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New proofs of some formulas of
Guillera-Ser-Sondow

Vasily Bolbachan 1

We present logarithmic series for u, lnu and the Euler-Mascheroni constant γ. It was indicated by J.

Sondow that Theorem 4 and all proofs are new. All proofs are elementary. We present some conjectures.

1. Introduction and main results.

Theorem 1. For each real u > 0

1 = lim
m→∞

m
∑

k=1

(

m

k

)

(−1)k+1

ku+ 1
.

Remark 2. For each real u > 0

u = lim
m→∞

m
∑

k=1

(

m

k

)

(−1)k+1

k
ln(ku+ 1) =

∞
∑

m=1

m
∑

k=1

(

m

k

)

(−1)k+1

m
ln(ku+ 1).

From the proof of Theorem 1 it follows that for each u0 > 0 the convergence in Theorem 1 is
uniform for u ∈ [0, u0]. Hence the first formula of Remark 2 follows by integrating the formula
of Theorem 1. The second formula of Remark 2 is deduced from the first one below. The second
formula of Remark 2 is [GS06, Theorem 5.3, GS08]. In [GS06] the proof of Theorem 5.3 is easy:
Theorem 5.3 follows from Theorem 5.2 (which is easy) and Example 2.4 (which is easy and well-
known).

Corollary 3. For each real u > 0

u = lim
m→∞

m
∏

k=1

(k + u)(
m

k )(−1)k+1

=
∞
∏

m=0

(

m
∏

k=0

(k + u+ 1)(
m

k)(−1)k

)

.

Take u = 1, 2, 3 in the second formula of Corollary 3

1 =
2

1
·
2

3
·
8

9
·
128

135
..., 2 =

3

1
·
3

4
·
15

16
·
125

128
..., 3 =

4

1
·
4

5
·
24

25
·
864

875
...

Recall that γ = lim
m→∞

(

1 + 1
2
+ 1

3
+ ...+ 1

m
− lnm

)

.

Theorem 4.

γ = lim
m→∞

m
∑

k=1

(

m

k

)

(−1)k

k
ln(k!).

Using this formula we reprove the following formula

Corollary 5.

γ =

∞
∑

j=1

j
∑

i=1

(

j − 1

i− 1

)

(−1)i

j
ln i.

The proof of this formula in [Se26] used analytic continuation of Riemann zeta function. Ideas
of proofs of this formula in [So03] are explained [So03, remark before Proof 1].
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2. Conjecture.

1. For each real positive numbers z1, z2, . . . , zn

z1z2 . . . zn = lim
m→∞

m
∑

k=1

(

m

k

)

(−1)k+1

k
ln(1 + z1 ln(1 + z2 . . . ln(1 + znk) . . . ).

For example for n = 2, we obtain

z1z2 = lim
m→∞

m
∑

k=1

(

m

k

)

(−1)k+1

k
ln(1 + z1 ln(1 + kz2)).

2. For each real z ≥ 0

∞
∑

n=0

(−1)nzn

(n!)2
= lim

m→∞

m
∑

n=1

(

m

n

)

(−1)n+1

z(n + 1) + 1
.

3.

ln
π

2
= lim

m→∞

m
∑

k=1

(

m

k

)

(−1)k

k
m
∑

n=1

2n−1

n

ln
k!!

(k − 1)!!
=

∞
∑

n=1

n
∑

k=1

(

n

k

)

(−1)k+1

2n

(

2

k
−

2

j
−

j

k
+ 2

)

ln
k!!

(k − 1)!!
.

Where k!! = 1 · 3 · 5 · ... · (k − 2) · k for k odd and k!! = 2 · 4 · 6 · ... · (k − 2) · k, for k even. See
also [So05].

4. For all different positive integers a1, a2, . . . , am, we define

f(ak) =
m
∏

n=1,n 6=k

an
an − ak

.

(For m = 1 we have f(a1) = 1.) Then

γ =

m
∑

n=1

f(an)
ln(an!)

an
+

∞
∑

n=1

1/n
∫

0

dx
m
∏

k=1

1 + (akx)−1

.

5. Define yk :=
∞
∑

n=1

1/n
∫

0

dx
1+(kx)−1 . Then the numbers yi, where i runs through positive integers,

are linearly independent over Z.
6. It follows from 4 and 5 that eγ is a irrational number.

