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Abstract

A fall k-coloring of a graph G is a proper k-coloring of G such that each vertex
of G sees all k colors on its closed neighborhood. We denote Fall(G) the set
of all positive integers k for which G has a fall k-coloring. In this paper, we
study fall colorings of lexicographic product of graphs and categorical product
of graphs and answer a question of [3] about fall colorings of categorical product
of complete graphs. Then, we study fall colorings of union of graphs. Then, we
prove that fall k-colorings of a graph can be reduced into proper k-colorings of
graphs in a specified set. Then, we characterize fall colorings of Mycielskian of
graphs. Finally, we prove that for each bipartite graph G, Fall(G¢) C { x(G°) }
and it is polynomial time to decision whether or not Fall(G¢) = { x(G°) } .
Keywords: fall Coloring, lexicographic product, categorical product.
Subject classification: 05C

1 Introduction

All graphs considered in this paper are finite and simple (undirected, loopless and
without multiple edges). Let G = (V, E) be a graph and k € N and [k] := {i| i €
N, 1 <i<k}. A k-coloring (proper k-coloring) of G is a function f : V — [k] such
that for each 1 <4 < k, f~'(i) is an independent set. We say that G is k-colorable
whenever G admits a k-coloring f, in this case, we denote f~!(i) by V; and call each
1 <i <k, acolor (of f) and each V;, a color class (of f). The minimum integer k
for which G has a k-coloring, is called the chromatic number of G and is denoted by
X(G).

Let G be a graph, f be a k-coloring of G and v be a vertex of G. The vertex v is
called colorful ( or color-dominating or b-dominating) if each color 1 < ¢ < k appears
on the closed neighborhood of v ( f(N[v]) = [k] ). The k-coloring f is said to be a
fall k-coloring (of G) if each vertex of G is colorful. There are graphs G for which
G has no fall k-coloring for any positive integer k. For example, C5 ( a cycle with
5 vertices) and graphs with at least one edge and one isolated vertex, have not any
fall k-colorings for any positive integer k. The notation Fall(G) stands for the set of
all positive integers k for which G has a fall k-coloring. Whenever Fall(G) # (), we
call min(Fall(G)) and max(Fall(G)), fall chromatic number of G and fall achromatic
number of G' and denote them by x(G) and ¢ (G), respectively. The terminology
fall coloring was firstly introduced in 2000 in [3] and has received attention recently,
see [11,[2],[3],[5].
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2 Fall colorings of lexicographic product of graphs

Let G and H be graphs. The lexicographic product of G and H is defined the
graph with vertex set V(G) x V(H) and edge set { {(x1,vy1), (x2,y2)} | 1,22 €
V(G) and y1,y2 € V(H) and [ ({z1, 22} € E(G)) or (z1 = z2,{y1,y2} € E(H)) | }.
For each x € V(G), the induced subgraph of G[H] on {z} x V(H) is denoted by H,.

Note that G[H| and H[G] are not necessarily isomorphic. For example, let
G := Ky and H be the complement of G. G[H| has 4 edges and H|[G| has 2 edges
and therefore, they are not isomorphic. But lexicographic product of graphs is
associative up to isomorphism ( For arbitrary graphs G, G2 and G3, (G1[G2])[G3]
and G1[G2[G3]] are isomorphic.).

Theorem 1. Let G and H be graphs and k € Fall(G[H]) and f be a fall k-coloring
of G[H]. Then, for each x € V(G), Sy := f(V(H,)) forms a fall |Sy|-coloring of
H,.

Proof. Let z € V(G) and (z,y) be an arbitrary vertex of H, and its color be a.
Then, for each 8 € S; \ {a}, there exists a vertex (a,b) of G[H] adjacent with (x,y)
which is colored 3. Obviously a = x, otherwise, since 8 € S,, there exists a vertex
(z,2z) € V(H,) colored . (z,y) is adjacent with (a,b) and = # a, so {x,a} € E(G)
and therefore, (z, z) and (a,b) are adjacent in G[H| and both of them are colored
B, which is a contradiction. Therefore, a = x and (a,b) € V(H,). Hence, S, forms
a fall |S;|-coloring of H. [ |

Corollary 1. Let G and H be graphs. Then, Fall(G[H|) # () = Fall(H) # 0, or
equivalently, Fall(H) = () = Fall(G[H]) = 0.

