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Accurate calculation of thermal noise in multilayer coating
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We derive accurate formulas for thermal fluctuations in multilayer interferometric coating taking
into account light propagation inside the coating. In particular, we calculate the reflected wave
phase as a function of small displacements of the boundaries between the layers using transmission
line model for interferometric coating and derive formula for spectral density of reflected phase in
accordance with Fluctuation-Dissipation Theorem. We apply the developed approach for calculation
of the spectral density of coating Brownian noise.

I. INTRODUCTION

Thermal fluctuations in the mirror are becoming signif-
icant noise sources in the second generation gravitational-
wave antennae (Advanced LIGO, Advanced VIRGO, HF
GEO, TAMA) [1]. The pioneering articles on this issue
dealt with Brownian fluctuations in the body of mirror
[2–4]. Later the importance of thermoelastic noise [5]
was realized especially for mirrors manufactured from
sapphire. The physical reasons behind thermoelastic
noise are provided by fundamental thermodynamic fluc-
tuations of temperature manifesting through thermal ex-
pansion. The same reason produces the thermorefractive
noise [6] through the mechanism of relation between the
refractive index and temperature. These results were ob-
tained for model of infinite test mass (the mirror was
considered occupying semi-infinite elastic space). Later
these results were generalized for the finite-size mirror
[4, 7].

Soon the importance of thermal noise in the mirror
coating was realized as the parameters of coating may dif-
fer considerably from the mirror parameters bulk. Ther-
moelastic noise in interferometric coating was calculated
in [8, 9]. Later, following direction of H.J. Kimble [10] the
potential of partial compensation of thermoelastic and
thermorefractive noise in coatings was explored [11, 12].
However, today the Brownian noise in interferometric
coating produces the main contribution into the noise
spectrum [13–15] of gravitational wave antennae because
the loss angles of substances used in coating (as usual,
pair Ta2O5, SiO2) are much greater than the loss angles
in the same bulk materials.

As a rule the calculation of Brownian and thermoelas-
tic noise in coating is reduced to calculation of fluctu-
ations of the total coating thickness. Strictly speaking,
the light partially travels inside the coating, however, its
power exponentially decreases with the depth when the
light travels inside the coating. It allows considering the
light to be perfectly reflected from the outer surface of
the coating. Usually, the calculation of thermal noise
in coating is provided under assumption that light is re-
flected from the front surface of the coating without de-
tailed analysis of the light propagating inside the coating
[8, 9, 11–15].

The purpose of this article is to make accurate calcu-
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FIG. 1: Top: Conventional mirror with interferometric coat-
ing deposited on the face side. The coating consists of al-
ternating quarter wavelength layers plus the outer half wave-
length cap layer. Bottom: transmission line model with alter-
nating quarter wavelength parts, ρ1 = 1

n1
ρ2 = 1

n2
, ρo = 1.

lations of reflected wave phase taking into account prop-
agation of light inside the coating. In particular, we cal-
culate the reflected wave phase as a function of small dis-
placements of the boundaries between the layers. In our
analysis we use transmission line model for interferomet-
ric coating [16]. In Sec. II we calculate the dependence
of the phase of the wave reflected from the mirror as
function of small displacements of boundaries between
interferometric layers of coating. In Sec. III we apply
the formula obtained to calculate the spectral density of
Brownian noise inside the coating to obtain numerical
estimates. In Sec. IV we discuss obtained results.

II. CALCULATION OF REFLECTED WAVE
PHASE

It is known that the interferometric coating consists
of alternating quarter wave length layers with different
refraction indices n1, n2 (n1 > n2) as shown on Fig. 1.
Specifically, below we assume that coating consists of
Ta2O5 (n1) and fused silica (n2) layers, the outer layer

http://arxiv.org/abs/1005.3138v1
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(with positions z0, z1) is made from Ta2O5 and it is
covered by additional half wave length layer (cap) which
outer position is zc. Such a coating is similar to trans-
mission line consisting of alternating quarter wave length
pieces with characteristic (wave) impedances ρ1 = 1/n1

and ρ2 = 1/n2 [16].
We assume that the test mass (the body of the mir-

ror) is manufactured from fused silica, hence, the wave
impedance between zN and zN+1 is equal to ρ2 = 1/n2.
The mean position zi of the surface of each layer (see
Fig. 1) corresponds to the quarter wave length thick-
ness of each layer, however, small position fluctuations
ζi (caused by thermal fluctuations) produce fluctuations
in reflected wave phase. In this section we calculate the
reflected wave phase as a function of small displacements
ζi using the successive approximation technique.