3. Proofs.

All Lemmas are essentially known (Lemma 9 and Lemma 10 can be found in [Wi08]). But we
present proofs for completeness.

In order to prove Theorem 1 and Theorem 4 we need
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Lemma 7. For each z > 0 and m = 1, 2, 3...

m
∑

k=0

(

m

k

)

(−1)k

k + z
=

gm(z)

z
where gm(z) :=

m!

(z + 1)(z + 2) . . . (z +m)
.

Proof. Take the decomposition
gm(z)

z
=

A0

z
+

A1

z + 1
+

A2

z + 2
+...+

Am

z +m
into simplest fractions.

We have m! =
m
∑

k=0

Ak

m
∏

i=0,i 6=k

(z + i). Taking z = −k we obtain

m! = Ak(−k)(−k + 1)...2 · 1 · 2...(m− k − 1)(m− k) = Akk!(m− k)!(−1)k.

Hence Ak =
(

m
k

)

(−1)k. QED

Lemma 8. For each z0 > 0 we have that gm(z)/z converges to 0 uniformly for z ∈ [z0; +∞)
as m tends to infinity.

Proof. We have

gm(z)

z
=

1

z (1 + z)
(

1 +
z

2

)

. . .
(

1 +
z

m

) <
1

z · z

(

1 +
1

2
+

1

3
+ · · ·+

1

m

) →
m→∞

0. QED

Proof of Theorem 1. It follows from Lemma 7 and Lemma 8 that

lim
m→∞

m
∑

k=0

(

m

k

)

(−1)k

k + z
= 0.

Taking z = 1
u

and changing the limit of summation we obtain

lim
m→∞

m
∑

k=1

(

m

k

)

(−1)k+1

ku+ 1
= 1. QED

Proof of Theorem 4. Let us prove that

m
∑

k=1

(

m

k

)

(−1)k+1

k
ln(k!)

(1)
= lim

n→∞

(

m
∑

k=1

(

m

k

)

(−1)k+1 lnn−
n
∑

j=1

m
∑

k=1

(

m

k

)

(−1)k+1

k
ln

(

1 +
k

j

)

)

(2)
=

(2)
= lim

n→∞

(

lnn−
n
∑

j=1

1

j

)

+
∞
∑

j=1

1/j
∫

0

gm(1/u)du
(3)
= −γ +

∞
∑

j=1

1/j
∫

0

gm(1/u)du
(∗)
→ −γ as m → ∞.

The first equality follows because

k! = k! lim
n→∞

nk

(n + 1)(n+ 2) . . . (n+ k)
= lim

n→∞

nkn!k!

(n+ k)!
=

= lim
n→∞

nkn!

(k + 1)(k + 2) . . . (k + n)
= lim

n→∞

nk

(

1 + k
1

) (

1 + k
2

)

. . .
(

1 + k
n

) .
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Let us prove the second equality. Taking z = 1
u

in Lemma 7 and changing the limit of summation
we have

1−
m
∑

k=1

(

m

k

)

(−1)k+1

ku+ 1
= gm(1/u).

Hence (improperly) integrating this formula with from 0 to 1/j, we obtain

m
∑

k=1

(

m

k

)

(−1)k+1

k
ln(1 +

k

j
) =

1

j
−

1/j
∫

0

gm(1/u)du.

This and
m
∑

k=1

(

m
k

)

(−1)k+1 = 1 imply the second equality.

The third equality is clear.
Let us prove (*). We have

0 < gm(1/u) <
gm−1(1/u)

1 + 1
m

for 0 < u ≤ 1.

Hence

0 < gm(1/u) ≤
g1(1/u)

(1 + 1
2
)(1 + 1

3
)...(1 + 1

m
)
=

2g1(1/u)

m+ 1
for 0 < u ≤ 1.

For each m the series of left-hand side of the equality (*) converges by the sum of limits
theorem. Hence for the sum Sm in the left-hand side of (*) we have

0 < Sm <
2S1

m+ 1

m→∞
→ 0. QED

In order to prove Remark 2, Corollary 3 and Corollary 5 we need

Lemma 9.
(

m
k

)

k
=

m
∑

n=k

(

n
k

)

n
.

Proof. We have

(

m

k

)

=
m−k+1
∑

n=1

(

m− n

k − 1

)

=
m
∑

n=k

(

n− 1

k − 1

)

= k
m
∑

n=k

(

n
k

)

n
.