Corollary 2. Let G and H be graphs such that Fall(G[H]) # 0. Then, Fall(H) # ()
and for each fall k-coloring f of G[H] and each x € V(G), xs(H) < |f(V(Hg))| <
vy (H).

There are pairs of graphs (G, H) for which Fall(G) = () but Fall(G[H]) # (. For
example, Fall(C5) = ) but C5[K»] has a fall 5-coloring. First let’s label the vertices
of C5[K>] lexicographically: 1 := (1,1), 2 := (1,2), 3 := (2,1),..., 10 := (5,2).
Here is a fall 5-coloring f of C5[Ks]: f(1) =1, f(2) =2, f(3) =3, f(4) =4, f(5) =
1, f(6) =5, f(7) =2, f(8) =4, f(9) =5, f(10) = 3. Also, there are pairs of
graphs (G, H) for which Fall(G) = ) and Fall(H) # () and Fall(G[H]) = 0. For
example, Fall(C5) = 0 and Fall(K7) # () and Fall(C5[K;]) = Fall(C5) = (). The next
theorem shows that if Fall(G) # 0 and Fall(H) # 0, then, Fall(G[H]) # 0.

Theorem 2. Let G and H be graphs for which Fall(G) # 0 and Fall(H) # 0.
Then, { i 1 ki | s € Fall(G), V1 <i<s: k; € Fall(H) } C Fall(G[H]).

Proof. Let s € Fall(G) and g : V(G) — [s| be a fall s-coloring of G and for
each 1 < i < s, k; € Fall(H) and h; be a fall k;-coloring of H. Let’s color each
vertex (x,y) of G[H] by color (g(x),hy()(y)). Indeed, let’s consider the function

[ V(G[H]) — S :={ (9(x), hg@)(v)) | (x,y) € V(G) x V(H) } which assigns to



each (z,y) of G[H], (g(v), hy(z)(y)). For each adjacent vertices (v,y) and (a,b) in
G[H], {z,a} € E(G) or (z = a and {y,b} € E(H)). So, g(x) # g(a) or (9(x) = g(a)
and hyy)(4) # hyio(b)). Therefore, (g(z). hyo) (1)) # (9(a). hygo)(8)). This shows

that f is a (3 ;_, ki)-coloring of G[H] such that uses exactly Z *_1 ki colors. Now
let’s show that f is a fall (37 ; k;)-coloring of G[H]. For each (z,y) € V(G[H]) and
each (a, ) € S\ { (g(x), g(x)( )) }, there is a vertex (u,v) of G[H] colored («, 3),
or equlvalently, (9(u), g (v)) = (o, B). Now, there are two cases:

Case I) The case that g(:z:) (u) In this case, hg) = gy and hy,)(y) #
hgu) (v). Since hy(yy is a fall ky,)-coloring of H, there exists a vertex z € V(H) such
that {z,y} € E(H) and hy(;)(2) = hg)(v). The vertex (x,z) of G[H] is adjacent
with (x,y) and its color is f((w,2)) = (9(z), hg(z)(2)) = (g(u),hg(u) (v)) = (o, B).

Case II) The case that g(x) # g(u). Since g is a fall s-coloring of G, there exists
a vertex z € V(G) such that {z,2} € E(G) and g(z) = g(u). So, hyq)(v) = hy)(v).
The vertex (z,v) is adjacent with (z,y) in G[H] and f((z,v)) = (9(2), hy(z)(v)) =
(g(u), hg(u) (v)) = (v, B).

