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Abstract

A fall k-coloring of a graph G is a proper k-coloring of G such that each vertex
of G sees all k colors on its closed neighborhood. We denote Fall(G) the set
of all positive integers k for which G has a fall k-coloring. In this paper, we
study fall colorings of lexicographic product of graphs and categorical product
of graphs and answer a question of [3] about fall colorings of categorical product
of complete graphs. Then, we study fall colorings of union of graphs. Then, we
prove that fall k-colorings of a graph can be reduced into proper k-colorings of
graphs in a specified set. Then, we characterize fall colorings of Mycielskian of
graphs. Finally, we prove that for each bipartite graph G, Fall(Gc) ⊆ { χ(Gc) }
and it is polynomial time to decision whether or not Fall(Gc) = { χ(Gc) } .
Keywords: fall Coloring, lexicographic product, categorical product.
Subject classification: 05C

1 Introduction

All graphs considered in this paper are finite and simple (undirected, loopless and
without multiple edges). Let G = (V,E) be a graph and k ∈ N and [k] := {i| i ∈
N, 1 ≤ i ≤ k}. A k-coloring (proper k-coloring) of G is a function f : V → [k] such
that for each 1 ≤ i ≤ k, f−1(i) is an independent set. We say that G is k-colorable
whenever G admits a k-coloring f , in this case, we denote f−1(i) by Vi and call each
1 ≤ i ≤ k, a color (of f) and each Vi, a color class (of f). The minimum integer k
for which G has a k-coloring, is called the chromatic number of G and is denoted by
χ(G).

Let G be a graph, f be a k-coloring of G and v be a vertex of G. The vertex v is
called colorful ( or color-dominating or b-dominating) if each color 1 ≤ i ≤ k appears
on the closed neighborhood of v ( f(N [v]) = [k] ). The k-coloring f is said to be a
fall k-coloring (of G) if each vertex of G is colorful. There are graphs G for which
G has no fall k-coloring for any positive integer k. For example, C5 ( a cycle with
5 vertices) and graphs with at least one edge and one isolated vertex, have not any
fall k-colorings for any positive integer k. The notation Fall(G) stands for the set of
all positive integers k for which G has a fall k-coloring. Whenever Fall(G) 6= ∅, we
call min(Fall(G)) and max(Fall(G)), fall chromatic number of G and fall achromatic
number of G and denote them by χf (G) and ψf (G), respectively. The terminology
fall coloring was firstly introduced in 2000 in [3] and has received attention recently,
see [1],[2],[3],[5].
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2 Fall colorings of lexicographic product of graphs

Let G and H be graphs. The lexicographic product of G and H is defined the
graph with vertex set V (G) × V (H) and edge set { {(x1, y1), (x2, y2)} | x1, x2 ∈
V (G) and y1, y2 ∈ V (H) and [ ({x1, x2} ∈ E(G)) or (x1 = x2, {y1, y2} ∈ E(H)) ] }.
For each x ∈ V (G), the induced subgraph of G[H] on {x}×V (H) is denoted by Hx.

Note that G[H] and H[G] are not necessarily isomorphic. For example, let
G := K2 and H be the complement of G. G[H] has 4 edges and H[G] has 2 edges
and therefore, they are not isomorphic. But lexicographic product of graphs is
associative up to isomorphism ( For arbitrary graphs G1, G2 and G3, (G1[G2])[G3]
and G1[G2[G3]] are isomorphic.).

Theorem 1. Let G and H be graphs and k ∈ Fall(G[H]) and f be a fall k-coloring
of G[H]. Then, for each x ∈ V (G), Sx := f(V (Hx)) forms a fall |Sx|-coloring of
Hx.

Proof. Let x ∈ V (G) and (x, y) be an arbitrary vertex of Hx and its color be α.
Then, for each β ∈ Sx \ {α}, there exists a vertex (a, b) of G[H] adjacent with (x, y)
which is colored β. Obviously a = x, otherwise, since β ∈ Sx, there exists a vertex
(x, z) ∈ V (Hx) colored β. (x, y) is adjacent with (a, b) and x 6= a, so {x, a} ∈ E(G)
and therefore, (x, z) and (a, b) are adjacent in G[H] and both of them are colored
β, which is a contradiction. Therefore, a = x and (a, b) ∈ V (Hx). Hence, Sx forms
a fall |Sx|-coloring of Hx. �

Corollary 1. Let G and H be graphs. Then, Fall(G[H]) 6= ∅ ⇒ Fall(H) 6= ∅, or
equivalently, Fall(H) = ∅ ⇒ Fall(G[H]) = ∅.

