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Abstract

Using a geometric averaging procedure applied to a non-affine lin-
ear connection, we prove that for a narrow one particle distribution
function and in the ultra-relativistic limit, a bunch of charged point
particles can be described by a Charged Cold Fluid Model, without
additional hypothesis on the moments.2

1 Introduction

Modeling the dynamics of a non-neutral plasma is an important problem
in Plasma Physics and its applications in Beam Dynamics. Each bunch
of a beam in an accelerator contains about 1010 particles in a small region.
Therefore, one looks for models such that: 1. Are simple enough to be useful
in numerical simulations of the dynamics and 2. Contains the main features
of the particle nature of the constitutive elements of the bunches.

1r.gallegotorrome@lancaster.ac.uk Supported by EPSRC and Cockcroft Institute
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The traditional approach has been to use fluid models. Since the bunches
are formed by charged particles, a natural view is to interpret the fluid
model as a macroscopic approximation of a kinetic model [1]. The resulting
model is simple and still capable to retain some particle features coming
from the underlying Kinetic Theory. However, these derivation is based on
some assumptions that maybe are not accomplished in modern accelerators.
These assumptions are usually on the high order moments of the distribution
function. This seems to be a general feature of all the derivations of fluid
models from Kinetic Theory [1].

We present in this note a new derivation of the cold fluid model from
Kinetic Theory which uses only natural hypothesis, happening in current
particle accelerator machines. The way to do this is the following. Firstly,
we re-write the Lorentz force equation as an auto-parallel condition of a
non-affine linear connection. Then, we use an averaging procedure described
in [2] to average this connection. The resulting averaged connection is an
affine connection on the manifold M. After this, one compares the dynamics
of both connections [3]. For narrow distributions which follow the Vlasov
equation and in the ultra-relativistic dynamics, both dynamics are similar
[3]. Therefore, we have two Kinetic Models (one based on the Vlasov equa-
tion and the other on the Liouville equation associated with the averaged
connection). It happens that under the same assumptions than for the par-
ticle dynamics, the corresponding solutions of the Vlasov equation f and
the averaged Vlasov equation f̃ are similar [4]. One can also prove that the
corresponding velocity vector fields are similar. Finally, the velocity field of
the Liouville equation associated with the averaged dynamics is controlled
by the diameter of the distribution and by the energy of the bunch [3]. Con-
sidering all together, one has control of how good is the cold fluid model as
an approximation of the Vlasov’s model.

Notation. The space-time manifold M is n-dimensional. The metric η

is the Minkowski metric, the potential A is a smooth 1-form.

2 The Lorentz Connection

The Lorentz force can be written in a covariant form in a general coordinate
system in the following way:

d2σi

dt2
+ ηΓi

jk
dσj

dt

dσk

dt
+ ηij(dA)jk

dσk

dt

√

η(
dσ

dt
,
dσ

dt
) = 0, i, j, k = 0, 1, ..., n,

(2.1)
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where σ : I −→ M is a solution curve for t ∈ I, ηΓi
jk are the coefficients of

the Levi-Civita connection η∇ of η and dA is the exterior derivative of the 1-
form A (electromagnetic potential); here the parameter t is the proper-time
of η of the curve σ.

This system of second order differential equations are an auto-parallel
condition of a non-affine linear Koszul connection [5]:

L∇σ̇σ̇ = 0. (2.2)

The connection coefficients are

LΓi
jk(x, y) =

ηΓi
jk +

1

2
√

η(y, y)
(Fi

j(x)y
mηmk + Fi

k(x)y
mηmj)+

+ Fi
m(x)

ym

2
√

η(y, y)
(ηjk −

1

η(y, y)
ηjsηkly

syl), (2.3)

with Fij := ∂iAj − ∂jAi and Fi
j = ηikFkj. This defines a non-affine con-

nection on the pull-back bundle defined by the following diagram:

π∗TM

π1

��

π2
// TM

π̃
��

N
π

// M,

(2.4)

where
N :=

⊔

x∈M

{y ∈ TxM, | ηij(x)y
i yj > 0}.