Hence, f is a fall ()7, k;)-coloring of G[H]|. Therefore, { >.7_, k; | s € Fall(G),
V1 <i<s:k; €Fall(H) } C Fall(G[H)). [ |

Corollary 3. Let G and H be graphs for which Fall(G) # 0 and Fall(H) # 0.
Then, x¢(G[H]) < xs(G)xs(H) < 1y(Gby(H) < ¢y (G[H]).

x¢(G[H]) and x¢(G)x¢(H) are not necessarily equal. For example, x¢(Cy) =3
and x¢(K2) = 2. Therefore, x(Co)xs(K2) = 6, but x7(Cy[K3]) < 5, first let’s label
the vertices of Cy[K3] lexicographically: 1:=(1,1), 2:=(1,2), 3:=(2,1), ..., 18:=(9,2).
Here is a fall 5-coloring f of Cy[Ks]: f(1) =1, f(2) =4, f(3)=2, f(4) =3, f(5) =
5, /6) = 1, f(7) = 4 [(8) = 2, f(9) = 3, f(10) = 1, f(11) = 5, J(12) =
9, f(13) = 4, f(14) = 3,f(15) = 1, f(16) = 2, f(17) = 5, f(18) = 3. Also,
Yr(G)Ys(H) and 1¢(G[H]) are not necessarily equal. For example, ¢;(Cg) = 2
and ¢(K>2) = 2 and therefore, ¥;(Cg)s(K2) = 4. But "L/Jf(Cg[Kg]) > 5. First
let’s label the vertices of Cg[Ks] lexicographically: 1 := (1,1), 2 := (1 2), 3 :=
(2,1),..., 16 := (8,2). Here is a fall 5-coloring f of C’g[Kg] f(l) f( )
1, f(11) =5, f(12) =2, f(13) =3, f(14) =1, f(15) :5 £(16) = 4.

Theorem [2]says that if G and H are graphs for which Fall(G) # () and Fall(H) #
0, Then, { >0 | ki | s € Fall(G), V1 < i < s: k; € Fall(H) } C Fall(G[H]).
Since 5 € Fall(Cy[Ks]) and 5 ¢ { >0 ki | s € Fall(Cy), V1 < i < st k; €
Fall(Ky) }, Fall(G[H]) and { >°7 ki | s€ Fall(G), V1<i<s: k; € Fall(H)} are
not necessarily equal in this theorem.

Theorem 3. There are pairs of graphs (G, H) for which Fall(G) # () and Fall(H) #
(0 and the following strictly inequality holds.

Xf(GIH]) < xp(G)xs(H) <¢p(G)y(H) <y (G[H]).

Proof. Set G := Cs\/ Cs\/ Cy ( the join of Cg and Cg and Cg) and H := Kj.
Since (Cg \/ Cs\/ Co)[K2] and ( Cs[K2] ) V( Cs[K2] )\/( Co[Ks] ) are isomorphic,
Xf((Cs V Cs \ Co)[Ka]) = xf(Cs[K]) + x7(Cs[K2]) + xf(Co[Ka]) <4+4+5=13
and 5 ((Cs \/ Cs \ Co)[K2]) = 1y (C6[K2]) + ¥ (Cs[Ka]) + 45 (Co[Ka]) 2 6+5+6 =
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17. Also, x¢(Cs V Cs \/ Cg) = Tand ¢5(Cs \/ Cs V Cg) = 8 and xf(K2) = ¢f(K2) =
2, as desired. |

Theorem 4.  For each € > 0, There exists a pair of graphs (S,T) for which
min{e ¢ (S[T]) = () (T), o (S)Up(T) — x5 (S)x (1), x5 (S)x s (T) = x4 (ST} =

€.

Proof. With no loss of generality, we can assume that € is a natural number.
Set G := Cs\/Cs\/Cy and S := K [G] and T := K,. Since S[T] and K.[G[T]]
are isomorphic and x (K [G[T]]) = exs(G[T]) and ¢; (K [G[T]]) = ey#(G[T]), the
theorem implies. |

One can easily observe that if G and H are graphs such that Fall(G[H]) # 0,
then, xf(G[H]) > w(G)xs(H). The next clear proposition introduces a sufficient
condition for equality.

Proposition 1. Let G and H be graphs such that Fall(G) # 0 and Fall(H) # 0
and x(G) = w(G). Then, x;(G[H]) = x;(G)x;(H) = w(G)x;(H).

Corollary 4. If G is a tree or a complete graph or Coy (for some k € N\ {1}) and
H is a graph such that Fall(H) # 0, then, xs(G[H]) = xf(G)x¢(H) = w(G)x(H).