Corollary 2. Let G and H be graphs such that Fall(G[H]) 6= ∅. Then, Fall(H) 6= ∅
and for each fall k-coloring f of G[H] and each x ∈ V (G), χf (H) ≤ |f(V (Hx))| ≤
ψf (H).

There are pairs of graphs (G,H) for which Fall(G) = ∅ but Fall(G[H]) 6= ∅. For
example, Fall(C5) = ∅ but C5[K2] has a fall 5-coloring. First let’s label the vertices
of C5[K2] lexicographically: 1 := (1, 1), 2 := (1, 2), 3 := (2, 1), . . . , 10 := (5, 2).
Here is a fall 5-coloring f of C5[K2]: f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 4, f(5) =
1, f(6) = 5, f(7) = 2, f(8) = 4, f(9) = 5, f(10) = 3. Also, there are pairs of
graphs (G,H) for which Fall(G) = ∅ and Fall(H) 6= ∅ and Fall(G[H]) = ∅. For
example, Fall(C5) = ∅ and Fall(K1) 6= ∅ and Fall(C5[K1]) = Fall(C5) = ∅. The next
theorem shows that if Fall(G) 6= ∅ and Fall(H) 6= ∅, then, Fall(G[H]) 6= ∅.

Theorem 2. Let G and H be graphs for which Fall(G) 6= ∅ and Fall(H) 6= ∅.
Then, {

∑s
i=1 ki | s ∈ Fall(G), ∀1 ≤ i ≤ s : ki ∈ Fall(H) } ⊆ Fall(G[H]).

Proof. Let s ∈ Fall(G) and g : V (G) → [s] be a fall s-coloring of G and for
each 1 ≤ i ≤ s, ki ∈ Fall(H) and hi be a fall ki-coloring of H. Let’s color each
vertex (x, y) of G[H] by color (g(x), hg(x)(y)). Indeed, let’s consider the function
f : V (G[H]) → S := { (g(x), hg(x)(y)) | (x, y) ∈ V (G) × V (H) } which assigns to
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each (x, y) of G[H], (g(x), hg(x)(y)). For each adjacent vertices (x, y) and (a, b) in
G[H], {x, a} ∈ E(G) or (x = a and {y, b} ∈ E(H)). So, g(x) 6= g(a) or (g(x) = g(a)
and hg(x)(y) 6= hg(a)(b)). Therefore, (g(x), hg(x)(y)) 6= (g(a), hg(a)(b)). This shows
that f is a (

∑s
i=1 ki)-coloring of G[H] such that uses exactly

∑s
i=1 ki colors. Now

let’s show that f is a fall (
∑s

i=1 ki)-coloring of G[H]. For each (x, y) ∈ V (G[H]) and
each (α, β) ∈ S \ { (g(x), hg(x)(y)) }, there is a vertex (u, v) of G[H] colored (α, β),
or equivalently, (g(u), hg(u)(v)) = (α, β). Now, there are two cases:

Case I) The case that g(x) = g(u). In this case, hg(x) = hg(u) and hg(x)(y) 6=
hg(u)(v). Since hg(x) is a fall kg(x)-coloring of H, there exists a vertex z ∈ V (H) such
that {z, y} ∈ E(H) and hg(x)(z) = hg(u)(v). The vertex (x, z) of G[H] is adjacent
with (x, y) and its color is f((x, z)) = (g(x), hg(x)(z)) = (g(u), hg(u)(v)) = (α, β).

Case II) The case that g(x) 6= g(u). Since g is a fall s-coloring of G, there exists
a vertex z ∈ V (G) such that {x, z} ∈ E(G) and g(z) = g(u). So, hg(u)(v) = hg(z)(v).
The vertex (z, v) is adjacent with (x, y) in G[H] and f((z, v)) = (g(z), hg(z)(v)) =
(g(u), hg(u)(v)) = (α, β).

Hence, f is a fall (
∑s

i=1 ki)-coloring of G[H]. Therefore, {
∑s

i=1 ki | s ∈ Fall(G),
∀1 ≤ i ≤ s: ki ∈ Fall(H) } ⊆ Fall(G[H]). �

Corollary 3. Let G and H be graphs for which Fall(G) 6= ∅ and Fall(H) 6= ∅.
Then, χf (G[H]) ≤ χf (G)χf (H) ≤ ψf (G)ψf (H) ≤ ψf (G[H]).

