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Does entropic force always imply the Newtonian
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Abstract

We study the entropic force by introducing a bound S ≤ A3/4 between entropy and

area which was derived by imposing the non-gravitational collapse condition. In this case,

applying a modified entropic force to this system does not lead to the Newtonian force

law.
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1 Introduction

Recently, Verlinde has proposed the Newtonian force law as an entropic force by using

the equipartition rule and the holographic principle [1]. After his work, the dynamics of

apparent horizon in the Friedmann-Robertson-Walker universe [2], the Friedmann equa-

tions [3, 4], the connection in the loop quantum gravity [5], the accelerating surfaces [6],

holographic actions for black hole entropy [7], and application to holographic dark en-

ergy [8] were considered from the entropic force. Furthermore, cosmological implications

were reported in [9], the extension to Coulomb force [10], and the symmetry aspect of

entropy force [11] were investigated. The entropic force was also discussed in the black

hole spacetimes [12, 13]. Its connection to the uncertainty principle was considered in [14].

We briefly review what was going on the entropic force. Explicitly, when a test particle

with mass m is close to a surface (holographic screen) with distance ∆x (compared to the

Compton wave length λm = h̄
mc

), the change of entropy on the holographic screen takes

the form

∆S = 2πkB
∆x

λm
→ 2πm∆x (1)

in the natural units of h̄ = c = kB = 1 and G = l2pl. Considering that the entropy

of a system depends on the distance ∆x, an entropic force F could be arisen from the

thermodynamical conjugate of the distance

F∆x = T∆S (2)

which is considered as an indication that the first law of thermodynamics may be realized

on the holographic screen. Plugging (1) into (2) leads to a connection between entropic

force and temperature

F = 2πmT (3)

which implies that if one knows the temperature T , the entropic force is determined by

(3). In order to define the temperature T on the screen, we assume that the energy E

is distributed on a spherical shape of holographic screen with radius R and the mass M

is located at the origin of coordinate as the source. Then, we introduce the holographic

principle, the equality of energy and mass, and the equipartition rule [15, 16], respectively,

as

N =
A

G
(4)

E = M, (5)

E =
1

2
NT (6)
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with the area of the holographic screen A = 4πR2. These are combined to determine the

temperature on the screen

T =
GM

2πR2
. (7)

Substituting (7) into (3), the entropic force is realized as the Newtonian force law

F =
GmM

R2
. (8)

In this work, we use a “modified entropic force” to derive the Newtonian force law by

considering two entropy bounds of S ≤ A and S ≤ A3/4 instead of the “entropic force”.

The former bound leads to the Newtonian force law, while the latter does not provide the

Newtonian force law. The latter accounts for the ordinary matter which is determined by

the non-gravitational collapse condition.

2 Two issues on defining the temperature

It is well known that two unusual assumptions to derive the temperature were the holo-

graphic principle (4) and the equipartition rule (6). Concerning the former, an urgent

issue is how one can construct a spherically holographic screen of radius R which encloses a

source mass M located at the origin using the holographic principle. This is an important

issue [13] because the holographic screen (an exotic description of spacetime) originates

from relativistic approaches to black hole [22, 23] and cosmology [24, 25]. Verlinde has

introduced this screen by analogy with an absorbing process of a particle around the

event horizon of black hole. Considering a smaller test mass m located at ∆x away from

the screen and getting the change of entropy on the screen, its behavior should resemble

that of a particle approaching a stretched horizon of a black hole, as was described by

Bekenstein [17]. It is clear that Verlinde has introduced the holographic screen as a basic

input to derive the entropic force.

The other issue is on the latter: why the equipartition rule could be applied to this

non-relativistic surface to define the temperature without any justifications. For black

holes, the equipartition rule becomes the Smarr formula of E = NT/2 = 2ST when using

the relation of N = A
G
= 4S. Also, it can be derived from the first law of thermodynamics

dE = TdS for the Schwarzschild black hole where the Komar charge is just the ADM mass

M . Even though the equipartition rule may be available for the classical (thermodynamic)

system, the holographic principle of N = A/G is not guaranteed to apply to any non-

relativistic situations. In this sense, this issue is closely related to the first issue.
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If the above two questions are answered properly, one would make a further step to

understand the origin of Newtonian force via the entropic force. However, there remains

a gap between non-relativistic approach (absence of horizons) and relativistic approach

(presence of horizons).