Corollary [ says that in every fall k-coloring of G[H| and each = € V(G), the
number of colors appear on V(H,) is at most ¢7(H). Hence, ¥¢(G[H]) < (6(G) +
1)y (H). The following clear proposition introduces a condition for equality.

Proposition 2. Let G and H be graphs for which Fall(G) # (0 and Fall(H) # 0
and Y5 (G) = 0(G) + 1. Then, ¢;(GIH]) = ¢p(G)¢;(H) = (0(G) + )¢5 (H).

Corollary 5. If G is a tree or a complete graph or Csy (for some k € N) and H is
a graph such that Fall(H) # 0, then, ¥¢(G[H]) = ¥#(G)Ys(H) = (0(G) + 1)¢¢(H).

3 Type-1I graph homomorphisms and lexicographic prod-
uct of graphs

Now we study a type of graph homomorphisms that is related to fall colorings of
graphs.

Definition 1. Let G and H be graphs. A function f : V(G) — V(H) is called a
type-II graph homomorphism from G to H if f satisfies the following two conditions.

1) {u,v} € B(G) = {f(u), f(v)} € E(H).
2) {u1,m} € E(H) =Yv e f1(v1): 3u € f(u) st {u,v} € BE(G). [ )

Type-II graph homomorphisms introduced by Laskar and Lyle in 2009 in [5].
They showed that for any graph G, k € Fall(G) iff there exists a type-II graph
homomorphism from G to K. Note that every type-II graph homomorphism from



a graph G to a complete graph, is surjective. If f; is a type-1I graph homomorphism
from G to H and fs is a type-II graph homomorphism from H to I, then, foof; is
a type-1I graph homomorphism from G to I. Also, if there exists a type-II graph
homomorphism from G to H and k € Fall(H), then, k € Fall(G). If there exists a
type-1I graph homomorphism from G; to Go and a type-II graph homomorphism
from Hi to Hs, then, there exists a type-II graph homomorphism from G{[0H; to
G[0H,. We prove a similar theorem for lexicographic product of graphs.

Theorem 5. Let G1, G2, Hi and Hy be graphs and f1 be a type-I1I graph homo-
morphism from G1 to Go and fo be a surjective type-II graph homomorphism from
Hy to Hy. Then, there exists a type-II graph homomorphism fs from G1[Hi| to
Go[Hs).

Proof. Let f3:V(G1[H1]) — V(G2[Hz3]) be defined the function which assigns to
cach (g,h) € V(G1[Hi]), f3((g,h)) = (f1(9), f2(h)). For each { (z1,41), (z2,52) } €
E(Gi[Hi]), {z1,z2} € E(Gy) or (x1 = =z2 and {y1,y2} € E(Hp)). Therefore,
{ fi(@1), fi(z2) } € E(G2) or (fi(z1) = fi(z2) and { fa(y1). fo(y2) } € E(H2)).

Hence, { (fi(z1), f2(41)), (f1(22), f2(y2)) } € E(G2[H>]) and consequently, the prop-
erty 1 holds. Now for each { (a1,01), (a9, 82) } € E(G2[H3]) and each (uy,v1) €

f3 (a1, Br)), there are two cases:

Case I) The case that {a1,as} € E(G3). Since fi is a type-II graph homomor-
phism and u; € f; (1), there exists ug € f; (o) such that {uj,us} € FE(Gy).
Surjectivity of fo implies that there exists v € fy l(ﬁg). Therefore, (ug,vy) €
f3 (a2, B2)) and { (u1,v1), (ug,v2) } € E(G1[H;]) and accordingly, the property 2
holds.

Case II) The case that ay = a9 and {f1,52} € E(Hsz). In this case, u; €
fi L(ay) and since fo is a type-II graph homomorphism and v; € fo L(B1), there
exists vy € f, '(B2) such that {vy,ve} € E(Hy). Hence, (u1,v2) € f3 *((az,B2)) and
{ (u1,v1), (uy,v2) } € E(G1[H;]) and therefore, the property 2 holds. Thus, f3 is a
type-II graph homomorphism. |

Corollary 6. If G and H are graphs such that r1 € Fall(G) and ro € Fall(H), then
xs(GHH]) < xp(GIKR]) < xp(KnlKp]) < 9p(Krn [Kp]) < ¢p(GIK]) <
by (GH]).