χf (G[H]) and χf (G)χf (H) are not necessarily equal. For example, χf (C9) = 3
and χf (K2) = 2. Therefore, χf (C9)χf (K2) = 6, but χf (C9[K2]) ≤ 5, first let’s label
the vertices of C9[K2] lexicographically: 1:=(1,1), 2:=(1,2), 3:=(2,1), ..., 18:=(9,2).
Here is a fall 5-coloring f of C9[K2]: f(1) = 1, f(2) = 4, f(3) = 2, f(4) = 3, f(5) =
5, f(6) = 1, f(7) = 4, f(8) = 2, f(9) = 3, f(10) = 1, f(11) = 5, f(12) =
2, f(13) = 4, f(14) = 3, f(15) = 1, f(16) = 2, f(17) = 5, f(18) = 3. Also,
ψf (G)ψf (H) and ψf (G[H]) are not necessarily equal. For example, ψf (C8) = 2
and ψf (K2) = 2 and therefore, ψf (C8)ψf (K2) = 4. But ψf (C8[K2]) ≥ 5. First
let’s label the vertices of C8[K2] lexicographically: 1 := (1, 1), 2 := (1, 2), 3 :=
(2, 1), . . . , 16 := (8, 2). Here is a fall 5-coloring f of C8[K2]: f(1) = 1, f(2) =
2, f(3) = 3, f(4) = 4, f(5) = 5, f(6) = 1, f(7) = 2, f(8) = 3, f(9) = 4, f(10) =
1, f(11) = 5, f(12) = 2, f(13) = 3, f(14) = 1, f(15) = 5, f(16) = 4.

Theorem 2 says that if G and H are graphs for which Fall(G) 6= ∅ and Fall(H) 6=
∅, Then, {

∑s
i=1 ki | s ∈ Fall(G), ∀1 ≤ i ≤ s : ki ∈ Fall(H) } ⊆ Fall(G[H]).

Since 5 ∈ Fall(C9[K2]) and 5 /∈ {
∑s

i=1 ki | s ∈ Fall(C9), ∀ 1 ≤ i ≤ s: ki ∈
Fall(K2) }, Fall(G[H]) and {

∑s
i=1 ki | s ∈ Fall(G), ∀ 1 ≤ i ≤ s : ki ∈ Fall(H)} are

not necessarily equal in this theorem.

Theorem 3. There are pairs of graphs (G,H) for which Fall(G) 6= ∅ and Fall(H) 6=
∅ and the following strictly inequality holds.

χf (G[H]) < χf (G)χf (H) < ψf (G)ψf (H) < ψf (G[H]).

Proof. Set G := C6
∨
C8

∨
C9 ( the join of C6 and C8 and C9) and H := K2.

Since (C6
∨
C8

∨
C9)[K2] and ( C6[K2] )

∨
( C8[K2] )

∨
( C9[K2] ) are isomorphic,

χf ((C6
∨
C8

∨
C9)[K2]) = χf (C6[K2]) + χf (C8[K2]) + χf (C9[K2]) ≤ 4 + 4 + 5 = 13

and ψf ((C6
∨
C8

∨
C9)[K2]) = ψf (C6[K2])+ψf (C8[K2])+ψf (C9[K2]) ≥ 6+5+6 =
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17 . Also, χf (C6
∨
C8

∨
C9) = 7 and ψf (C6

∨
C8

∨
C9) = 8 and χf (K2) = ψf (K2) =

2, as desired. �

Theorem 4. For each ε > 0, There exists a pair of graphs (S, T ) for which
min{ψf (S[T ])−ψf (S)ψf (T ), ψf (S)ψf (T )−χf (S)χf (T ), χf (S)χf (T )−χf (S[T ])} ≥
ε.

Proof. With no loss of generality, we can assume that ε is a natural number.
Set G := C6

∨
C8

∨
C9 and S := Kε[G] and T := K2. Since S[T ] and Kε[G[T ]]

are isomorphic and χf (Kε[G[T ]]) = εχf (G[T ]) and ψf (Kε[G[T ]]) = εψf (G[T ]), the
theorem implies. �

One can easily observe that if G and H are graphs such that Fall(G[H]) 6= ∅,
then, χf (G[H]) ≥ ω(G)χf (H). The next clear proposition introduces a sufficient
condition for equality.

Proposition 1. Let G and H be graphs such that Fall(G) 6= ∅ and Fall(H) 6= ∅
and χf (G) = ω(G). Then, χf (G[H]) = χf (G)χf (H) = ω(G)χf (H).

Corollary 4. If G is a tree or a complete graph or C2k(for some k ∈ N \ {1}) and
H is a graph such that Fall(H) 6= ∅, then, χf (G[H]) = χf (G)χf (H) = ω(G)χf (H).

Corollary 1 says that in every fall k-coloring of G[H] and each x ∈ V (G), the
number of colors appear on V (Hx) is at most ψf (H). Hence, ψf (G[H]) ≤ (δ(G) +
1)ψf (H). The following clear proposition introduces a condition for equality.

Proposition 2. Let G and H be graphs for which Fall(G) 6= ∅ and Fall(H) 6= ∅
and ψf (G) = δ(G) + 1. Then, ψf (G[H]) = ψf (G)ψf (H) = (δ(G) + 1)ψf (H).

