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Abstract

In this article we study group lattices using the ideas by K.S.Brown and D.Quillen of
associating a certain topological space to a partially ordered set. We determine the exact
homotopy type for the subgroup lattice of PSL(2, 7), find a connection between different
group lattices and obtain some estimates for the Betty numbers of these lattices using the
spectral sequence method.

1 Introduction

Let P be a finite partially ordered set (poset, for short). One can associate a simplicial complex
with P in a canonical way.

Definition 1.1. Let ∆P denote a simplicial complex with a vertex set P consisting of such
simplices h1h2 . . . hk that for some permutation σ ∈ Sk+1 we have hσ(1) < hσ(2) < . . . < hσ(k) in
P .

Let P and Q be posets. A map f : P → Q is called a morphism (or map) of posets if it
preserves the non-strict order, i.e. for all x, y ∈ P such that x 6 y we have f(x) 6 f(y) in Q.
The map f induces a simplicial map ∆f from ∆P into ∆Q by an obvious rule. Thus any poset
inclusion P ⊆ Q induces an inclusion map of the associated simplicial complexes: ∆P ⊆ ∆Q.

Following D.Quillen we use the construction P → ∆P to assign topological concepts to
posets. For example, we call P contractible provided ∆P is contractible, and we define the
homology groups of P to be those of ∆P .

Consider a finite group G. The set of all subgroups of G ordered by inclusion forms a lattice
with a proper part LG = {H | 1 < H < G}. The set of cosets of all subgroups (including ∅ and
G) ordered by inclusion also forms a lattice and CG = {xH | H < G, x ∈ G} is its proper part
(see [1]). Thus the natural question arises: what homotopy type can spaces ∆LG and ∆CG
have for arbitrary finite group G?

K.Brown, C.Kratzer and J.Thevenaz proved that if G is solvable, then both LG andCG
are homotopy equivalent to wedges of equidimensional spheres (see [5, 1]). This fact is really
intriguing, because a poset not associated to a finite group can have almost any homotopy type.
Namely, for any finite simplicial complex X there exists a finite poset P such that X and ∆P
are homotopy equivalent (see [9]).

The problem of determining the homotopy type of LG and CG for any finite group G
is still open. The case of simple groups seem to offer the main difficulty. The homotopy
complementation formula by Björner and Walker (see [2]) and similar results which allowed to
compute the exact homotopy type of lattices of solvable groups depend on the existence of a
normal subgroup and therefore cannot be used in this case.
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Studying the shellability property of subgroup lattices of finite groups Shareshian proved
that for certain series of finite simple groups (L2(p) for prime p ≡ 3, 5 (mod 8), L2(2

p), L2(3
p)

and Sz(2p) for prime p) the homotopy type of lattice LG is that of a wedge of |G| circles (see
[6]). The proof was based on the fact that in each case a subgroup lattice can be reduced to a
1-dimensional connected using Quillen’s fiber lemma. Any such complex is obviously homotopy
equivalent to a wedge of circles.

Therefore, another question may be of interest: does there exist a minimal simple group
whose subgroup lattice has homotopy type different from a wedge of equidimensional spheres?
We give an example of such group by determining the exact type of LPSL(2, 7) which is a
wedge of 48 circles and 48 spheres.

In this work we also use spectral sequence method to obtain estimates for Betti numbers of
complexes LG and CG for any finite group G as well as more precise results for certain groups
(CPSL(2, 7), L Sz(2pq) and L Sz(2p

k
), for prime p and q).

2 Homotopy Methods

For an element h ∈ P we will use the following notation: P<h = {x ∈ P : x < h} (posets P6h,
P>h and P>h are defined similarly), P 6=h = {x ∈ P : x 6= h} and P/∈M = P \M for any subset
M ⊆ P .

The main tools for dealing with topological properties of posets are the Quillen’s Fiber
Lemma and the Homotopy Complementation Formula by Björner and Walker:

Lemma 2.1 (Quillens’ Fiber Lemma, [9]). Let f : P → Q be a map of finite posets such that
upper fibers f−1(Q>x) are contractible for all x ∈ Q (respectively, lower fibers f−1(Q6x) are
contractible for all x ∈ Q). Then f induces a homotopy equivalence between P and Q.

Definition 2.1. The join (or the least upper bound) of elements x and y of a poset P is defined
as an element x ∨ y = inf

z
{z | x, y 6 z} (it it exists). The meet (or the greatest lower bound)

x ∧ y is defined similarly.
A poset P is called a lattice if for any elements x and y of P there exist x ∨ y and x ∧ y in

P .
A lattice is bounded provided it contains the greatest element 1̂ and the least element 0̂.

Obviously, every finite lattice is bounded. The proper part of a bounded lattice L is a subposet
L = L \ {0̂, 1̂}.

It is easy to check that if a poset P contains an element h0 which is comparable to all
element of P (e.g. 0̂ or 1̂), then ∆P is contractible as ∆P is a cone over ∆P 6=h0 in this case:
∆P = C∆P 6=h0 . Particularly, every finite lattice is contractible. Therefore by topological
properties of a lattice L we mean those of its proper part.