4 Fall colorings of categorical product of graphs

Let G; = (V4,Eq) and Go = (Va, Es) be graphs. The graph Gy x Go = (V] %
Vo, { { (z1,91), (x2,92) } | {z1,22} € E(G1) and {y1,y2} € E(G2) }) is called the
categorical product of G and H.

Categorical product of graphs is commutative and associative up to isomorphism
(For each arbitrary graphs Gi, G2 and G3, G X G2 and Gy x GG are isomorphic,
also, (G1 x G3) x G3 and G1 x (G2 x G3) are isomorphic.). For arbitrary graphs
G and H, if E(G) = 0 or E(H) = (), then, E(G x H) = () and therefore, G x H
has only a fall 1-coloring and Fall(G x H) = {1}. Thus, hereafter, let’s focus on
nonempty edge set graphs, unless stated otherwise. Firstly, note that Fall(G :=



( {a,b,c,d} , { {a,b},{b,c},{c,a},{d,a} } ) = 0 and Fall(G x G) = 0. Secondly,
note that Fall(C5 := ( {0,1,2,3,4} , { {0,1},{1,2},{2,3},{3,4},{4,0} })) =0,
but the function f : V(C5 x C5) — [5] which assigns to each (i,j) of V(C5 x C5),
f((i,7)) :=(the arithmetic residue of i + 25 modulo 5)+1 where the last + is the
natural summation in Z, is a fall 5-coloring of C5 x C5, and therefore, Fall(C5 x
C5) # 0. The next theorem implies that if Fall(G) # 0 or Fall(H) # 0, then,
Fall(G x H) # 0.

Theorem 6. For each n € N and each arbitrary graphs G1,...,Gy,
V1 <i<n:Fall(G;) C Fall(x,G;).

Proof. Since categorical product of graphs is commutative and associative up to
isomorphism, it suffices to prove that Fall(G1) C Fall(G; x G3). If Fall(G1) = 0, the
theorem holds trivially. For each k € Fall(G1), there exists a fall k-coloring f of G.
Now, the function g : V(G x G3) — [k] which assigns to each (u,v) € V(G1 x Ga),
g((u,v)) = f(u) is a fall k-coloring of G x G2 and therefore, k € Fall(G; x G2).
Hence, Fall(G;) C Fall(G; x G2). [ |

Corollary 7. For each n € N and each arbitrary graphs G1,...,G, such that for
each i € [n], Fall(G;) # 0, the following inequalities hold.
X (xi21Gi) <minf x;(Gi) [ i € [n] } < max{ ¢p(Gs) | i € [n] } < hp(XiL,Gi).

Now again type-II graph homomorphisms:

Theorem 7. Let G, G, Hi and Hs be graphs and fi1 be a type-II graph homo-
morphism from Gy to Go and fo be a type-II graph homomorphism from Hy to Hs.
Then, there exists a type-1I graph homomorphism fs from G1 x Hy to Gy x Hs.

Proof. Let f3: V(GixH;) — V(Gax Ha) be defined the function which assigns to
each (g, h) € V(G1 x H), f3((g,h)) = (f1(9), f2(h)). For each { (z1,41), (z2,92) } €
E(Gy x Hy), {x1,22} € E(Gy) and {y1,y2} € E(Hy). Therefore, { fi(z1), fi(z2) } €
E(G2) and { fa(y1), f2(y2) } € E(H2). Hence, { f3((z1,91)), f3((x2,92)) } € E(G2 %
Hj) and therefore, the property 1 of type-II graph homomorphisms holds. Now for
each { (a,b),(c,d) } € E(Ge x Hs) and each (o, 8) € f3'( (¢,d) ), a € f; '(c) and
B € fy1(d). So, there exist x € f;'(a) and y € f, '(b) such that {z,a} € E(Gy)
and {y, 3} € E(Hy), hence, (z,y) € f3'( (a,b) ) and { (z,y), (o, B) } € E(G1 x Hy).
So, the property 2 of type-II graph homomorphisms holds, too. Consequently, f3 is
a type-II graph homomorphism.