Corollary 5. If G is a tree or a complete graph or C3k(for some k ∈ N) and H is
a graph such that Fall(H) 6= ∅, then, ψf (G[H]) = ψf (G)ψf (H) = (δ(G) + 1)ψf (H).

3 Type-II graph homomorphisms and lexicographic prod-

uct of graphs

Now we study a type of graph homomorphisms that is related to fall colorings of
graphs.

Definition 1. Let G and H be graphs. A function f : V (G) → V (H) is called a
type-II graph homomorphism from G to H if f satisfies the following two conditions.

1) {u, v} ∈ E(G) ⇒ {f(u), f(v)} ∈ E(H).
2) {u1, v1} ∈ E(H) ⇒ ∀v ∈ f−1(v1) : ∃u ∈ f−1(u1) s.t {u, v} ∈ E(G). ♠

Type-II graph homomorphisms introduced by Laskar and Lyle in 2009 in [5].
They showed that for any graph G, k ∈ Fall(G) iff there exists a type-II graph
homomorphism from G to Kk. Note that every type-II graph homomorphism from
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a graph G to a complete graph, is surjective. If f1 is a type-II graph homomorphism
from G to H and f2 is a type-II graph homomorphism from H to I, then, f2of1 is
a type-II graph homomorphism from G to I. Also, if there exists a type-II graph
homomorphism from G to H and k ∈ Fall(H), then, k ∈ Fall(G). If there exists a
type-II graph homomorphism from G1 to G2 and a type-II graph homomorphism
from H1 to H2, then, there exists a type-II graph homomorphism from G1�H1 to
G2�H2. We prove a similar theorem for lexicographic product of graphs.

Theorem 5. Let G1, G2, H1 and H2 be graphs and f1 be a type-II graph homo-
morphism from G1 to G2 and f2 be a surjective type-II graph homomorphism from
H1 to H2. Then, there exists a type-II graph homomorphism f3 from G1[H1] to
G2[H2].

Proof. Let f3 : V (G1[H1]) → V (G2[H2]) be defined the function which assigns to
each (g, h) ∈ V (G1[H1]), f3((g, h)) = (f1(g), f2(h)). For each { (x1, y1), (x2, y2) } ∈
E(G1[H1]), {x1, x2} ∈ E(G1) or (x1 = x2 and {y1, y2} ∈ E(H1)). Therefore,
{ f1(x1), f1(x2) } ∈ E(G2) or (f1(x1) = f1(x2) and { f2(y1), f2(y2) } ∈ E(H2)).
Hence, { (f1(x1), f2(y1)), (f1(x2), f2(y2)) } ∈ E(G2[H2]) and consequently, the prop-
erty 1 holds. Now for each { (α1, β1), (α2, β2) } ∈ E(G2[H2]) and each (u1, v1) ∈
f−1
3 ((α1, β1)), there are two cases:

Case I) The case that {α1, α2} ∈ E(G2). Since f1 is a type-II graph homomor-
phism and u1 ∈ f−1

1 (α1), there exists u2 ∈ f−1
1 (α2) such that {u1, u2} ∈ E(G1).

Surjectivity of f2 implies that there exists v2 ∈ f−1
2 (β2). Therefore, (u2, v2) ∈

f−1
3 ((α2, β2)) and { (u1, v1), (u2, v2) } ∈ E(G1[H1]) and accordingly, the property 2
holds.

Case II) The case that α1 = α2 and {β1, β2} ∈ E(H2). In this case, u1 ∈
f−1
1 (α2) and since f2 is a type-II graph homomorphism and v1 ∈ f−1

2 (β1), there
exists v2 ∈ f−1

2 (β2) such that {v1, v2} ∈ E(H1). Hence, (u1, v2) ∈ f−1
3 ((α2, β2)) and

{ (u1, v1), (u1, v2) } ∈ E(G1[H1]) and therefore, the property 2 holds. Thus, f3 is a
type-II graph homomorphism. �

Corollary 6. If G and H are graphs such that r1 ∈ Fall(G) and r2 ∈ Fall(H), then
χf (G[H]) ≤ χf (G[Kr2 ]) ≤ χf (Kr1 [Kr2 ]) ≤ ψf (Kr1 [Kr2 ]) ≤ ψf (G[Kr2 ]) ≤

ψf (G[H]).

4 Fall colorings of categorical product of graphs

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. The graph G1 × G2 := (V1 ×
V2, { { (x1, y1), (x2, y2) } | {x1, x2} ∈ E(G1) and {y1, y2} ∈ E(G2) }) is called the
categorical product of G and H.