Theorem 2.1 (Homotopy Complementation Formula, Björner, Walker, [2]). Let L be a finite
lattice and z ∈ L. Denote z⊥ = {x ∈ L | x ∧ z = 0̂, x ∨ z = 1̂}. Then:

1. L \ z⊥ is contractible,

2. if z⊥ is an antichain (i.e. any two elements of z⊥ are incomparable), then

L ∼=
∨
y∈z⊥

Σ
(
L<y ∗ L>y

)
,
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where X ∗Y denotes a join of topological spaces X and Y , and Σ(X) denotes a suspension
over topological space X.

We also mention the following well-known corollary of Quillen’s Fiber Lemma (see [6]):

Lemma 2.2. Let L be a proper part of some finite lattice L, M be a set of all elements x ∈ L
such that x =

∧
c∈C c, where C is some subset of maximal elements of L. Then L and M are

homotopy equivalent.

The last lemma allows us to reduce the complexity of a lattice being examined greatly.
For example, it follows that the poset LA5 is homotopy equivalent to a 1-dimensional complex
which is connected as well as the original poset. Once can easily check that its reduced Euler
characteristics is -60, hence LA5 is homotopy equivalent to a wedge of 60 circles.

For many minimal simple groups (L2(p) for prime p ≡ 3, 5 (mod 8), L2(2
p), L2(3

p) and
Sz(2p) for prime p) the situation is similar, however one still needs to use Quillen’s fiber lemma
to remove a number of elements to get a 1-dimensional complex.

Corollary 2.1. Keep the notation of the previous lemma. Let R be a proper part of some
sublattice of L such that M ⊆ R ⊆ L. Then L and R are homotopy equivalent.

Proof. The sets of all non-empty intersections of maximal elements of L and R coincide (with
M).

Unfortunately, Lemma 2.2 cannot be used iterative as we cannot delete any new element.
Thus, it is naturally to ask a question: is it possible to “get rid” of some maximal elements?
We were able to show that in a more general case the homotopy type of a poset P can be
determined using the topology of its subposets.

Remark 2.1. Let P be a finite poset, m ∈ P . Then

∆(P<m ∪ P>m) = ∆P<m ∗∆P>m.

Proof. Any element of P>m is greater than any element of P<m, thus any chain in P<m∪P>m is
a union of some chain in P>m and some chain in P<m (note, that either chain may be empty).
But such chains correspond to the simplices of a join of spaces ∆P<m and ∆P>m.

P
�m

m

P
�m�P

�m

Figure 1: Space ∆P .

Lemma 2.3. Let P be a finite poset, m ∈ P . Let the simplicial
complex ∆(P<m ∪ P>m) be contractible by ∆P 6=m, then

∆P ∼= ∆P 6=m ∨ Σ(∆P<m ∗∆P>m).

Proof. A simplicial complex Qm = ∆(P<m∪P>m∪{m}) repre-
sents a cone with a point m over the base ∆P<m ∗∆P>m. The
complex ∆P is a gluing of ∆P 6=m and Qm by ∆P<m ∗ ∆P>m
(see Figure 1). The homotopy map, contracting ∆P<m∗∆P>m
by ∆P 6=m to some point x, maps the cone Qm to a suspension
Σ(∆P<m ∗ ∆P>m). This suspension is glued to ∆P 6=m by ex-
actly a point x.
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Remark 2.2. If the complex P 6=m is not connected, then the
basepoint x of the wedge x must belong to the same component as ∆P<m ∗ ∆P>m (because
∆P<m ∗∆P>m is contractible by P 6=m, it must be contained in a single connected component).

Theorem 2.2. Let M be an antichain of elements of P . Assume that the complex
⋃
m∈M ∆P<m∗

∆P>m is contractible by ∆P/∈M . Then

∆P ∼= ∆P/∈M ∨
∨
m∈M

Σ(∆P<m ∗∆P>m). (1)

The proof of the last theorem is similar to the proof of the preceeding lemma, so we omit it.
Nevertheless, it is worth mentioning that M is an antichain and thus for any m1 and m2 ∈M
the cones Qm1 and Qm2 may intersect only by their bases.

Corollary 2.2. If dim ∆P<m ∗∆P>m = dim ∆P<m + dim ∆P>m + 1 6 k for all m ∈ M and
the complex ∆P/∈M is k-connected (i.e. π0(∆P/∈M) = . . . = πk(∆P/∈M) = 0), then (1) holds.

Lemma 2.4. Let M be a set of some (possibly not all) maximal elements of P . Assume that
the complex

⋃
m∈M ∆P<m is contractible by ∆P/∈M , then

∆P ∼= ∆P/∈M ∨
∨
m∈M

Σ∆P<m. (2)

Proof. Any two maximal elements in a poset P are incomparable. Hence, any subset M ⊆ P
consisting of maximal elements is an antichain. This implies that we can use Theorem 2.2. It
is only left to mention that X ∗ ∅ = X for any topological space X.

Note that if P is a finite lattice and M is a set of some maximal elements of the proper part
of P , then P/∈M is also a lattice. Thus, Lemma 2.4 is likely to give good results together with
Lemma 2.2: we leave only the intersections of maximal elements, then we delete some maximal
elements, then we apply Lemma 2.2 again etc. Note, that at any moment we can do the same
for minimal elements.

Combining the homotopy methods described above we will be able to determine the exact
homotopy type of LPSL(2, 7).