[ |

We know that if f is a type-II graph homomorphism from G to H and k €
Fall(H), then, k € Fall(G). Also, for each graph G and each natural number £k,
k € Fall(G) iff there exists a type-1I graph homomorphism from G to Kj. Therefore,
the previous theorem implies the following corollary.

Corollary 8. Let n € N and for each i € [n]|, G; be a graph and k; € Fall(G;).
Then, there exists a type-II graph homomorphism from X7} G; to X} Ky, and



Fall(x?leki) - Fall(x?zlGi). AZSO, Xf(xglzlGi) < Xf(xznleki) < T/)f(XanlKki) <
Yr(xi1G;). These inequalities can easily extend to more inequalities in general. For

example, in the case n = 2, xt(G1 x G2) < { Xf (K, % Ga)

| xr(Gr x Ky,)
sz)f(Klﬁ X G2)
wf(Gl « Kkg) < T,Z)f(Gl X Gg).

Dunbar, et al. in [3] showed that for each m,n € N\{1}, Fall(K,, x K,,) = {m,n}.
They also showed that if n € N\ {1} and for each i € [n], 7, € N\ {1}, then,
{r1,...,rn} C Fall(x! ,K,,). They constructed a fall 6-coloring of Ky x K3 x K4
and asked for conditions for a finite and with more than two elements set S :=
{r1,.,mn} € N\ {1} for which S G Fall(xj_, K,).

< Xf(Kp x Kg,) <

¢f(Kk1 X Kkz) < {

Theorem 8. Letn >3, S = {ri,.1,} CN\ {1}, 1 <ro < ... <r, and S
contain at least one even integer. Then, S G Fall(x]_, Ky,), besides, Fall(x}_, K,)
contains an integer greater than r,.

Proof. There are five cases.

Case I) The case that r; = 2. In this case, let t € {r1,...,7} \ {r1,7}. Consider
Ky x K; x K. Let 0 be a disarrangement of [¢] ( a permutation o of [t] such that
for each i € [t], o(i) # ). Obviously, { {(1,1,1),(1,0(4),2),(2,1,2),(2,0(i),1)} | 1 <
i<t} U{A{(z,y,2) | (z,y,2) e Ko x K} x K, , z=1i}|3<1i<mr,}is the set
of color classes of a fall (r, +t — 2)-coloring of Ky x K; x K. But r, +t —2 >,
and therefore, in this case, Fall(Ks x K; x K, ) contains an integer greater than r,.

Case II) The case that 2 < ry and {ry,...,7,} contains at least two distinct even
integers such that one of them is r,, and the other is rg that s € {1,...,n — 1}. Let
75 € {71, -, Tn} \{rs,n}. Consider K., x K,; x K, and a disarrangement o of [r;].
For each 1 <t < rj, color the vertices (1,t,1),(1,0(t),2),(2,t,2) and (2,0(t),1)
with the color ¢ and color each other vertex (z,y,2) with the color [£71](“5™) +
|51 ]rj + the color of (z —2[%51],y,z — 2[251]). This is a fall “™-coloring of
K, x K;; x K, . Since 2 <1, % > max{rs,rj, ,}. Hence, Theorem [@ implies
that Fall(x?_, K,,) contains an integer greater than 7.

Case III) The case that 2 < 1 and {rq,...,7, } contains at least two distinct even
integers such that none of them is r,,. Similar to the case II, Fall(x}_, K,.) contains
an integer greater than r,.

Case IV) The case that 2 < r; and {rq,...,r,} contains exactly one even integer
and 7y, is even. In this case, consider K, ,_1 x K, , X K, and a disarrangement
o of [rp—1]. For each 1 <t < r,_1, color the vertices (1,t,1),(1,0(t),2),(2,¢,2) and
(2,0(t), 1) with the color t and color each other vertex (z,y, 2) of K, ,_1x K, , X
K., with the color |Z71](™5™) + |24 |r, 1 + the color of (z — 2[Z31],y, 2 —
2|22 ). Also, color each vertex (rn_2,y,z) of K, _, x K,,_, x K,, with the color
W + 1. Therefore, a fall (W + 1)-coloring of K, _, X K, | X
K,, and also of x_, K,, yields. But, {n=2=Drnirm 4 1 5 = Thus, Fall(Ky x K; x
K,,) and therefore Fall(x]' ; K,,) contains an integer greater than r,,.