A. Main formulas and the zeroth approximation

In our consideration we ignore the optical losses in ma-
terials of coating. We start with considering the last layer
assuming that all fluctuation displacements ζi are equal
to zero. We assume that the wave propagating in the
positive direction of axis z is described as ∼ e−iω(t−z/c).
The equivalent impedance at position z = zN+1 is equal
to ZN+1 = ρo = 1 (vacuum). It is convenient to define
the amplitude reflectivy R as

Urefl = RUincident

Obviously, the amplitude reflectivity RN+1 at z = zN+1

is equal to:

ZN+1 = ρo, RN+1 =
ρo − ρ2

ρ2 + ρo
(2.1)

Now we can calculate the effective impedance ZN at posi-
tion zN — it allows considering the piece of transmission
line between zN and zN+1 as a single impedance ZN

ZN = ρ2
1+ RN+1θ

2
N+1

1− RN+1θ
2
N+1

, Z
(0)
N =

ρ22
ρo

, (2.2)

θ2N+1 ≡ exp
[

2ik2(zN+1 − zN)
]

= − exp
[

2ik2(ζN+1 − ζN)
]

,

k1,2 = k
ρo

ρ1,2
, k =

2π

λ
. (2.3)

Here θN+1 is the exponent describing phase advance of
wave traveling between positions zN and zN+1, k1,2 are
the wave vectors, λ is the optical wavelength in vacuum.
Here and below superscript (0) refers to the particu-
lar case of the zeroth approximation when fluctuations
ζN, ζN+1 are absent. We consider the test mass as one
fused silica layer (“slightly” thicker). For convenience
we assume its thickness being a fold to the quarter wave
length (to meet the condition of anti resonance) — it
means θ2N+1 = −1. We make this assumption to make
final formula more compact, without it the final result

does not change practically but formulas looks more ak-
ward.
In the similar manner we successively calculate reflec-

tivity RN, impedance ZN−1 and so on:

RN =
ZN − ρ1

ZN + ρ1
, R

(0)
N =

ρ2

2

ρ1ρo
− 1

1+
ρ2

2

ρ1ρo

(2.4a)

ZN−1 = ρ1
1+ RNθ2N
1− RNθ2N

, Z
(0)
N−1 =

ρ22
ρo

= ρo
ρ21
ρ22

, (2.4b)

θ2N ≡ − exp
[

2ik1(ζN − ζN−1)
]

, (2.4c)

RN−1 =
ZN−1 − ρ2

ZN−1 + ρ2
, R

(0)
N−1 =

ρ21ρo/ρ
3
2 − 1

1+ ρ21ρo/ρ
3
2

, (2.4d)

ZN−2 = ρ2
1+ RN−1θ

2
N−1

1− RN−1θ
2
N−1

, Z
(0)
N−2 =

ρ22
ρo

(

ρ22
ρ21

)

,

(2.4e)

RN−2 =
ZN−2 − ρ1

ZN−2 + ρ1
, R

(0)
N−2 =

ρ4

2

ρ3

1
ρo

− 1

1+
ρ4

2

ρ3

1
ρo

, . . . (2.4f)

The total number N of layers is assumed to be an odd
number. Hence, we can calculate the impedance at point
z = z0 in the zero approximation:

Z
(0)
0 = ρo

(

ρ21
ρ22

)(N+1)/2

= ρo

(

ρ1

ρ2

)N+1

≪ ρo , (2.5)

Z
(0)
2m = ρo

(

ρ1

ρ2

)N+1−2m

, Z
(0)
2m−1 =

ρ22

Z
(0)
2m

(2.6)

Accounting for the half wave length cap layer gives that

the effective impedance Z
(0)
c at position zc is equal to

Z
(0)
c = Z

(0)
0 .