Categorical product of graphs is commutative and associative up to isomorphism
(For each arbitrary graphs G1, G2 and G3, G1 ×G2 and G2 ×G1 are isomorphic,
also, (G1 × G2) × G3 and G1 × (G2 × G3) are isomorphic.). For arbitrary graphs
G and H, if E(G) = ∅ or E(H) = ∅, then, E(G × H) = ∅ and therefore, G × H
has only a fall 1-coloring and Fall(G × H) = {1}. Thus, hereafter, let’s focus on
nonempty edge set graphs, unless stated otherwise. Firstly, note that Fall(G :=
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( {a, b, c, d} , { {a, b}, {b, c}, {c, a}, {d, a} } ) = ∅ and Fall(G × G) = ∅. Secondly,
note that Fall(C5 := ( {0, 1, 2, 3, 4} , { {0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 0} } )) = ∅,
but the function f : V (C5 × C5) → [5] which assigns to each (i, j) of V (C5 × C5),
f((i, j)) :=(the arithmetic residue of i + 2j modulo 5)+1 where the last + is the
natural summation in Z, is a fall 5-coloring of C5 × C5, and therefore, Fall(C5 ×
C5) 6= ∅. The next theorem implies that if Fall(G) 6= ∅ or Fall(H) 6= ∅, then,
Fall(G×H) 6= ∅.

Theorem 6. For each n ∈ N and each arbitrary graphs G1, . . . , Gn,
∀1 ≤ i ≤ n : Fall(Gi) ⊆ Fall(×n

i=1Gi).

Proof. Since categorical product of graphs is commutative and associative up to
isomorphism, it suffices to prove that Fall(G1) ⊆ Fall(G1×G2). If Fall(G1) = ∅, the
theorem holds trivially. For each k ∈ Fall(G1), there exists a fall k-coloring f of G1.
Now, the function g : V (G1 ×G2) → [k] which assigns to each (u, v) ∈ V (G1 ×G2),
g((u, v)) = f(u) is a fall k-coloring of G1 × G2 and therefore, k ∈ Fall(G1 × G2).
Hence, Fall(G1) ⊆ Fall(G1 ×G2). �

Corollary 7. For each n ∈ N and each arbitrary graphs G1, . . . , Gn such that for
each i ∈ [n], Fall(Gi) 6= ∅, the following inequalities hold.

χf (×
n
i=1Gi) ≤ min{ χf (Gi) | i ∈ [n] } ≤ max{ ψf (Gi) | i ∈ [n] } ≤ ψf (×

n
i=1Gi).

Now again type-II graph homomorphisms:

Theorem 7. Let G1, G2, H1 and H2 be graphs and f1 be a type-II graph homo-
morphism from G1 to G2 and f2 be a type-II graph homomorphism from H1 to H2.
Then, there exists a type-II graph homomorphism f3 from G1 ×H1 to G2 ×H2.

Proof. Let f3 : V (G1×H1) → V (G2×H2) be defined the function which assigns to
each (g, h) ∈ V (G1×H1), f3((g, h)) = (f1(g), f2(h)). For each { (x1, y1), (x2, y2) } ∈
E(G1×H1), {x1, x2} ∈ E(G1) and {y1, y2} ∈ E(H1). Therefore, { f1(x1), f1(x2) } ∈
E(G2) and { f2(y1), f2(y2) } ∈ E(H2). Hence, { f3((x1, y1)), f3((x2, y2)) } ∈ E(G2×
H2) and therefore, the property 1 of type-II graph homomorphisms holds. Now for
each { (a, b), (c, d) } ∈ E(G2 ×H2) and each (α, β) ∈ f−1

3 ( (c, d) ), α ∈ f−1
1 (c) and

β ∈ f−1
2 (d). So, there exist x ∈ f−1

1 (a) and y ∈ f−1
2 (b) such that {x, α} ∈ E(G1)

and {y, β} ∈ E(H1), hence, (x, y) ∈ f−1
3 ( (a, b) ) and { (x, y), (α, β) } ∈ E(G1×H1).

So, the property 2 of type-II graph homomorphisms holds, too. Consequently, f3 is
a type-II graph homomorphism.

�

We know that if f is a type-II graph homomorphism from G to H and k ∈
Fall(H), then, k ∈ Fall(G). Also, for each graph G and each natural number k,
k ∈ Fall(G) iff there exists a type-II graph homomorphism from G to Kk. Therefore,
the previous theorem implies the following corollary.