3 Modified entropic force

In this section, we wish to develop another issue of modified entropic force. In deriving

the non-relativistic Newtonian force law (8), we assume that the surface is between the

test mass m and the source mass M , but the test mass is very close to the surface as

compared to its Compton wavelength λm. According to Bekenstein’s argument in deriving

the area quantum of the Schwarzschild black hole [17], the test particle is indistinguishable

from horizon itself if the test particle is on the order of Compton wavelength away from

the event horizon. That is, a relativistic quantum particle cannot be localized to better

than its Compton wavelength, yielding a lower bound on the increment of the black hole

horizon area

∆A ≥ (∆A)min = 8πl2p (9)

due to the assimilation of a neutral test particle. This implies, in turn, the increment of

black hole entropy

∆S ≈ ∆A. (10)

In other words, considering the event horizon as the holographic screen where relativistic

effects dominate and the Newtonian approach is no longer a good scheme, the distance

∆x of Compton wavelength is not a relevant requirement on increasing the area of event

horizon [18].

At this stage, we remind the reader that the entropy increase (1) was derived from

a simple analogy with entropic explanation of thermodynamically emergent forces on

polymers immersed in a heat bath [1]. Therefore, it is not easy to see how the relation

(1) works on the gravity side.

Hence, we have to develop another logic to explain a difference between (1) and (10).

To this end, Smolin [5] has proposed that the information change in entropy carries the flux

of a bit or byte across the surface which is necessarily discretized. He has proposed such

a process that a small excitation initially in the interior region moves out to the exterior,

where it may be interpreted as a massive particle. Jacobson’s idea [19] has shown that any

translation of an excitation across the boundary surface involves a change both of energy

U and entropy S, where the latter implies a change of the area of the boundary. Further,
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Verlinde’s idea [1] has implied that there must be a temperature T associated with this

process since any change ∆U in energy is accompanied by ∆S. Smolin has proposed that

the change ∆U in energy corresponds to this translational motion over a distance ∆x.

This means that there exists a force F = ∆U
∆x

acting on the excitation. According to the

first law of thermodynamics, this force takes the form

F∆x = ∆U = T∆S (11)

which implies a modified entropic force

F = T
∆S

∆x
. (12)

Here, we mention that this modified equation differs from (2), even though their forms

are the same [5, 20]. Importantly, if one gives up the linear relation (1) between ∆S and

∆x, and then, it may be replaced by a relationship between entropy S and area A as

S = S(A). (13)

4 S ∼ A versus S ∼ A3/4

From now on, we use the modified relation (12) to study the entropic force. It is well

known that the entropy of Schwarzschild black hole is given by the Bekenstein-Hawking

entropy [21, 17]

SBH =
A

4l2p
. (14)

However, the nature of this entropy is one of the greatest mysteries of modern physics

because it scales as the area of black hole rather than its volume. This peculiar property

has led to the holographic principle [22, 23, 24], stating that the number of degrees of

freedom in any system including gravity effects grows only as the area of its boundary. If

the entropy of surface is taken to be (14), one finds

∆S =
∆A

4l2p
. (15)

It is noted that in (12), ∆S is one fundamental unit of entropy when ∆x ≃ λm = 1/m (if

one considers (9) further, ∆S = 2π) and the entropy gradient points radially from outside

of the boundary surface to inside. We can easily check that Eq.(12) together with (15)

leads to the Newtonian force law as in (8) when using the temperature (7).

On the other hand, it is known that gravitational collapse limits the entropy of a phys-

ical system. Information (entropy) requires the energy, while formation of a horizon by
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gravitational collapse restricts the amount of energy allowed in a finite region. Explicitly,

’t Hooft has shown that if one excludes configuration whose energies are so large that they

inevitably undergo gravitational collapse, one finds the non-covariant entropy bound [22]

S ≤
(A

l2p

)3/4
(16)

which is clearly different from the covariant entropy bound

S ≤ SBH ∼
A

l2p
. (17)

As a concrete example, we consider a thermal system of radius R and temperature T

which implies that its entropy (energy) are given by S ∼ T 3R3(E ∼ T 4R3). Requiring

the non-gravitational collapse condition

E <
R

l2p
, (18)

one obtains the temperature bound

T <
1

√

lpR
. (19)

Then, the entropy bound appears as in (16)

S <
(R

lp

)3/2
=

(A

l2p

)3/4
. (20)