Reflectivity and transparency. In case of small
impedance Z0 ≪ ρo one may easily calculate the effective

amplitude reflectivity R0 and transparency T0 =

√

1− R2
0

R0 =
Z0 − ρo

ρo + Z0
≃ −1+

2Z0

ρo
, T0 ≃

4Z0

ρo
(2.7)

In the zeroth approximation we have:

R
(0)
0 =

Z
(0)
0 − ρo

ρo + Z
(0)
0

= −
1−

(

ρ1

ρ2

)N+1

1+
(

ρ1

ρ2

)N+1
, (2.8)

(

T
(0)
0

)2
=

4
(

n2

n1

)N+1

(

1+
(

n2

n1

)N+1
)2

≃ 4

(

n2

n1

)N+1

(2.9)

B. Fluctuations of layer positions in coating

Now we take into account displacements ζj in position
of each layer. We are interested in only linear terms of
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expansion Z0 over ζj. Hence, we can calculate each term
separately, i.e. we can calculate a term, for example,
proportional to a certain fluctuation ζm putting all other
positions to be equal to zero: ζi6=m = 0.
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FIG. 2: For calculation of the dependence on displacement
ζ0.

First we assume that the cap layer is absent (later we
will include it into considerations). We start by taking
into account a small displacement ζ0 assuming that all
other displacements are equal to zero: ζj6=0 = 0. Hence,
we can account for the unperturbed piece of transmission

line between z1 . . . zN+1 as a single impedance Z
(0)
1 — see

Fig. 2.
The displacement ζ0 influences the phase of reflected

wave in two ways: a) through variation of effective
impedance which, in turn, changes the reflectivity and
b) through direct displacement of front surface which re-
flects the wave (see formula (2.15) below).
a). We calculate the perturbed impedance Z0:

Z
(0)
1 =

ρ22

Z
(0)
2

=
ρ22
ρo

(

ρ2

ρ1

)N−1

≫ ρo, (2.10)

R
(0)
1 =

Z
(0)
1 − ρ1

Z
(0)
1 + ρ1

=
1− αN

1+ αN
, αN ≡

ρo

ρ2

(

ρ1

ρ2

)N

≪ 1,

θ21 ≃ −
[

1− 2ik1ζ0
]

, (2.11)

Z0 = ρ1
1+ R

(0)
1 θ21

1− R
(0)
1 θ21

= ρ1
αN − (1 − αN)2ik1ζ0

1+ (1− αN)2ik1ζ0
≃

= Z
(0)
0 + ik1ζ0ρ1(1 − α2

N) =

= Z
(0)
0 + ikζ0ρ0



1−

[

ρo

ρ2

(

ρ1

ρ2

)N
]2


 . (2.12)

Now we can estimate the perturbed reflectivity R0:

R0 =
Z0 − ρo

Z0 + ρo
≃ R

(0)
0

(

1−
2ikζ0(1− α2

N)

1− α2
N+1

)

(2.13)

αN+1 ≡

(

ρ1

ρ2

)N+1

≪ 1 (2.14)

b). Let the amplitude of the incident wave to be A
then the complex amplitude B of the reflected wave is
provided as

B = R0Ae2ikζ0 (2.15)

Now expanding exponent in (2.15) in series over ζ0 and
substituting (2.13) we obtain

B ≃ R
(0)
0 A

(

1−
2ikξ0(1− α2

N)

1− α2
N+1

+ 2ikζ0

)

≃ (2.16)

≃ R
(0)
0 A

(

1− 2ikζ0

(

ρ1

ρ2

)2N
ρ22 − ρ21

ρ22

)

.

We see that contribution of displacement ζ0 into the
phase of reflected wave is depressed by a small factor
∼ (ρ1/ρ2)

N.
In the same manner we can calculate contribution of

fluctuation displacement in each layer ζi into the phase
of reflected wave. In addition we can take into account
fluctuations of position ζc of additional half wavelength
layer (cap) made from fused silica. Then we can calculate
the phase of the reflected wave expressing it as a function
of small displacements ζi with account of the cap — see
detailed calculations in Appendix A
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FIG. 3: The coefficients ǫj from formula (2.17) for a coat-
ing with a cap. Red circles correspond to odd subscript and
blue diamonds – to even ones. n1 = 2.035 (Ta2O5), n2 =

1.45 (SiO2). The number of Ta2O5 layers is assumed to be
N1 = 20, and the number of SiO2 layers — N2 = 19 plus cap.
Subscript −1 on the plot corresponds to ǫc.