3 Wedge of Spheres of Different Dimensions

Shareshian made a conjecture (see [7]) that for any finite group G the simplicial complexes
∆LG and ∆CG are homotopy equivalent to wedges of spheres of possibly different dimensions.
However, it is not even known if homologies in some dimension are torsion-free for arbitrary
finite group.

Up to now the attention was focused mainly to minimal simple groups with LG homotopy
equivalent to a wedge of circles. We shall consider a minimal simple group PSL(2, 7) and prove
that the proper part of its subgroup lattice is a wedge of spheres of two different dimensions.

The subgroup lattice of PSL(2, 7) is depicted in Figure 2 (see [3]). Each vertex corresponds
with a conjugacy class, the cardinality of the class is represented by a number next to a vertex.

If two conjugacy classes are connected by an arrow that means that a group from the upper
class contains subgroups from the lower class. The number of such subgroups is equal to a
small number next to an arrow.
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S4 S4

A4 A4D8

S3 F21V4 V4Z4

Z2 Z3 Z7

7 7

7 721

7
7

21 28 8

828

21

1

1 1

4

43
3

1 1

4

41

1

1

17133 1

Figure 2: Subgroup lattice of PSL(2, 7).

Figure 2 does not contain all possible arrows: if H1 < H2 < H3, then we omit the arrow
H3 → H1 and draw H3 → H2 and H2 → H1.

By Lemma 2.2 one can consider a smaller poset Q of all nontrivial intersections of maximals
subgroups (i.e. conjugacy classes of A4, Z4 and Z7 are omitted).

Suppose thatM is a set of all subgroups of type F21. Each elements ofM is maximal in Q,

hence the complex ∆Q/∈M is connected. Note that for any m ∈M the complex ∆Q<m
∼=

6∨
S0

(i.e. it consists of 7 points) and by Lemma 2.4 and its corollaries we conclude:

∆Q ∼= ∆Q/∈M ∨
8∨

Σ
6∨
S0 = ∆Q/∈M ∨

48∨
S1.

Thus, we have isolated a wedge of 48 circles. Denote Q/∈M by QI . From the fact that
χ̃(LPSL(2, 7)) = 0 (see [4]), we conclude that χ̃(QI) = 48 (as we removed a wedge of 48
S1). We will show that ∆QI is homotopy equivalent to a wedge of 48 spheres.

For each subgroup in S4 we consider ∆QI
<S4

. This is a connected 1-dimensional complex
with reduced Euler characteristics equal to −8 as ∆Q′<S4

consists of exactly 17 vertices and 24

edges. Consequently, ∆QI
<S4
∼=
∨8 S1. We delete 6 vertices from the right conjugacy class of

S4 and show that the resulting poset QII is contractible. By Theorem 2.2 this means that

∆QI ∼= ∆QII ∨
6∨

Σ
8∨
S1
∼= pt ∨

48∨
S2 ∼=

48∨
S2.

Again we use Lemma 2.4 to consider the poset of all nontrivial intersections of maximal
subgroups instead of QII (note that QII is still a proper part of some lattice, it is depicted in
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Figure 3). It is well-known that PSL2(7) ∼= GL3(2) and thus admits a natural group action on
a 3-dimensional vector space over Z2.

S4 S4

D8

S3V4

Z2

3 1

3

4

6

2 1
3

1

1

6
V4

1

S4

4

1

1

3

1

Figure 3: Intersection of maxi-
mal elements in QII .

Without loss of generality it can be assumed that the left
conjugacy class of S4 consists of the stabilizers of non-zero
vectors. Any pair of non-zero vectors u 6= v can be extended
to some basis (u, v, w). The group acts transitively on the set
of all bases, hence St(u, v) is exactly the subgroup of operators
mapping (u, v, w) to any basis (u, v, w′) isomorphic to V4. The
stabilizer of any 3 vectors is obviously trivial.

Denote the only element of the right class of S4 by S. Sup-
pose that some subgroup H in QII is not contained in S, then
it is either S4 (vector stabilizer) or V4 (stabilizer of two vec-
tors). Again without loss of generality we assume that S (as
a line stabilizer) consists of all invertible matrices of the form1 0 0

∗ ∗ ∗
∗ ∗ ∗


One can easily check that the set of such matrices contains a
nontrivial stabilizer of any two non-zero vectors.

In fact, we proved that any subgroup in QII intersects
with S nontrivially. Consequently, S⊥ is empty and by Ho-
motopy Complementation Formula we conclude that QII is
contractible.

Thus, we proved the following theorem on the homotopy type of the subgroup lattice of
PSL(2, 7):

Theorem 3.1. Simplicial complex of the subgroup lattice of PSL(2, 7) is homotopy equivalent
to a wedge of 48 circles and 48 spheres:

∆LPSL(2, 7) ∼=
48∨
S1 ∨

48∨
S2.

4 Spectral Sequence of Posets

If we consider groups PSL(2, 7)×PSL(2, 7)× . . .×PSL(2, 7) or PSL(2, 7)× (Z2)
n, it becomes

evident that the subgroup lattice of a finite group can be a wedge of spheres of any given
number of dimensions and thus its Euler characteristics cannot give the complete information
on the homotopy type of this lattice.