Here the first equality holds because
(

m−n
k−1

)

equals to the number of k-subsets of {1, 2, . . . , m}
whose minimal element is n, the second equality holds because the summands in those sums are
equal.

Proof the second formula of Remark 2. By Lemma 9 for Xn,k =
(

n
k

) (−1)k+1

n
ln(ku+ 1) we have

lim
m→∞

m
∑

k=1

(

m

k

)

(−1)k+1

k
ln(ku+ 1) = lim

m→∞

m
∑

k=1

m
∑

n=k

Xn,k =
∞
∑

n=1

n
∑

k=1

Xn,k. QED

Proof the first formula of Corollary 3. Take logarithms of both sides. Take z = 1
u

in the first
formula of Remark 2 we obtain

1

z
= lim

m→∞

m
∑

k=1

(

m

k

)

(−1)k+1

k
ln

(

k

z
+ 1

)

.
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By Lemma 8 the limit in this formula is uniform for z ∈ [z0; +∞], z0 ≥ 0. Hence integrating
this formula from 1 to u with respect to z, we get

ln u
(1)
= lim

m→∞

m
∑

k=1

(

m

k

)

(−1)k+1

k

(

k ln(k + u)− k + u ln

(

k

u
+ 1

))

(2)
=

(2)
= lim

m→∞

m
∑

k=1

(

m

k

)

(−1)k+1 ln(k+u)− lim
m→∞

m
∑

k=1

(

m

k

)

(−1)k+1+u lim
m→∞

m
∑

k=1

(

m

k

)

(−1)k+1

k
ln

(

k

u
+ 1

)

(3)
=

(3)
= lim

m→∞

m
∑

k=1

(

m

k

)

(−1)k+1 ln(k + u).

The first equality follows because

u
∫

1

dz

z
= lnu,

u
∫

1

ln(
k

z
+ 1)dz = (k + u) ln(k + u)− k + u lnu = k ln(k + u)− k + u ln

(

k

u
+ 1

)

The second equality equality is clear. The third equality follows by the second formula of
Remark 2 and

m
∑

k=1

(

m

k

)

(−1)k+1 = 1. QED.

Proof the second formula of Corollary 3. Take logarithms of both sides. By Lemma 9 for ak =

ln(k + u) we obtain

lim
m→∞

m
∑

k=1

(

m

k

)

(−1)k+1ak = lim
m→∞

m
∑

k=1

m
∑

n=k

(

n

k

)

(−1)k+1 k

n
ak =

=
∑

1≤k≤n<∞

(

n− 1

k − 1

)

(−1)k+1ak =

∞
∑

n=1

n
∑

k=1

(

n− 1

k − 1

)

(−1)k+1ak =

∞
∑

n=0

n
∑

k=0

(

n

k

)

(−1)kak+1. QED

In order to prove Corollary 5, we need

Lemma 10.
j
∑

k=n

(−1)k+n

(

j

k

)

=

(

j − 1

n− 1

)

.

Proof. The proof is by induction on n. For n = 1 this is known.
Let us prove the inductive step. By Pascal’s rule we have:

j
∑

k=n+1

(

j

k

)

(−1)k+n =

j
∑

k=n

(

j

k

)

(−1)k+n −

(

j

n

)

=

(

j − 1

n− 1

)

−

(

j

n

)

=

(

j − 1

n

)

. QED

Proof of Corollary 5. We have

γ
(1)
= lim

m→∞

m
∑

k=1

(

m

k

)

(−1)k

k
ln(k!)

(2)
= lim

m→∞

m
∑

k=1

(−1)k

(

m
∑

j=k

(

j

k

)

1

j

)(

k
∑

n=1

lnn

)

(3)
=

5



(3)
= lim

m→∞

m
∑

k=1

m
∑

j=k

k
∑

n=1

akjn
(4)
= lim

m→∞

∑

1≤n≤k≤j≤m

akjn
(5)
= lim

m→∞

m
∑

j=1

j
∑

n=1

j
∑

k=n

akjn
(6)
=

(6)
=

∞
∑

j=1

j
∑

n=1

(−1)n

j

(

j − 1

n− 1

)

lnn.

Here akjn =
(

j
k

) (−1)k

j
lnn. The first equality follows by theorem 4. The second equality follows by

lemma 9. The third, the fourth and the fifth equality is clear. The sixth equality follows by lemma
10. QED
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