The formula for phase φ of reflected wave is convenient
to write through refractive indices (ρ1 = 1/n1, ρ2 =
1/n2, n1 > n2):

iφ = 2ik



ǫcζc +

N+1∑

j=0

ǫj ζj



 , (2.17a)

ǫc = n2

(

n2

n1

)2N+2

, (2.17b)

ǫ0 =

(

n2
1 − n2

2

n2
1

)

n2
2

(

n2

n1

)2N

, (2.17c)

ǫ1 =

(

n2
1 − n2

2

n2
1

)

, (2.17d)

ǫ2 =

(

n2
1 − n2

2

n2
1

)

n2
2

(

n2

n1

)2N−2

, (2.17e)
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ǫ3 =

(

n2
1 − n2

2

n2
1

)(

n2

n1

)2

, (2.17f)

ǫ4 =

(

n2
1 − n2

2

n2
1

)

n2
2

(

n2

n1

)2N−4

, . . . (2.17g)

ǫ2m−1 =

(

n2
1 − n2

2

n2
1

)(

n2

n1

)2m−2

, (2.17h)

ǫ2m =

(

n2
1 − n2

2

n2
1

)

n2
2

(

n2

n1

)2N−2m

, . . . (2.17i)

ǫN =

(

n2
1 − n2

2

n2
1

)(

n2

n1

)N−1

, (2.17j)

ǫN+1 =

(

n2
1 − n2

2

n2
1

)

n2
2

(

n2

n1

)N−1

. (2.17k)

We see that fluctuation displacements ζ1, ζ3, . . . (odd
numbers) provide the main contribution into sum (2.17)
whereas the input of displacements ζc, ζ0, ζ2, ζ4 . . .
(even numbers) is negligible. The plot of coefficients ǫi
is presented in Fig.3.
Note that formulas for coefficients ǫi obtained in the

cases with and without half wavelength cap are practi-
cally the same — compare formulas (A12) and plots in
Fig. 8 in Appendix A with formulas (2.17) and plot in
Fig. 3 correspondingly.

III. CALCULATION OF COATING BROWNIAN
NOISE

We can apply the exact formulas (2.17) to calculate
Brownian noise to coating. In accordance with Fluctu-
ation Dissipation Theorem (FDT) [3, 17, 18], in order
to calculate the spectral density SX(ω) of fluctuations of
variable X =

∑
ǫiζi at the frequency ω, we have to ap-

ply force
∑

i ǫiF0e
iωt acting at frequency ω so that the

force ǫiF0 is to be applied to position zi. Then we have
to calculate the total dissipated power W and to find the
spectral density using formula

SX(ω) =
8kBT W

F20ω
2

(3.1)

In so doing we just calculate the spectral density of fluc-
tuating variable X as there is no need to calculate addi-
tional correlations between thickness fluctuations in dif-
ferent layers.
In contrast to previous approximate approaches [8, 9,

11–14] the formulas (2.17) provide the option of direct
explicit calculation of the thermal noise in coating. Recall
that in above articles the following approximate formula
was used for reflected wave phase

φapprox = 2ikζc (3.2)

In this case we have to apply force F0e
iωt to position zc

in order to calculate spectral density of variable ζc.

Obviously, the use of explicit formula (2.17) will give
smaller value of dissipated power relative to result of ap-
proximate approach (3.2). Hence, the spectral density
should be also smaller.

A. Mirror as an infinite half space

We compare the explicit and approximate calculations
of Brownian noise of coating using the model of the mir-
ror as a semi-infinite half space using approach developed
for structural losses in [13, 14]. In accordance with FDT
[3, 17, 18] we have to apply pressure ǫip0 to the i-th
boundary between layers:

ǫcp0 – to outer surface of cap, p0 =
2F

πw2
e−2r2/w2

,

ǫ0p0 – to position z0, (3.3)

ǫ1p0 – to position z1, . . . (3.4)

and so on. We are interested in elastic energy Ui stored
in each layer.
First we write down formulas for strains uij and stress