We shall use the standard tool of studying the homologies of a topological space — a spectral
sequence. Let P be a finite poset, consider a natural filtration on P :

P 0 = P60 = {h ∈ P | h is minimal } ⊆ P ;
P61 = {h ∈ P | ∀x, if x < h, then x ∈ P 0} ⊆ P ;
P62 = {h ∈ P | ∀x, if x < h, then x ∈ P61} ⊆ P ;
. . .
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That is, h ∈ P6k exactly when the maximal length of a chain x0 < x1 < . . . < xk−1 < h,
xi ∈ P , is k. Obviously,

P 0 ⊆ P61 ⊆ P62 ⊆ . . . ⊆ P6n = P.

Thus the maximal length of the chain in P is n: x0 < x1 < . . . < xn and dim ∆P = n. We
define

P k = P6k \ P6k−1, ∀k > 1.

We call each set P k a level (namely, the k-th level). Note, that if x < y and y ∈ P k, then
k 6= 0 and x ∈ P6k−1. Now we are ready to proof the main lemma of this section:

Lemma 4.1. Assume that h ∈ P k+1, k > 0 and Xh = ∆(P6k ∪ {h}). Then the quotient space
Xh/∆P

6k coincides with a suspension over ∆P<h:

Xh/∆P
6k = Σ∆P<h.

P�k

h

P
�h

Figure 4: Space Xh.

Proof. Consider a topological space ∆P6h. It is obviously a
cone over ∆P<h 6= ∅. Furthermore, as P<h ⊆ P6k, the base of
the cone ∆P<h lies in ∆P6k.

Space Xh represents a union of spaces ∆P6k and ∆P6h

intersecting by the base of the cone ∆P<h (see Figure 4):

Xh = ∆P6k ∪∆P6h and ∆P6k ∩∆P6h = ∆P<h.

Consequently,

Xh/∆P
6k = ∆P6h/∆P<h = ΣP<h.

The last lemma shows a strong connection between ∆P and all of its subspaces ∆P<h. Now
we need the following theorem generalizing Lemma 4.1:

Theorem 4.1. Quotient space ∆P6k+1/∆P6k is a wedge of suspensions over ∆P<h indexed
by all h ∈ P k+1:

∆P6k+1/∆P6k =
∨

h∈Pk+1

Σ∆P<h.

P�k

h

P
�h P

�g

g

Figure 5: Space P6k+1.

Proof. We have P6k+1 = P k+1∪P6k, futhermore, assume that
x and y are in P6k+1 and x < y, then x ∈ P6k and either y ∈
P k+1 or y ∈ P6k. Consequently, the space ∆P6k+1 is a union
of ∆P6k and the cones ∆P6h index by all h ∈ P k+1 (see Figure
5). Assume h1 6= h2 and h1, h2 ∈ P k+1 then the intersection of
posets P6h1 ∩ P6h2 coincides with P<h1 ∩ P<h2 ⊆ P6k. Hence,
the cones ∆P6h1 and ∆P6h2 may intersect only by their bases,
but their bases lie in a space ∆P6k. Thus,

∆P6k+1/∆P6k =

( ⋃
h∈Pk+1

Xh

)
/∆P6k =

∨
h∈Pk+1

(
Xh/∆P

6k
)
.

By Lemma 4.1 the last space is a wedge of suspensions over
∆P<h at the vary of all h ∈ Pk+1.
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Note that for any topological spaces X and Y the reduced homologies have the following
properties: H̃m(ΣX) = H̃m−1(X) and H̃m(X ∨ Y ) = H̃m(X)⊕ H̃m(Y ) (see [12]).

The filtration of P defined above induces a natural filtration on ∆P :

∆P 0 ⊆ ∆P61 ⊆ ∆P62 ⊆ . . . ⊆ ∆P6n = ∆P.

The structure of ∆P6k+1/∆P6k is determined, so we are ready to write down the spectral

sequence for that filtration. First, we describe E1 (we assume that H̃m(X) = 0 for all m < 0
and X 6= ∅):

E1
0,0 = H0(∆P

0) = Z|P0|, E1
0,l = 0, for all l 6= 1

E1
k,l = H̃k+l(∆P

6k/∆P6k−1) =
⊕
h∈Pk

H̃k+l−1(∆P<h), for all l and k > 1. (3)

Now we should say some words about drk,l (the arrows): they act from Er
k,l into Er

k−r,l+r−1.

Thus Er+1
k,l is a quotient of the kernel of drk,l from Er

k,l by the image of drk+r,l−r+1 in Er
k,l (in a

spectral sequence the image always lies in a kernel):

Er+1
k,l = ker drk,l/ Im drk+r,l−r+1.

Next, from the inductive construction of Er+1 we see that

1. If E1
k,l = 0 for some k and l, then for all r > 1 we have Er

k,l = 0.

2. For all k, l and r > 0 we have dimEr+1
k,l 6 dimEr

k,l 6 . . . 6 dimE1
k,l (by dim we will mean

the torsion-free rank of an abelian group).

3. All the arrows drk,l starting from the diagonal k + l = m point to cells on a diagonal
k + l = m− 1 regardless of r, and vice versa, the arrows ending on a diagonal k + l = m
start from the cells on a diagonal k + l = m+ 1 regardless of r. Thus we have∑

k+l=m

dimEr
k,l >

∑
k+l=m

dimE1
k,m −

∑
k+l=m+1

dimE1
k,m −

∑
k+l=m−1

dimE1
k,m.

