

where n = 0, ..., N − 1, K = T
N
, G(n) and L(n, z) are the simulations of Wiener and Liu

processes and

h(nK, t) = α̇(nK, t)ln|t− nK|+ α(nK − t)− 1

nK − t
+ ρ− 1

Γ1(α(nK − t))
Γ̇1(α(nK − t)),

with

α̇(s, t) =
dα(s− t)

ds
, Γ̇1(α(s, t)) =

dΓ1(α(s− t))

ds
,

and
G(n) = random[normald[0,

√
h](1),

L(n, z) =
2

1 + eπ|z|/(hσ
√
6S2(n))

, S2(n) =

n−1
∑

k=0

(b(α2q(k), z(k))).

Using Maple 13, for the values of the parameters, α = 0.6, t = 0.8, α1 = 0.1, α2 =
0.3, z2 = 15., we get the following orbits.

10 20 30 40 50 60 70 80 90 100
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0.024

0.026

0.028

0.030

10 20 30 40 50 60 70 80 90 100

K0.02

0.00
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0.04

0.06

0.08

0.022 0.024 0.026 0.028 0.030

K0.02

0.00

0.02

0.04

0.06

0.08

Fig1: (n, q(n, z2, ω)) Fig2: (n, p(n, z2, ω)) Fig3: (q(n, z2, ω), p(n, z2, ω))
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If we are in the classical case, with α = 1, then the above graphics become

10 20 30 40 50 60 70 80 90 100

0.0205

0.0210

0.0215

0.0220

0.0225

10 20 30 40 50 60 70 80 90 100

0.015

0.020

0.025

0.030

0.035

0.040

0.0205 0.0210 0.0215 0.0220 0.0225

0.015

0.020

0.025

0.030

0.035

0.040

Fig4: (n, q(n, z2, ω)) Fig5: (n, p(n, z2, ω)) Fig6: (q(n, z2, ω), p(n, z2, ω))

For α = 0.6, t = 0.8, α1 = 0., α2 = 0.3, z2 = 15., we get the orbits given in figures 7,
8 and 9, and if α = 1, we get the figures 10, 11 and 12.

10 20 30 40 50 60 70 80 90 100
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0.06
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0.08

10 20 30 40 50 60 70 80 90 100
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0.2
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0.4

0.03 0.04 0.05 0.06 0.07 0.08

0.1

0.2

0.3

0.4

Fig7: (n, q(n, z2)) Fig8: (n, p(n, z2)) Fig9: (q(n, z2), p(n, z2))
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Fig10: (n, q(n, z2)) Fig11: (n, p(n, z2)) Fig12: (q(n, z2), p(n, z2))

The orbits for (n, q(n, ω)), (n, p(n, ω)), (q(n, ω), p(n, ω)), for the values of the param-
eters α = 0.6, t = 0.8, α1 = 0.1, α2 = 0, z2 = 15.,are represented in figures 13, 14 and
15.
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Fig13: (n, q(n, ω)) Fig14: (n, p(n, ω)) Fig15: (q(n, ω), p(n, ω))
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For α = 1, the figures 13, 14 and 15 become
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Fig16: (n, q(n, ω)) Fig17: (n, p(n, ω)) Fig18: (q(n, ω), p(n, ω))

4 CONCLUSIONS

In this paper we present generalization of fractional Riemann-Liouville integral, Wiener
process, and we have defined the generalized fractional stochastic, Liu and hybrid equa-
tions. The mixture between generalized fractional Wiener process and generalized frac-
tional Liu process results as the generalization of fractional hybrid differential equations.
We defined generalized fractional hybrid HP equations and generalized fractional hybrid
Hamiltonian equations. The first order Euler scheme is presented and implemented for
particular parameters. In the future work, we will consider other problems that deal with
stochastic fractional HP principle.
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