Corollary 8. Let n ∈ N and for each i ∈ [n], Gi be a graph and ki ∈ Fall(Gi).
Then, there exists a type-II graph homomorphism from ×n

i=1Gi to ×n
i=1Kki and
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Fall(×n
i=1Kki) ⊆ Fall(×n

i=1Gi). Also, χf (×
n
i=1Gi) ≤ χf (×

n
i=1Kki) ≤ ψf (×

n
i=1Kki) ≤

ψf (×
n
i=1Gi). These inequalities can easily extend to more inequalities in general. For

example, in the case n = 2, χf (G1 × G2) ≤

{
χf (Kk1 ×G2)
χf (G1 ×Kk2)

≤ χf (Kk1 ×Kk2) ≤

ψf (Kk1 ×Kk2) ≤

{
ψf (Kk1 ×G2)
ψf (G1 ×Kk2)

≤ ψf (G1 ×G2).

Dunbar, et al. in [3] showed that for eachm,n ∈ N\{1}, Fall(Km×Kn) = {m,n}.
They also showed that if n ∈ N \ {1} and for each i ∈ [n], ri ∈ N \ {1}, then,
{r1, ..., rn} ⊆ Fall(×n

i=1Kri). They constructed a fall 6-coloring of K2 × K3 × K4

and asked for conditions for a finite and with more than two elements set S :=
{r1, ..., rn} ⊆ N \ {1} for which S $ Fall(×n

i=1Kri).

Theorem 8. Let n ≥ 3, S := {r1, ..., rn} ⊆ N \ {1}, r1 < r2 < ... < rn and S
contain at least one even integer. Then, S $ Fall(×n

i=1Kri), besides, Fall(×
n
i=1Kri)

contains an integer greater than rn.

Proof. There are five cases.
Case I) The case that r1 = 2. In this case, let t ∈ {r1, ..., rn}\{r1, rn}. Consider

K2 ×Kt ×Krn . Let σ be a disarrangement of [t] ( a permutation σ of [t] such that
for each i ∈ [t], σ(i) 6= i). Obviously, { {(1, i, 1), (1, σ(i), 2), (2, i, 2), (2, σ(i), 1)} | 1 ≤
i ≤ t }

⋃
{ {(x, y, z) | (x, y, z) ∈ K2 ×Kt ×Krn , z = i } | 3 ≤ i ≤ rn } is the set

of color classes of a fall (rn + t− 2)-coloring of K2 ×Kt ×Krn . But rn + t− 2 > rn
and therefore, in this case, Fall(K2 ×Kt×Krn) contains an integer greater than rn.

Case II) The case that 2 < r1 and {r1, ..., rn} contains at least two distinct even
integers such that one of them is rn and the other is rs that s ∈ {1, ..., n − 1}. Let
rj ∈ {r1, ..., rn}\{rs, rn}. Consider Krs ×Krj ×Krn and a disarrangement σ of [rj ].
For each 1 ≤ t ≤ rj, color the vertices (1, t, 1), (1, σ(t), 2), (2, t, 2) and (2, σ(t), 1)
with the color t and color each other vertex (x, y, z) with the color ⌊x−1

2 ⌋(
rjrn
2 ) +

⌊z−1
2 ⌋rj + the color of (x − 2⌊x−1

2 ⌋, y, z − 2⌊z−1
2 ⌋). This is a fall

rsrjrn
4 -coloring of

Krs ×Krj ×Krn . Since 2 < r1,
rsrjrn

4 > max{rs, rj , rn}. Hence, Theorem 6 implies
that Fall(×n

i=1Kri) contains an integer greater than rn.
Case III) The case that 2 < r1 and {r1, ..., rn} contains at least two distinct even

integers such that none of them is rn. Similar to the case II, Fall(×n
i=1Kri) contains

an integer greater than rn.
Case IV) The case that 2 < r1 and {r1, ..., rn} contains exactly one even integer

and rn is even. In this case, consider Krn−2−1 ×Krn−1
×Krn and a disarrangement

σ of [rn−1]. For each 1 ≤ t ≤ rn−1, color the vertices (1, t, 1), (1, σ(t), 2), (2, t, 2) and
(2, σ(t), 1) with the color t and color each other vertex (x, y, z) of Krn−2−1×Krn−1

×
Krn with the color ⌊x−1

2 ⌋( rn−1rn
2 ) + ⌊z−1

2 ⌋rn−1 + the color of (x − 2⌊x−1
2 ⌋, y, z −

2⌊z−1
2 ⌋). Also, color each vertex (rn−2, y, z) of Krn−2

×Krn−1
×Krn with the color

(rn−2−1)rn−1rn
4 +1. Therefore, a fall ( (rn−2−1)rn−1rn

4 +1)-coloring of Krn−2
×Krn−1

×

Krn and also of ×n
i=1Kri yields. But,

(rn−2−1)rn−1rn
4 +1 > rn. Thus, Fall(K2 ×Kt×

Krn) and therefore Fall(×n
i=1Kri) contains an integer greater than rn.