From the dimension argument we conclude that spectral sequence stabilizes on (n + 1)th
step: En+1 = En+2 = . . . = E∞. E∞ can be used to determine the homologies of ∆P6n = ∆P
from the diagonal k + l = m (for fixed m): denote all nontrivial groups on this diagonal
starting from the top as G1, G2, . . ., Gs. Then G1 is a subgroup in Hm(∆P ); G2 is a subgroup
in Hm(∆P )/G1, G3 is a subgroup in (Hm(∆P )/G1)/G2 etc. The last group Gs coincides with
the considered quotient group (see [12]).

Using the fact that every diagonal k+l = m in E1 contains sums of groups of type H̃m(∆P<h)
(except for the 0th column E1

0,l, where the only non-zero cell is E1
0,0), it is possible to formulate

the following theorems (we assume that H̃−1(∅) = Z and H̃m(∅) = 0 for any m 6= −1 ):

Theorem 4.2. For any m > 0 we have the following estimate for the Betti numbers of the
poset P (i.e. the ranks of its homology groups):

dimHm(∆P ) 6
∑
h∈P

dim H̃m−1(∆P<h).

Proof. Fix m > 1. By the properties of the spectral sequence given above we conclude:

8



1. dimHm(∆P ) is a sum of dimensions dimE∞k,l for all E∞k,l on the diagonal k + l = m.

2. The dimension of Er
k,l cannot grow with the increase of r.

It easily follows that

dimHm(∆P ) 6
∑
k+l=m

dimE1
k,l =

∑
h∈P

H̃m−1(∆P<h).

If m = 0, then the diagonal k + l = 0 can contain more than one non-zero element:
Er

0,0 ⊆ E1
0,0 = Z|P0|, and |P0| =

∑
h∈P 0 H̃−1(∆P<h) =

∑
h∈P H̃−1(∆P<h).

The spectral sequence constructed above may be just as well applied to prove the absence
of torsion:

Theorem 4.3. Suppose that for some fixed m > 0 and for any h ∈ P we have H̃m(∆P<h) = 0,

then Hm+1(∆P ) = 0. Furthermore, if for all h ∈ P the homologies H̃m−1(∆P<h) are torsion-
free, then Hm(∆P ) are also torsion-free.

Proof. If for some m > 0 the homologies H̃m(∆P<h) = 0 for all h ∈ P , then all the elements on a
diagonal k+ l = m+1 in the spectral sequence are zeroes for all r > 1 and thus Hm+1(∆P ) = 0.

Moreover, for all r > 1 the diagonal k + l = m + 1 in the spectral sequence contains only
zeroes, hence for all r > 1 the image of the map drk,l for k + l = m + 1 is equal to 0. Thus, in
the inductive construction of Er

k,l for k + l = m we will take quotients by 0. This means that
for m 6= 0 each group E∞k,l on a diagonal k + l = m is a subgroup of E1

k,l.

If E1
k,l =

⊕
h∈Pk H̃m−1(∆P<h) is torsion-free, then Er

k,l ⊆ E1
k,l is torsion-free, hence Hm(∆P )

is also torsion-free.

Theorem 4.3 is very useful for dealing with torsion in higher non-vanishing homologies of
a subgroup lattice or a coset lattice of a finite group G: it is sufficient to prove that all the
subgroups of a given group G have torsion-free higher homologies and that higher non-vanishing
homologies of G have dimension at least one more than that of any of its subgroups.

Corollary 4.1. Suppose that there exist such m0 that for all m > m0 and for all h ∈ P the
homologies H̃m(P<h) vanish, then for all m > m0 + 1 the homologies Hm(∆P ) also vanish:

∃m0 > 0 : ∀m > m0 ∀h ∈ P H̃m(∆P<h) = 0 ⇒ ∀m > m0 + 1 Hm(∆P ) = 0

Theorem 4.4. The following lower estimate holds for the Betti Numbers of a poset P : if
m > 1, then

dimHm+1(∆P ) >
∑
h∈P

(
dim H̃m(∆P<h)− dim H̃m−1(∆P<h)− dim H̃m+1(∆P<h)

)
,

if m = 0, then

dimH1(∆P ) >
∑
h∈P

(
dim H̃0(∆P<h)− dim H̃1(∆P<h)− |P0|),

and obviously

dimH0(∆P ) > |P0| −
∑
h∈P

dim H̃0(∆P<h).

9



Proof. The estimates can be easily deduced from the fact the sum of all dimensions E∞k,l on a
diagonal k + l = m with respect to the total dimension of E1

k,l on the same diagonal cannot
decrease by more than the sum of all dimensions of E1

k,l on the diagonals k + l = m + 1 and
k + l = m− 1.

Unfortunately, the right part of these expressions is often negative.
But if we know some homology groups of ∆P (for example if ∆P is connected, then

H0(∆P ) = Z), then the method demonstrated above allows us to obtain sharper estimates
for the Betti numbers.

It is natural that this technic is useful in the case when Euler characteristics does not contain
the full information on the homotopy type of ∆P . That is the case when ∆P is not homotopy
equivalent to a wedge of equidimensional spheres.

We also note that to use Theorems 4.2, 4.3 and 4.4 one needs to know only the homologies of
complexes P<h, not the way they are linkes with each other. Thus for the subgroup lattice and
the coset lattice of some finite group G it is sufficient to know only the types of its subgroups
and their number, but not the exact structure of the whole lattice.