σzz in outer layer of the mirror body (substrate) [4, 13,
19]

urr =
FΣ

4π(λ + µ)

(

1

r2

[

1− e−2r2/w2
]

−
4

w2
e−2r2/w2

)

,

(3.5a)

uφφ =
−FΣ

4π(λ + µ)

1

r2

[

1− e−2r2/w2
]

, (3.5b)

uzz =
−FΣ

4π(λ + µ)

4

w2
e−2r2/w2

, (3.5c)

⇒ uzz = urr + uφφ,

urz = 0, Σ ≡ ǫc +

N∑

i=0

ǫi, (3.5d)

σzz =
2FΣ

πw2
e−2r2/w2

. (3.5e)

Here λ, µ are the Lamé coefficients of substrate, which
are known to be expressed through the Young modulus
Y and the Poisson ratio ν as following

λ ≡
νY

(1+ ν)(1− 2ν)
, µ ≡

Y

2(1 + ν)
, (3.6)

We assume that the number i = N corresponds to the
surface of substrate (as shown in Fig. 1)..
Now we calculate strains and stresses in coating layers.

As usual we assume that the tangent strains in the i-
th layer of coating (the positions of its boundaries are
zi−1, zi) are equal to corresponding strains in substrate:

ui
rr = urr, ui

φφ = uφφ, ui
rz = urz = 0, (3.7)

The last components ui
zz of the normal strain in the i-th

layer can be found from the known formula binding stress
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and strain tensors [19]:

σi
zz = (λi + 2µi)u

i
zz + λi

(

ui
rr + ui

φφ

)

(3.8)

The normal stress σi
zz, i can be easily calculated as fol-

lowing

σi
zz =

FΣi

πw2
e−2r2/w2

, Σi ≡ ǫc +

i−1∑

j=0

ǫj. (3.9)
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FIG. 4: The coefficient Vi proportional to energy stored in
the i-th layer from formula (2.17) for coating with a cap. Red
circles correspond to odd subscript (nodd = 2.035 (Ta2O5))
and blue diamonds (neven = 1.45 (SiO2)) – to even ones.
Number of Ta2O5 layers is assumed to be N1 = 20, and the
number of SiO2 layers — N2 = 19. Coefficent V0 on the plot
corresponds to the cap layer.

Manipulating with (3.8, 3.9) we write down a useful
formula:

ui
zz = Aiuzz, Ai =

2(λ + µ)Σi − λiΣ

(λi + 2µi)Σ
(3.10)

and to calculate the elastic energy Ui in the i-th layer
with thickness di through its volume density wi using
the known formulas:

wi = µi

(

u2
rr + u2

φφ + (ui
zz)

2
)

+
λi

2

(

ui
zz + urr + uφφ

)2
,

Ui = di 2π

∫
∞

0

wi r dr =

=
di

8π

(

FΣN

w(λ + µ)

)2
[

2µi

(

1+A2
i

)

+ λi
(

1+ Ai

)2
]

.

(3.11)

Now we calculate the spectral density of variable X
(3.1) using the fact that for the structural losses the
power dissipated in the i-th layer can be expressed as
Wi = Uiφiω:

SX(ω) =
kBT

ω

Λ

π(µ+ λ)

(

FΣN

2w

)2 N∑

i=0

Vi, (3.12)

Vi = [1+ δ0i]
2µi

(

1+A2
i

)

+ λi
(

1+Ai

)2

ni(µ+ λ)
φi

(3.13)

Here φi is the loss angle of structural losses in the i-
th layer, Λ denotes the optical wavelength in vacuum,
thickness di of i-th layer is expressed through its refrac-
tive index ni as di = Λ/4ni for each layer except cap, the
multiplier [1+ δ0i] is introduced to account for the fact
that the cap thickness is two times larger (as its width
is equal to half wavelength). The plot of dimensionless
coefficients Vi is presented on Fig. 4, the used numerical
parameters are presented in Table I.

TABLE I: Parameters used for numerical calculations.