There are several arguments which support that the non-covariant bound has more

application than the covariant entropy bound to a system of the ordinary matter. The

authors [26] have proposed that the entropy bound (20) could be derived from the energy

bound of E ≤ EBH , when getting rid of many states where the Schwarzschild radius is

much larger than the system size. Hence the non-covariant entropy bound (20) is more

restrictive than the covariant entropy bound (17) [27]. Buniy and Hsu [28] have shown

that the entanglement entropy has the same bound as in (20) when imposing the non-

gravitational collapse condition (18). Also, Chen and Xiao [29] have proved that under

the condition of (18), the entropy bound for the local quantum field theory is A3/4 but

not A for considering either bosonic fields or fermionic fields in the system of size l. The

authors [30] have confirmed that under the condition of (18), the entropy bound of the

local quantum field theory has taken to be (20) when using the generalized uncertainty

principle. Additionally, considering the spacetime foam uncertainty of δl ≥ lαp l
α−1 [31, 32],
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it was shown that the case of α = 2/3 could explain the holographic model with infinite

statistics whose entropy scales as S ∼ A, while the case of α = 1/2 could describe the

ordinary matter with Bose-Fermi statistics whose entropy scales as S ∼ A3/4. Recently,

the reasonable arguments has been given that the correct bound should be S < A/4,

and not S < A3/4 for the cosmological matter distributions [33]. However, that work

conjectured that the stronger bound of S < A3/4 does hold for static, weakly gravitating

systems. Here, we consider the static, weakly gravitating systems because we are working

with the non-gravitational collapse condition (18).

Finally, we would like to mention the possibility that the covariant entropy bound

(17) works when it applies to general relativity. In a modified gravity of f(R) theory [34],

instead, the entropy takes the form [35, 36]

Sf =
f ′(R)A

4l2p
. (21)

Hence, the non-covariant entropy bound of (16) may be constructed from f(R) gravities.

5 Entropic force on the ordinary matter

At this stage, we could not confirm that the non-covariant bound (16) takes into account

the entropy of an ordinary matter including weakly gravitating effects exactly, instead

of the covariant entropy bound (17) for the strongly gravitating systems of black hole,

de Sitter cosmological horizon and apparent horizon in cosmology. However, there is no

reason to prefer the maximum entropy of Smax ∼ A to find the entropic force between

ordinary matters (source particle and test particle). As was previously mentioned, there

are several theoretical evidences which support that the bound (16) is better appropriate

for describing the ordinary matter than the bound (17).

Hence, in this work, we use the maximum entropy of Smax ∼ A3/4 in order to derive the

entropy force for the system because the source mass M is not a black hole. Considering

S = α(A/l2p)
3/4, its variation is given by

∆S =
∂S

∂A
∆A =

3α

4l
3/2
p

∆A

A1/4
. (22)

In this case, the entropic force takes the form

F = T
∆S

∆x
=

3αT

4l
3/2
p A1/4

∆A

∆x
(23)

which leads to

F = G1/4GmM

R5/2
(24)
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when choosing the temperature T in (8) and a coefficient α as

α =
(4π)1/4

3
. (25)

It is evident that Eq.(24) does not represent the Newtonian force law. In order to derive

the Newtonian force law, one has to explain why the entropy of the surface (holographic

screen) should be given by the area-law. We note that (23) was used to make a correction

to the Newtonian force law by considering the entropy corrections [20].

In addition to two issues of holographic principle and equipartition theorem on deter-

mining the temperature on the screen, there exists the third issue on a form of entropy of

the screen when using the modified entropic force. It is clarified that if S does not satisfy

an area-law (for example, S ∼ A3/4), one could not obtain the Newtonian force law from

the modified entropic force (12).

6 Discussions

It is fare to say that the origin of the gravity is not yet fully understood. If the gravity

is not a fundamental force, it may be emergent from the other approach to gravity.

Newtonian force law may be emergent from the equipartition rule and the holographic

principle [1].

As was mentioned previously, it may be not proper to use the linear relation (1)

between ∆S and ∆x on the gravity side. According to Bekenstein [17], a classical point

particle could not increase the area of black hole horizon. On the other hand, a relativistic

quantum particle cannot be localized to better than its Compton wavelength λm [18]. This

yields a lower bound on the increment of the black hole area, due to the assimilation of a

test particle. This is regarded as the origin of the entropy increase in the black hole. In

order to explain this gab, Smolin has modified the linear relation (1) into a relation (15)

between ∆S and ∆A [5].

Furthermore, we wish to point out that the source mass M behind the screen is not a

black hole. Also the surface is not the event horizon of a black hole. Hence, the area-law

entropy of S ∼ A is not justified to represent the entropy of ordinary matter. For this

purpose, we introduced the non-covariant entropy of S ∼ A3/4 obtained when imposing

the non-gravitational collapse condition (18) on the ordinary matter. Here, we found the

non-appearance of Newtonian force law. In this sense, the non-appearance of Newtonian

force may be related to the fact that entropy bound requests further modification.

Consequently, the appearance of Newtonian force law from the entropic force (2) seems

not to be robust. The Newtonian force law was obtained when employing holographic
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principle and equipartition theorem to derive the temperature and using the modified

entropic force (12) together with the area-law entropy. If one uses another entropy bound

of S ∼ A3/4 together with (12), however, one fails to derive the Newtonian force law.
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