5 Decreasing Posets

Definition 5.1. For a topological space X define its homology dimension as the maximal di-
mension of its non-vanishing reduced homologies:

HdimX = max{m : H̃m(X) 6= 0}.

If all the reduced homologies X are vanishing or X = ∅, we assume that HdimX = −1.

For example, if X is a wedge of spheres of possibly different dimensions, then HdimX is
the maximal dimension of spheres in the wedge.

The Cell Homology Theorem (see [12]) states that homology dimension of any simplicial
complex does not exceed its ordinary dimension:

Hdim ∆ 6 dim ∆.

Corollary 4.1 can be reformulated in the new notation as

HdimP 6 1 + max
h∈P

HdimP<h. (4)

Now we define the concept of decreasing poset and decreasing level inductively. We start
from the bottom: the empty set ∅ is not decreasing. Let P be some poset and the property of
being decreasing is defined for subposets P<h for all h ∈ P . We will define this property for P .

As in the previous section we divide the poset into levels: P 0, P 1, . . ., P n. We say that
the level P k is decreasing provided the poset P<h is decreasing for all h ∈ P k. Let s(P ) be the
number of decreasing levels in P .

We say that the poset P is decreasing if

HdimP 6 dimP − s(P )− 1.

Thus, we have defined the concept of being “decreasing” for 1-dimensional posets, then for
2-dimensional etc. For example, any contractible poset (including a single point) is decreasing,
but any 0-dimensional poset except for a point is not.
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Lemma 5.1. Suppose that dim ∆P = n > 0 and the level P n is decreasing. Then Hdim ∆P 6
n− 1.

Proof. If h ∈ P n, then dim ∆P<h = n − 1. The poset P<h is decreasing, so its homology
dimension cannot be maximal. Hence, Hdim ∆P<h 6 n− 2.

Now suppose that h /∈ P n, then Hdim ∆P<h 6 dim ∆P<h 6 n − 2. From (4) we conclude
that Hdim ∆P 6 n− 1.

Lemma 5.2. Suppose that dim ∆P = n > 0 and the level P k is decreasing for some k > 0.
Then Hdim ∆P 6 n− 1.

Proof. If k = n, then the statement is equivalent to Lemma 5.1. Suppose k < n. Again
by Lemma 5.1 the top level of P<h is decreasing for all h ∈ P k+1. Hence, Hdim ∆P<h 6
dim ∆P<h − 1 = k − 1.

We use the induction: if for some l > k + 1 and for all h ∈ P6l the homology dimension
Hdim ∆P<h does not exceed l − 2, then for all h from the level l + 1 we have:

∀h ∈ P l+1 HdimP<h 6 1 + max
h∈P6l

HdimP<h 6 l − 1.

Thus, when we “move” to the next level, the homology dimension Hdim ∆P<h cannot in-
crease by more than 1.

Inductively considering the levels from the bottom we reach P itself.

Theorem 5.1. If the poset P containt exactly s(P ) decreasing levels, than Hdim ∆P 6 n−s(P ).
Moreover, P is decreasing exactly when Hdim ∆P 6 n− s(P )− 1.

Proof. Moving from P k to the next level we see that homology dimension of posets P<h does
not increase, if P k+1 is decreasing, and possibly increases by 1 otherwise. As P contains exactly
s(P ) decreasing levels, we conclude

max
h∈P

HdimP<h 6 n− s(P )− 1.

As we shall see later, this theorem has a useful application to the group lattices.
Thus, the existence of decreasing subposets P<h allows one to bound the homology dimension

of ∆P . It is natural to wish for some tools able to determine, whether a given poset is decreasing
or not. So we consider a fixed level P k in a poset P . Let sk(P ) be the number of decreasing
posets in P below P k.

Theorem 5.2. Suppose there exists some non-decreasing level P k such that for any h ∈ P k

one of the following is true:

1. The poset P<h is decreasing;

2. The poset P<h contains at least sk(P ) + 1 decreasing levels.

Then the poset P is decreasing.
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Proof. As for each h ∈ P k a complex P<h contains at least sk(P ) decreasing levels and
dimP<h = k − 1, Theorem 5.1 states that HdimP<h does not exceed dimP<h − sk(P ) =
k−sk(P )−1. If P<h is decreasing, then HdimP<h 6 k−sk(P )−2. In the opposite case by the
conditions of the theorem it contains at least sk(P ) + 1 decreasing levels and again we conclude
that HdimP<h 6 k − sk(P )− 2.

Thus, HdimP<h 6 k − sk(P ) − 2 for all h ∈ P k, while the level P k is non-decreasing.
It follows that there was no dimension increase between levels P k−1 and P k and therefore
HdimP 6 n− s(P )− 1.

6 The Case of Group Lattices

Let G be a finite group. We use the following notation: LG = {H | 1 < H < G} is a proper
part of the subgroup lattice (ordered by inclusion), CG = {xH | H < G, x ∈ G} is a proper
part of the coset lattice (by inclusion), SG = CG \ {g ∈ G}.

Note that for H 6 G we have CG<H = CH. This fact is really handy for performing
calculations in CG as this poset contains lots of isomorphic fibers CG<gH : if g1H1 and g2H2 are
cosets of isomorphic subgroups H1 and H2 respectively, then CG<g1H1

∼= CG<g2H2 . The same
holds for LG and SG.

Now we reformulate the results proved by the spectral sequence method using the language
of group lattices.