Parameter substrate Ta2O5 layer SiO2 layer

T , K 290

Λ, m 1.064× 10−6

NCM - 20 19 + cap

n 1.45 2.035 1.45

Y, Pa 72× 109 140× 109 72× 109

ν 0.17 0.23 0.17

φ 4× 10−10 2× 10−4 4× 10−5

Now we may compare the estimate of accurate formula
for spectral density SX of Brownian noise with approxi-
mation Sζc

used previously [13, 14]. Numerical calcula-
tions for parameters presented in Table I gives:

Sζc
− SX

SX
≃ 0.0539 (3.14)

We see that accurate calculation gives slightly less value
of spectral density. However, the difference is quite mod-
est — about 5 percents only. We may qualitatively ex-
plain it by the fact that the tagent strains urr, uφφ are
the same for all layers and they make considerable con-
tribution into elastic energy. The account of different
coefficients ǫi change only strain uzz, which is smaller
than tagent strains for the majority layers.

B. Mirror as a finite cylinder

We repeated our calculations of coating Brownian noise
for mirror as a finite cylinder using results of [4, 7, 15].
For estimates we used the parameters listed in Table I.
For fused silica cylinder planned in third generation
laser gravitational antenna (Einstein Telescope, radius
R = 0.30 m, height H = 0.31 m, w = 0.12 m) we have
got

Sζc
− SX

SX

∣

∣

∣

∣

ET

≃ 0.0524 (3.15)
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For cylindric test mass planned in Advanced LIGO (ra-
dius R = 0.17 m, height H = 0.20 m, w = 0.06 m) we
have got

Sζc
− SX

SX

∣

∣

∣

∣

aLIGO

≃ 0.0569 (3.16)

We see that the difference is practically the same as for
the model of mirror as an infinite half space.

C. Double mirror (Khalili etalon)

The number of layers used in conventional coating is
large enough (about 40) — it is the reason why explicit
and approximate formulas give close numerical results as
estimates (3.14, 3.15, 3.16) show. However, explicit for-
mulas may give considerably different results in double
mirror [20]. Recall, in conventional mirror the fluctua-
tions of thickness of each layer in the coating are trans-
formed into phase fluctuations of reflected wave in two
ways. First, each layer makes contribution into varia-
tion of front position of coating (position of first layer)
and each layer makes approximately equal contribution.
(It is worth underlying that we are interested in posi-
tion of front surface of mirror relative to its center of the
mass.) Second, the fluctuations of the layer thickness
vary the pathlength of light traveling inside it and only
several first layers make the main contribution whereas
inner layers make exponentially small contribution. The
first effect is much bigger than the second and usually
only it is taken into account.
The idea of double mirror, put forward by F. Khalili

[20] (now the term “Khalili etalon” is frequently used),
is to displace the part of layers from the front surface to
the rear surface of the mirror. In this case the thickness
fluctuations of layers on the rear surface do not make
contribution into fluctuations of front surface relative to
mirror’s center of the mass. And number of layers on the
front surface may be smaller than total number of layers.
Obviously, the explicit calculation of Brownian noise of
the front layers have to give considerably less value of the
spectral density as compared to approximate one due to
relatively small number of layers. Obviously, there are
precisely layers on front surface which make the main
contribution into the coating Brownian noise of double
mirror.
As an example, we have applied approach presented

in this paper for Khalili etalon in order to estimate dif-
ference between two approaches. We assume that the
coating on front surface consists of 3 layers of Ta2O5 and
2 layers of SiO2 plus cap (also manufactured from fused
silica) and coating on rear surface — 17 layers of Ta2O5

and 17 layers of SiO2. The other parameters were taken
the same. One may calculate coating Brownian noise
in Khalili etalon by two ways. In traditional (approx-
imate) approach one has to apply corresponding forces
εfF0 and εrF0 forces to front and rear surfaces of cylin-
dric mirror (the coefficients εf and εr are calculated from

effective tansmittances of corresponding coatings), to cal-
culate the power dissipated in coating and, finally, to cal-
culate spectral density Sapp(ω) using formula (3.1). We
have also calculated spectral density Sacc(ω) using our
approach through coefficients ǫi. We have found that
Sacc(ω) is smaller than Sapp(ω) by about 17%:

Sapp(ω) − Sacc(ω)

Sacc(ω)
≃ 0.172 (3.17)

Here we used the parameters from Table I and Advanced
LIGO (radius R = 0.17 m, height H = 0.20 m, w =
0.06 m).