Case V) The case that 2 < r; and {ry,...,m,} contains exactly one even integer
and ry, is odd. In this case, similar to the case IV, Fall(x}_, K,) contains an integer
greater than r,.




Accordingly, in all cases, {r1,...,7,} G Fall(x}_,K,,). Besides, Fall(x}_,K,,)
contains an integer greater than r,,.
|

Even though Dunbar, et al. in [3] constructed a fall 6-coloring of Ko x K3 X Ky,
this theorem also shows that in the corollary [7 the inequality max{ (G;) | i €
n] } <y(xi_,G;) can be strict in many cases. But we conjecture that the inequal-
ity xf(x7_1G;) <min{ x7(G;) | i € [n] } is always an equality.

Conjecture 1. For eachn € N and for each arbitrary graphs G1,...,G, such that
for each i € [n], Fall(G;) # 0, the following equality holds.
Xf(XieGi) = min{x;(Gy)| i € [n]}.

5 Fall colorings of union of graphs

Let n € N and for each 1 < i < n, G; be a graph. The graph ( U7, ({i} x
V(Gi) , Uy { {6, 2),G,v)} | {z,y} € E(G;) } ) is called the union graph of
G, ...,Gy and is denoted by ;" | G;.

The following obvious theorem describes fall colorings of union of graphs.

Theorem 9. Letn € N and for each 1 < i < n, G; be a graph. Then, the following
three statements hold.

1) If Fall(lgi, G;) # 0, then, for each 1 < i < n, Fall(G;) # 0.

3) If Fall(W;"_, G;) # 0, then, x s, G;)=min(;_, Fall(G;) and ¢ (Y, Gi) =
max ()i, Fall(G;).

Since any graph G is isomorphic to any union graph of all its connected compo-
nents, the following corollary yields immediately.

Corollary 9. Let G be a graph and G; (1 < i < n) be all its connected components.
Then, the following three statements hold.

1) If Fall(G) # 0, then, for each 1 < i < n, Fall(G;) # 0.

2) Fall(G) = N, Fall(G;).

3) If Fall(G) # 0, then, x(G) = min (), Fall(G;) and ¢ ;(G) = max(;_, Fall(G;).

6 Restriction of fall ¢-colorings of a graph into proper
t-colorings of graphs in a specified set

Now we prove that fall k-colorings of a graph can be reduced into proper k-colorings
of graphs in a specified set.

Let G be a graph and 1 < ¢t < §(G) + 1 be a fixed natural number. For each
v € V(G), choose t — 1 arbitrary elements of Ng(v) and join these ¢ — 1 vertices to
each other and name the new graph H. Let é\t be the set of all graphs H constructed
like this.



Theorem 10. For each 1 <t < 6(G) + 1, t € Fall(G) iff t € {x(H)| H € /G\t}
Specially, Fall(G) = U ({x(H)| H € Gy N{i} ).

Proof. Let1<t<4(G)+1. Ifte {x(H)| H € é\t}, then, there exists a graph
H in G such that X(H) =t and there exists a t-coloring f of H. This coloring f
of H, is obviously a fall t-coloring of G and therefore, ¢ € Fall(G). Conversely, if
t € Fall(G), then, there exists a fall t-coloring g of G. For each v € V(G), there
exist ¢ — 1 elements of N¢(v) such that the set of their colors and the color of v is
equal to [t], join all of them to each other to construct a new graph T in é\t The
fall ¢-coloring g of G is obviously a t-coloring of T, also w(T') > t, thus, x(T) =t
and t € {x(H)| H € é\t} The second part of the theorem follows immediately.

|

Restricting this theorem into r-regular graphs and ¢t = r + 1, yields a beautiful
proposition of [4] but in different terminologies.

Proposition 3. For each r-regular graph G, v + 1 € Fall(G) iff x(G®) = r + 1,
where G = (V(G) , {{z,y} | 2,y € V(G), v £y, da(z,y) <2} ).