Theorem 6.1. Betti numbers of LG, CG or SG for all m > 0 can be majorized by Betti
numbers of all nontrivial proper subgroups in the following way:

dimHm(LG) 6
∑

1<H<G

dim H̃m−1(LH),

dimHm(CG) 6
∑

16H<G
|G : H| dim H̃m−1(CH),

dimHm(SG) 6
∑

1<H<G

|G : H| dim H̃m−1(SH).

Proof. For LG the statement is just a reformulation of Theorem 4.2. For CG and SG we need
to mention that subposets CG<H and CG<gH are isomorphic for every subgroup H and every
coset gH of H and the total number of cosets of H is its index |G : H|.

Theorem 6.2. Let PG be one of the posets LG, CG or SG. If for some m > 0 and for
all subgroups 1 < H < G we have H̃m(∆PH) = 0, then Hm+1(∆PG) = 0. Furthermore,

assume that for all 1 < H < G homologies H̃m−1(∆PH) are torsion-free, then Hm(∆PG) are
torsion-free.

Proof. The statement is a reformulation of 4.3.

Corollary 6.1. Let PG be one of the posets LG, CG or SG. If the maximal dimension of higher
non-vanishing homologies of complexes ∆PH at the vary of all proper subgroups 1 < H < G is
m0 (if there are no such H, i.e. G ∼= Zp, we assume m0 = −1), then the dimension of higher
non-vanishing homologies of ∆PG does not exceed m0 + 1:

HdimLG 6 1 + max
1<H<G

HdimLH,
Hdim CG 6 1 + max

1<H<G
Hdim CH,

HdimSG 6 1 + max
1<H<G

HdimSH.
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Corollary 6.2. If for any proper subgroup 1 < H < G higher non-vanishing homologies
Hm0(∆PH) are torsion-free and the poset PG is decreasing (i.e. the higher non-zero homologies
of ∆PG are exactly of dimension m0 + 1), then higher homologies of ∆PG are torsion-free.

Consider a coset lattice of PSL(2, 7). The simplicial complex ∆CPSL(2, 7) has dimension 4
(the longest chain is S4 > A4 > V4 > Z2 > 1). Howerver, coset posets of any subgroup: Z2, Z3,
Z4, Z7, V4, D8, A4, F21, S3 and S4 have non-zero homologies either in dimension 0 (Z2, Z3, Z4,
Z7), or in dimension 1 (V4, A4, D8, F21 and S3), or in dimension 2 (S4). As all proper subgroups
of PSL(2, 7) are solvable, their homologies are torsion-free (see [5]). Applying Thorem 6.2 and
Corollary 6.2 we obtain

H̃4(∆CPSL(2, 7)) = 0,

H̃3(∆CPSL(2, 7)) is torsion-free.

Obviously, ∆CPSL(2, 7) is connected. Moreover, CPSL(2, 7) proved to be simply connected
(see [10]). Therefore by Theorems 6.1 and 4.4 we immediately obtain some estimates for
homology ranks of CPSL(2, 7):

H̃0(CPSL(2, 7)) = 0;

H̃1(CPSL(2, 7)) = 0;

χ(CPSL(2, 7)) 6 H̃2(CPSL(2, 7)) 6 14616;

H̃3(CPSL(2, 7)) 6 11760;

H̃4(CPSL(2, 7)) = 0.

Now we shall find a connection between homologies of posets LG, CG and SG for any finite
G. Consider the opposite filtration CG (starting from the maximal cosets and ending by single
elements): assume that dim ∆CG = n+ 1, then CGn+1 = G, as for any g0 ∈ G the subposet of
cosets containing g0 is isomorphic to LG, hence, dim ∆LG = n.

Theorem 6.3. Consider a poset SG = CG \ CGn+1 ⊆ CG. Assume that for some m we have

H̃m(∆SG) = 0, then the homology groups H̃m(∆CG) can be embedded into homology groups

H̃m−1(∆LG)|G| and there exists a surjection H̃m+1(∆CG)→ H̃m(∆LG)|G|.

Proof. The easiest way to prove this theorem is to use an exact sequence of a pair (see [12]):
consider a topological pair (∆CG,∆SG). By Theorem 4.1 we have

∆CG/∆SG = ∆CG6n+1/∆CG6n =
∨
g∈G

ΣCG>{g} =
∨
g∈G

ΣLG =

|G|∨
ΣLG.

The exact sequence for the pair (∆CG,∆SG) is the following:

. . .→ H̃m+1(CG)→ H̃m+1(

|G|∨
ΣLG)→ H̃m(SG)→ H̃m(CG)→ H̃m(

|G|∨
ΣLG)→ . . .

If H̃m(SG) = 0, then we get an injection H̃m(∆CG) → H̃m−1(∆LG)|G| and a surjection

H̃m+1(∆CG)→ H̃m(∆LG)|G|.

Corollary 6.3. Assume that dim ∆LG = n > 0. Then dim ∆CG = n+ 1 and Hn+1(∆CG) are

embedded into H̃n(∆LG)|G|. Particularly, if homologies H̃n(∆LG) = 0 (or are torsion-free),
then Hn+1(∆CG) = 0 (or are torsion-free, respectively).
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Proof. As dimSG = n, it is sufficient to use Theorem 6.3 for the case m = n+ 1.