3 The averaged Lorentz dynamics

The Lorentz connection L∇ is not an affine connection on M. One way to
obtain an affine connection is to integrate over the support of the distri-
bution f the connection coefficients [3]. This construction has a geometric
interpretation [2], but is not relevant here. Applying this procedure to eq.
(1.2), one obtains that the averaged connection < L∇ > has the following
coefficients:

< LΓi
jk >= ηΓi

jk+(Fi
j <

1

2
√

η(y, y)
ym > ηmk+Fi

k <
1

2
√

η(y, y)
ym > ηmj)+

+ Fi
m

1

2

(

<
ym

(η(y, y))3/2
> ηjk − ηjsηkl <

1

(η(y, y))3/2
ymysyl >

)

. (3.1)
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Each of the integrations is equal to the y-integration along the fiber:

< yi >:=
1

vol(Σx)

∫

Σx

yif(x, y) dµ, vol(Σx) =

∫

Σx

f(x, y) dµ

and similarly for higher moments. Here Σ is the unit hyperboloid, defined
by

Σ :=
⊔

x∈M

{y ∈ TxM | ηij(x)y
iyj = 1 }.

Σx is the restriction of Σ to TxM.

Proposition 3.1 Let M and L∇ be as before. Assume that the support of

the distribution f : Σ −→ R is compact and denote by < L∇ > the averaged

Lorentz connection. Then:

1. The connection < L∇ > is an affine, symmetric connection on M.

Therefore, for any point x ∈ M, there is a normal coordinate system

such that the averaged coefficients are zero.

2. To write down the form of < L∇ > we only need the first, second and

third moments of the distribution function f(x, y).

4 Comparison between L∇ and <
L∇ >

If on M there is a time-like vector field U normalized such that η(U,U) = 1,
one can define the Riemannian metric η̄:

η̄(X,Y ) := −η(X,Y ) + 2η(X,U)η(Y,U). (4.1)

Using η̄ there is a scalar product on the vector space TxM defined by
η̄(x)ijdy

i ⊗ dyj . The diameter of the distribution fx is

αx := sup{dη̄(y1, y2) | y1, y2 ∈ sup(fx)}, α := sup{αx, x ∈ M}.

The Riemannian metric η̄ induces a distance function dη̄ on the manifold
TxM. Then, we define α := sup{αx, x ∈ M}. We choose as vector field U

in the definition of the Riemannian metric (6.1) the following:

U(x) =
< ŷ > (x)

ηij(x) < ŷi > (x) < ŷj > (x) >
, if ηij(x) < ŷi > (x) < ŷj > (x) > 0

(4.2)
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and 0 if ηij(x) < ŷi > (x) < ŷj > (x) ≤ 0. Given a continuous operator
Ax : TxM −→ TxM, its operator norm is

‖A‖η̄(x) := sup
{ ‖A(y)‖η̄

‖y‖η̄
(x), y ∈ TxM \ {0}

}

.

Let us denote by γ̄(t) the gamma factor of the Lorentz transformation from
the local frame defined by the vector field U to the laboratory frame, at
some instance defined by the laboratory local time coordinate t. Denote
by θ2(x) = ~y2(x)− < ~̂y >2 (x) and θ̄2(x) =< ~̂y >2 (x) − ~̃y2(x). Here
~y(t) is the velocity tangent vector field along a solution of the Lorentz force
equation and ỹ(t) is spatial component of the tangent vector field along a
solution of the averaged equation, with both solutions having the same initial
conditions. The maximal values of this quantities on the compact space-time
manifold are denoted by θ2 and θ̄2. Then we can stay the following theorems
[3]:

Theorem 4.1 Let M be a semi-Randers space such that η is the Minkowski

metric. Let us assume that:

1. The auto-parallel curves of unit velocity of the connections L∇ and

< L∇ > are defined for values of laboratory frame coordinate time at

least t.