7 Fall Colorings of Mycielskian of graphs

Let G := ( {x1,...,2n} , E(G) ) be a graph. The Mycielskian of G ( denoted
by M(G) ) is a graph with 2n + 1 vertices z1,...,2Zpn,Y1,-.-,Yn, 2 With edge set
EG) UL vz} [ i,5 € nl, {wi, x5} € B(G) } U{ {7y} |ieln]}.

For example, M (K3) is C5. We know that Fall(M(K2)) = Fall(C5) = (). Now
we prove that for each graph G, Fall(M(G)) = 0.

Theorem 11. For each graph G, Fall(M(G)) = 0.

Proof. If E(G) = 0, then, M(G) ha; s at least one isolated vertex and also at
least one edge. Therefore, Fall(M(G)) = 0. Now we prove the theorem for the case
E(G) # 0. If E(G) # 0 and Fall(M (G)) # 0, then, there exists a fall k-coloring f
of M(Q) for some k € N. Since E(G) # (), there exists an integer iy € [n] such that
f(zi,) # f(2) and since for each j € [n], f(y;) # f(2) and f is a fall k-coloring,
there exists iy € [n] such that z;, € Ng(xlo) and f(z;,) = f(z). Since for each
i € [n] with f(z;) # f(2), N(yi) \ {2z} € N(xi), so f(z:) € {f(i), f(2)}, on the
other hand, f(x;) # f(z), hence, f(x;) = f(y;). This immediately shows that each
color of [k] appears on the neighborhood of y;,, which is a contradiction. Hence,
Fall(M(G)) = 0.

|

8 Fall colorings of complement of bipartite graphs

Complements of bipartite graphs are very interesting graphs, because in each proper
k-coloring, the cardinality of each color class is at most 2. The following theorem
characterizes all fall colorings of this type of graphs.



Theorem 12. Let G be a bipartite graph. Then, Fall(G¢) C { x(G°) }. Besides,
it is polynomial to decide whether or not Fall(G¢) = { x(G°) } .

Proof. If Fall(G®) # (), then, 3k € Fall(G°). Suppose that f is a fall k-coloring
of G°. Obviously, each color class of f is either of the form {z} or of the form
{y,z} such that y € A and z € B. A color class is of the form {z} iff z is an
isolated vertex of the graph G. Therefore, the set of color classes of f is the union
of { {z} | x € V(G), degg(xz) = 0 } and the set of edges of a perfect matching of
the induced subgraph of G on { z | z € V(G), dega(x) > 0 }, also, k = |V(G)| —
{2 | 2 € V(G), dege(z) > 0 }|. Therefore, Fall(G¢) C { |V(G)| — 3[{ = | x €
V(G), degg(x) > 0 }| }. Besides, if Fall(G°) # (), then, the induced subgraph
of Gon{ x|z e V(G), dega(x) > 0 } has a perfect matching, in this case,
obviously, x(G°) = |V(G)| — 3|{ z | z € V(G), degg(z) > 0 }|, and consequently,
Fall(G¢) = { x(G°) }. Therefore, for each bipartite graph G, Fall(G¢) C { x(G°) }.
We know that if Fall(G°) # (), then, the induced subgraph of G on { = | = €
V(GQ), degg(x) > 0 } has a perfect matching. Conversely, if the induced subgraph
of Gon{z|xeV(QG), dgg(x) > 0 } has a perfect matching, then, the union
of { {z} | = € V(G), degg(x) = 0 } and the edge set of each perfect matching
of the induced subgraph of G on { z | = € V(G), degg(x) > 0 } is the set of
color classes of a fall ( [V(G)| — 3/{ z | 2 € V(G), degs(z) > 0 }| )-coloring of
G°¢ and therefore, Fall(G®) # 0. Accordingly, Fall(G¢) = { x(G°) } iff Fall(G¢) # 0
iff the induced subgraph of G on { z | x € V(G), degg(z) > 0 } has a perfect
matching. Since the problem of deciding whether or not the induced subgraph of
Gon{zx|zeV(Q), dega(x) > 0 } has a perfect matching, is a polynomial time
problem, thus, it is polynomial time to decide whether or not Fall(G¢) = { x(G°) }.
|
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