Case V) The case that 2 < r1 and {r1, ..., rn} contains exactly one even integer
and rn is odd. In this case, similar to the case IV, Fall(×n

i=1Kri) contains an integer
greater than rn.
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Accordingly, in all cases, {r1, ..., rn} $ Fall(×n
i=1Kri). Besides, Fall(×n

i=1Kri)
contains an integer greater than rn.

�

Even though Dunbar, et al. in [3] constructed a fall 6-coloring of K2 ×K3 ×K4,
this theorem also shows that in the corollary 7, the inequality max{ ψf (Gi) | i ∈
[n] } ≤ ψf (×

n
i=1Gi) can be strict in many cases. But we conjecture that the inequal-

ity χf (×
n
i=1Gi) ≤ min{ χf (Gi) | i ∈ [n] } is always an equality.

Conjecture 1. For each n ∈ N and for each arbitrary graphs G1, . . . , Gn such that
for each i ∈ [n], Fall(Gi) 6= ∅, the following equality holds.

χf (×
n
i=1Gi) = min{χf (Gi)| i ∈ [n]}.

5 Fall colorings of union of graphs

Let n ∈ N and for each 1 ≤ i ≤ n, Gi be a graph. The graph (
⋃n

i=1 ({i} ×
V (Gi)) ,

⋃n
i=1 { {(i, x), (i, y)} | {x, y} ∈ E(Gi) } ) is called the union graph of

G1, ..., Gn and is denoted by
⊎n

i=1Gi.
The following obvious theorem describes fall colorings of union of graphs.

Theorem 9. Let n ∈ N and for each 1 ≤ i ≤ n, Gi be a graph. Then, the following
three statements hold.

1) If Fall(
⊎n

i=1Gi) 6= ∅, then, for each 1 ≤ i ≤ n, Fall(Gi) 6= ∅.
2) Fall(

⊎n
i=1Gi) =

⋂n
i=1 Fall(Gi).

3) If Fall(
⊎n

i=1Gi) 6= ∅, then, χf (
⊎n

i=1Gi)=min
⋂n

i=1 Fall(Gi) and ψf (
⊎n

i=1Gi) =
max

⋂n
i=1 Fall(Gi).

Since any graph G is isomorphic to any union graph of all its connected compo-
nents, the following corollary yields immediately.

Corollary 9. Let G be a graph and Gi (1 ≤ i ≤ n) be all its connected components.
Then, the following three statements hold.

1) If Fall(G) 6= ∅, then, for each 1 ≤ i ≤ n, Fall(Gi) 6= ∅.
2) Fall(G) =

⋂n
i=1 Fall(Gi).

3) If Fall(G) 6= ∅, then, χf (G) = min
⋂n

i=1 Fall(Gi) and ψf (G) = max
⋂n

i=1 Fall(Gi).

6 Restriction of fall t-colorings of a graph into proper

t-colorings of graphs in a specified set

Now we prove that fall k-colorings of a graph can be reduced into proper k-colorings
of graphs in a specified set.

Let G be a graph and 1 ≤ t ≤ δ(G) + 1 be a fixed natural number. For each
v ∈ V (G), choose t− 1 arbitrary elements of NG(v) and join these t− 1 vertices to

each other and name the new graphH. Let Ĝt be the set of all graphs H constructed
like this.
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Theorem 10. For each 1 ≤ t ≤ δ(G) + 1, t ∈ Fall(G) iff t ∈ {χ(H)| H ∈ Ĝt}.

Specially, Fall(G) =
⋃δ(G)+1

i=1 ( {χ(H)| H ∈ Ĝi}
⋂
{i} ).

Proof. Let 1 ≤ t ≤ δ(G) + 1. If t ∈ {χ(H)| H ∈ Ĝt}, then, there exists a graph

H in Ĝt such that χ(H) = t and there exists a t-coloring f of H. This coloring f
of H, is obviously a fall t-coloring of G and therefore, t ∈ Fall(G). Conversely, if
t ∈ Fall(G), then, there exists a fall t-coloring g of G. For each v ∈ V (G), there
exist t − 1 elements of NG(v) such that the set of their colors and the color of v is

equal to [t], join all of them to each other to construct a new graph T in Ĝt. The
fall t-coloring g of G is obviously a t-coloring of T , also ω(T ) ≥ t, thus, χ(T ) = t

and t ∈ {χ(H)| H ∈ Ĝt}. The second part of the theorem follows immediately.
�

Restricting this theorem into r-regular graphs and t = r + 1, yields a beautiful
proposition of [4] but in different terminologies.

Proposition 3. For each r-regular graph G, r + 1 ∈ Fall(G) iff χ(G(2)) = r + 1,
where G(2) = ( V (G) , { {x, y} | x, y ∈ V (G), x 6= y, dG(x, y) ≤ 2 } ).