Corollary 6.4. The following estimate for the Betti numbers holds:

dim H̃n+1(∆CG) 6 |G| dim H̃n(∆LG).

Now we apply the concept of decreasing posets to the case of subgroup lattices. It is
important to mention that if the hypothesis that LG, CG and SG are all homotopy equivalent
to wedges of spheres of possibly different dimensions (see [7]), then their homology dimensions
coincide with maximal dimensions of spheres in the wedges.

We should say some facts about the structure of levels in group lattices: for any k > 0 levels
LGk, SGk and CGk+1 in the posets LG, CG and SG respectively contain the same subgroups.
A level in each poset PG is decreasing provided the corresponding posets PH are decreasing
for all subgroups on this level.

Theorem 6.4. Let PG be one of the posets LG, CG or SG and dim ∆PG = n. Assume that
PG contains exactly s(PG) decreasing levels. Then Hdim ∆PG 6 n− s(PG). Moreover, PG
is decreasing if and only if Hdim ∆LG 6 n− s(PG)− 1.

Proof. A direct reformulation of Theorem 5.1.

Corollary 6.2 can be reformulated in the following way:

Corollary 6.5. Suppose that G is a finite group, the higher homologies of PH are torsion-
free for all the proper subgroups H of G and the poset PG is not decreasing. Then the higher
homologies of PG are torsion-free.

Posets LG and CG proved to be connected in the sense of being “decreasing”:

Lemma 6.1. Suppose neither LG nor CG contains a decreasing level. If LG is decreasing,
then CG is decreasing.

Proof. An obvious corollary of 6.3.

7 Suzuki Groups

Consider a group G = Sz(2p
k
), where p is prime and k > 2 (for k = 1 the homotopy type of LG

was completely determined in [6]). Then all subgroups of G are either solvable or isomorphic
to Sz(2p

l
) for some l < k. Obviously, the number of subgroups conjugated to a given subgroup

H = Sz(2p
l
) in G coincides its index |G : H|, as H is self-normalizing. Furthermore, all

subgroups isomorphic to Sz(2p
l
) are contained in a single conjugacy class in G for all l < k (see

[11]). Thus we have

| Sz(2p
k

) : Sz(2p
l

)| = | Sz(2p
k

) : Sz(2p
l+1

)|| Sz(2p
l+1

) : Sz(2p
l

)| for l < k.

In particular, every subgroup Sz(2p
l
) is contained in a single subgroup Sz(2p

l+1
), hence, using

Quillen’s Fiber Lemma we can drop all subgroups isomorphic to Sz(2p
l
) for l < k − 1 without

changing the homotopy type of LG. Let R be a poset of all solvable subgroups of G and S be
a set of subgroups of the type G′ = Sz(2p

k−1
). Then

∆LG ∼= ∆(S ∪R).

14



Moreover, every subgroup in S is maximal in both LG and S ∪R ⊆ LG. By Lemma 4.1

∆LG/∆R ∼= ∆(S ∪R)/∆R ∼=
|G:G′|∨

Σ∆((S ∪R)<G′).

In fact, Shareshian proved (see [6]) that ∆R is homotopy equivalent to a wedge of circles:
∆R ∼=

∨eχ(G) S
1. Thus, we are ready to use the spectral sequence method: consider a filtration

of a complex ∆(S ∪ R): ∆R ⊆ ∆(S ∪ R) ∼= LG. In the resulting spectral sequence E1 will
contain only two non-zero cells (except for E1

0,0 = Z):

E1
0,1 = Z|G|; E1

1,1 = (Z|G′|)|G:G′| = Z|G|.

Thus we easily deduce the following statements:

1. HdimL Sz(2p
k
) 6 2 for k > 2. If k = 1, then obviously HdimL Sz(2p) = 1.

2. The reduced homologies of L Sz(2p
k
) for k > 2 have the following structure:

H̃2(L Sz(2p
k
)) = Zs,

H̃1(L Sz(2p
k
)) = Zs ⊕ T,

where 0 6 s 6 |G| and T is a finite abelian group (torsion part).

Consider a group G = Sz(2pq), where p and q are different primes. Let R ⊆ LG be again a
set of solvable subgroups of G, and S be a set of all simple subgroups of G, i.e. a union of two
conjugacy classes of Gp = Sz(2p) and Gq = Sz(2q). Then LG = R ∪ S and Lemma 4.1 yields

∆LG/∆R = ∆(S ∪R)/∆R ∼=
|G:Gp|∨

Σ∆LGp ∨
|G:Gq |∨

Σ∆LGq.

Thus, a spectral sequence constructed using the same filtration of ∆R ⊆ ∆G will contain only
two non-zero cells (except for uninteresting E1

0,0 = Z):

E1
0,1 = Z|G|; E1

1,1 = Z2|G|

This means that reduced homologies L Sz(2pq), p and q being prime, have the following
structure:

H̃2(L Sz(2p
k
)) = Z|G|+s,

H̃1(L Sz(2p
k
)) = Zs ⊕ T,

where 0 6 s 6 |G| and T is a torsion part.
For any Suzuki group, the estimates obtained by the same method, are notably less precise:

dim H̃1(L Sz(2r)) 6 |G|,
dim H̃k+1(L Sz(2r)) 6

∑
r′|r

dim H̃k(L Sz(2r
′
)) for all k > 1.
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