2. The dynamics occurs in the ultra-relativistic limit, E(x) >> 1 for all

x ∈ M.

3. The distribution function is narrow, ∞ > E(x) >> α for all x ∈ M.

4. It holds the following inequality:

|θ2 − θ̄2| ≪ 1

5. The support of the distribution function f is invariant under the flow

of the Lorentz force equation

Then, for the same arbitrary initial condition, the solutions of the equations

L∇ẋẋ = 0, < L∇ > ˙̃x
˙̃x = 0

are such that:

‖x̃(t)− x(t)‖ ≤
(

C(x)‖F‖(x) + C2

2 (x)(1 +B2(x)α)
)

α2 E−2(x) t2, (4.3)

where C(x), C2(x) and B2(x) are functions on M and bounded by constants

of order 1.
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Theorem 4.2 Under the same hypothesis as in theorem 4.1, the difference

between the tangent vectors is given by

‖ ˙̃xi(t)− ẋi(t)‖ ≤
(

K(x)‖F‖(x) +K2

2 (1 +D2(x)α)
)

α2 E−2 t. (4.4)

with Ki and D2(x) functions bounded by constants of order 1.

5 Results on Kinetic Theory and Fluid Models

In this section we overview our results from [4] on the approximation of the
Vlasov Kinetic Model by Cold Fluid Model.

In Kinetic Theory, the 1-particle distribution function follows the Liou-
ville equation:

χf(x, y) = 0, (5.1)

where χ is the Liouville vector field. In the case that the non-linear connec-
tion is the Lorentz connection, we consider the Vlasov equation:

Lχf(x, y) = 0, (5.2)

with the vector field

Lχ = yk∂k −
LΓk

ijy
iyj

∂

∂yk
, i, j, k = 0, 1, ..., n.

Similarly, for the averaged connection, the corresponding Liouville’s equation
is given by

< Lχ > f(x, y) = 0, (5.3)

with the vector field

< Lχ >:= yk∂k− < LΓk
ij > yiyj

∂

∂yk
, i, j, k = 0, 1, ..., n.

This is a partial integro-differential equation where the averaged vector
field < Lχ > is obtained using the distribution function associated with
the Liouville vector field of the averaged connection < L∇ >. However, it
is easier (because the existence of normal coordinates [5]) to extract some
consequence from this equation. In particular,

Proposition 5.1 Let f and f̃ be solutions of the Liouville equations Lχ(f) =
0 and < Lχ > (f̃) = 0 such that α̃, the diameter of f̃ is small; Lχ and

< Lχ > are the spray vector fields obtained from the connections L∇ and

< L∇ >. Assume that α̃ << E =< y0 >f̃ in the laboratory frame and the
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averaged is performed using f̃ . Then for the solutions of the Vlasov and the

averaged Vlasov equation,

|f(x(t), y(t)) − f̃(x(t), y(t))| < CM · |x(t)− x̃(t)|

for some constant CM depending on the manifold M.

One also proves the following [4]:

Proposition 5.2 With the above notation, the following relation holds:

< Lχ > f̃ = 0 ⇒ < L∇ >Ṽ Ṽ = O(α̃2), (5.4)

with α̃ the diameter of the distribution f̃ .

The natural implication of the above results is the following [4]:

Theorem 5.3 Let F be an external electromagnetic field and L∇ the asso-

ciated Lorentz connection. Then the solutions of the Lorentz force equation

L∇ẋẋ = 0 (5.5)

can be approximated by the integral curves of the normalized mean velocity

field u of the distribution function f(x, y), solution of the associated Vlasov

equation Lχf = 0 and the difference is controlled by polynomials on α̃ at

least of order 2.

This theorem is the main result presented in this paper. It affirms the
possibility of using the cold fluid model for narrow distributions and in the
limit ultra-relativistic limit.
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