7 Fall Colorings of Mycielskian of graphs

Let G := ( {x1, . . . , xn} , E(G) ) be a graph. The Mycielskian of G ( denoted
by M(G) ) is a graph with 2n + 1 vertices x1, . . . , xn, y1, . . . , yn, z with edge set
E(G)

⋃
{ {yi, xj} | i, j ∈ [n], {xi, xj} ∈ E(G) }

⋃
{ {z, yi} | i ∈ [n] }.

For example, M(K2) is C5. We know that Fall(M(K2)) = Fall(C5) = ∅. Now
we prove that for each graph G, Fall(M(G)) = ∅.

Theorem 11. For each graph G, Fall(M(G)) = ∅.

Proof. If E(G) = ∅, then, M(G) has at least one isolated vertex and also at
least one edge. Therefore, Fall(M(G)) = ∅. Now we prove the theorem for the case
E(G) 6= ∅. If E(G) 6= ∅ and Fall(M(G)) 6= ∅, then, there exists a fall k-coloring f
of M(G) for some k ∈ N. Since E(G) 6= ∅, there exists an integer i0 ∈ [n] such that
f(xi0) 6= f(z) and since for each j ∈ [n], f(yj) 6= f(z) and f is a fall k-coloring,
there exists i1 ∈ [n] such that xi1 ∈ NG(xi0) and f(xi1) = f(z). Since for each
i ∈ [n] with f(xi) 6= f(z), N(yi) \ {z} ⊆ N(xi), so f(xi) ∈ {f(yi), f(z)}, on the
other hand, f(xi) 6= f(z), hence, f(xi) = f(yi). This immediately shows that each
color of [k] appears on the neighborhood of yi1 , which is a contradiction. Hence,
Fall(M(G)) = ∅.

�

8 Fall colorings of complement of bipartite graphs

Complements of bipartite graphs are very interesting graphs, because in each proper
k-coloring, the cardinality of each color class is at most 2. The following theorem
characterizes all fall colorings of this type of graphs.
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Theorem 12. Let G be a bipartite graph. Then, Fall(Gc) ⊆ { χ(Gc) }. Besides,
it is polynomial to decide whether or not Fall(Gc) = { χ(Gc) } .

Proof. If Fall(Gc) 6= ∅, then, ∃k ∈ Fall(Gc). Suppose that f is a fall k-coloring
of Gc. Obviously, each color class of f is either of the form {x} or of the form
{y, z} such that y ∈ A and z ∈ B. A color class is of the form {x} iff x is an
isolated vertex of the graph G. Therefore, the set of color classes of f is the union
of { {x} | x ∈ V (G), degG(x) = 0 } and the set of edges of a perfect matching of
the induced subgraph of G on { x | x ∈ V (G), degG(x) > 0 }, also, k = |V (G)| −
1
2 |{ x | x ∈ V (G), degG(x) > 0 }|. Therefore, Fall(Gc) ⊆ { |V (G)| − 1

2 |{ x | x ∈
V (G), degG(x) > 0 }| }. Besides, if Fall(Gc) 6= ∅, then, the induced subgraph
of G on { x | x ∈ V (G), degG(x) > 0 } has a perfect matching, in this case,
obviously, χ(Gc) = |V (G)| − 1

2 |{ x | x ∈ V (G), degG(x) > 0 }|, and consequently,
Fall(Gc) = { χ(Gc) }. Therefore, for each bipartite graph G, Fall(Gc) ⊆ { χ(Gc) }.
We know that if Fall(Gc) 6= ∅, then, the induced subgraph of G on { x | x ∈
V (G), degG(x) > 0 } has a perfect matching. Conversely, if the induced subgraph
of G on { x | x ∈ V (G), degG(x) > 0 } has a perfect matching, then, the union
of { {x} | x ∈ V (G), degG(x) = 0 } and the edge set of each perfect matching
of the induced subgraph of G on { x | x ∈ V (G), degG(x) > 0 } is the set of
color classes of a fall ( |V (G)| − 1

2 |{ x | x ∈ V (G), degG(x) > 0 }| )-coloring of
Gc and therefore, Fall(Gc) 6= ∅. Accordingly, Fall(Gc) = { χ(Gc) } iff Fall(Gc) 6= ∅
iff the induced subgraph of G on { x | x ∈ V (G), degG(x) > 0 } has a perfect
matching. Since the problem of deciding whether or not the induced subgraph of
G on { x | x ∈ V (G), degG(x) > 0 } has a perfect matching, is a polynomial time
problem, thus, it is polynomial time to decide whether or not Fall(Gc) = { χ(Gc) }.
�
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