IV. CONCLUSION

The formulas (2.17) may be applied to the explicit
calculation of Brownian, thermoelastic, thermorefractive
noise in the coating. These formulas are especially im-
portant for the thermal noise compensation first proposed
by J. Kimble [10] and then demonstarted for thermoelas-
tic and thermorefractive noises [11, 12]. Recall that in
[11, 12] consideration was based on approximation (3.2)
but we hope that formulas (2.17) will allow to formulate
explicit recommendation for thickness of each layer.

In order to do it we have to rewrite formula for re-
flected wave phase φ in form useful for the calculation
of thermorefractive noise. For this case we have to as-
sume that layers positions are not fluctuated ζj = 0 but
there are fluctuations of light path lengths due to varia-
tion of refractive index in each layer — see corresponding
formulas (A14) in Appendix A. This formula does not
account influence of cap because in accordance to recom-
mendation of [12] the thickness of additional cap layer is
a subject for optimization.

Recently non-quarter wavelength coating was sug-
gested by I. Pinto [21]. As loss angle in Ta2O5 is much
bigger than in SiO2 one can use, for example, 1/8 wave-
length layer of Ta2O5 and 3/8 wavelength layer of SiO2

in order to reduce thermal coating noise. We plan to
apply our approach for detail analysis of such coatings.

We hope that proposed approach will be useful for de-
tailed analysis of coating noise.
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Appendix A: Calculations of reflected wave phase

Here we present detailed derivation of formulas (2.17)
starting with taking into account of displacement ζ1 as-
suming that all others are zero: ζj6=1 = 0. Hence, we may
consider the unperturbed piece of transmission line be-

tween z2 . . . zN+1 as a single impedance Z
(0)
2 — see Fig. 5.

Again, the displacement ζ1 influences in two ways: a)
variation of optical pathlength between z0 and z1 and b)
between z1 and z2. We consider each of them separately.
a). Note that influence of ζ1 on pathlength between z0

and z1 we have almost calculated above. Indeed, calcu-
lating influence of ζ0 we have taken into account variation
of exponent θ1 and expanded θ21 ≃ −

(

1+ 2ik1(ζ1 − ζ0)
)

keeping only term ∼ ζ0. Now we may account displace-
ment ζ1 just making substitution ζ0 → −ζ1 in (2.12)

Z0 = Z
(0)
0 − ikζ1ρ0

(

1− α2
N

)

. (A1)

b). We calculate variation of Z1 by ζ1 and then recal-
culate it into Z0:

R
(0)
2 =

Z
(0)
2 − ρ2

Z
(0)
2 + ρ2

= −
1− αN−1

1+ αN−1
, αN−1 ≡

ρo

ρ2

(

ρ1

ρ2

)N−1

,

Z1 = ρ2
1+ R2θ

2
2

1− R2θ
2
2

, θ22 ≃ −(1− 2ik2ζ1),

Z1 ≃
ρ2

αN−1

(

1−
ik2ζ1(1− α2

N−1

αN−1

)

,

Z0 =
ρ21
Z1

= Z
(0)
0 + ik2ζ1(1− α2

N−1)
ρ21
ρ2

=

= Z
(0)
0 + ikρoζ1(1− α2

N−1)
ρ21
ρ22

. (A2)

Collecting (A1) and (A2) we obtain the total contribution
of ζ1 in impedance Z0

Z0 = Z
(0)
0 + ρo ikζ1

(

ρ21 − ρ22
ρ22

)

(A3)

Now we take into account only displacement ζ2 as-
suming that all others are zero: ζj6=2 = 0. Hence, we
may consider the unperturbed piece of transmission line

between z3 . . . zN+1 as a single impedance Z
(0)
3 — see

PSfrag replacements
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Fig. 6. Again we note that displacement ζ2 influences in
two ways: variation of optical pathlength a) between z1
and z2 and b) between z2 and z3.
a). We may account displacement ζ2 just making sub-

stitution ζ1 → −ζ2 in (A2):

Z0 = Z
(0)
0 − ikρoζ2(1− α2

N−1)
ρ21
ρ22

. (A4)

b). We calculate variation of Z2 by ζ2 and then recal-
culate it into Z0:

Z
(0)
3 =

ρ22

Z
(0)
4

=
ρ22
ρo

(

ρ1

ρ2

)N−3

≫ ρo,

R
(0)
3 =

Z
(0)
3 − ρ1

Z
(0)
3 + ρ1

=
1− αN−2

1+ αN−2
, αN−2 ≡

ρo

ρ2

(

ρ1

ρ2

)N−2

,

Z2 = ρ1
1+ R3θ

2
3

1− R3θ
2
3

, θ23 ≃ −(1− 2ik1ζ3),

Z2 ≃ ρ1
αN−2 + (1− αN−2)ik1ζ2

1+ (1− αN−2)ik1ζ2
≃

≃ ρ1αN−2 + ρo ikζ2(1− α2
N−2), (A5)

Z0 =
ρ21
ρ22

Z2 = Z
(0)
0 + ρo ikζ2(1− α2

N−2)
ρ21
ρ22

. (A6)

Collecting (A4) and (A6) we obtain the total contribution
of ζ2 in impedance Z0

Z0 = Z
(0)
0 + ρo ikζ2 (α

2
N−1 − α2

N−2)

(

ρ21
ρ22

)

=

= Z
(0)
0 + ρo ikζ2

(

ρ2o
ρ22

)(

ρ1

ρ2

)2N−2
ρ21 − ρ22

ρ22
(A7)

By the same consideration we may take into account
displacements ζ3 and ζ4:

Z0 = Z
(0)
0 + ρo ikζ3

(

ρ1

ρ2

)2(
ρ21 − ρ22

ρ22

)

+ (A8)

+ ρo ikζ4
(ρ21 − ρ22)

ρ22

(

ρ0

ρ2

)2(
ρ1

ρ2

)2N−4

(A9)

and write down the final formula for effective impedance
of transmission line as a function of small displacements
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ζi:

Z0 = ρ0

(

ρ1

ρ2

)N+1

+ ikζ0ρ0



1−

[

ρo

ρ2

(

ρ1

ρ2

)N
]2


+

+ ρo ikζ1

(

ρ21 − ρ22
ρ22

)

+ (A10a)

+ ρo ikζ2
ρ21 − ρ22

ρ22

(

ρ2o
ρ22

)(

ρ1

ρ2

)2N−2

+ (A10b)

+ ρo ikζ3

(

ρ1

ρ2

)2(
ρ21 − ρ22

ρ22

)

+ (A10c)

+ ρo ikζ4
(ρ21 − ρ22)

ρ22

(

ρ0

ρ2

)2 (
ρ1

ρ2

)2N−4

+ . . .

(A10d)

+ ρo ikζ2m−1

(

ρ1

ρ2

)2m−2(
ρ21 − ρ22

ρ22

)

+ (A10e)

+ ρo ikζ2m
(ρ21 − ρ22)

ρ22

(

ρ0

ρ2

)2 (
ρ1

ρ2

)2N−2m

+ . . .

PSfrag replacements
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FIG. 7: For calculation of equivalent impedance of the coating
with a half wavelength cap.

The formula for the phase φ of reflected wave complex
amplitude B (analog of (2.15)) is more informative one:

B =
Z0 − ρo

Z0 + ρo
Ae2ikζ0 ≃ R

(0)
0 A(1+ iφ), (A11a)

iφ = 2ik

N+1∑

j=0

ǫj ζj. (A11b)

One may rewrite these formulas through refractive in-
dices (ρ1 = 1/n1, ρ2 = 1/n2, n1 > n2):

iφ = 2ik

N+1∑

j=0

ǫj ζj, (A12a)

ǫ0 = n2
2

(

n2

n1

)2N

, (A12b)

ǫ1 =

(

n2
1 − n2

2

n2
1

)

, (A12c)

ǫ2 =

(

n2
1 − n2

2

n2
1

)

n2
2

(

n2

n1

)2N−2

, (A12d)

ǫ3 =

(

n2
1 − n2

2

n2
1

)(

n2

n1

)2

, (A12e)

ǫ4 =

(

n2
1 − n2

2

n2
1

)

n2
2

(

n2

n1

)2N−4

, . . . (A12f)

ǫ2m−1 =

(

n2
1 − n2

2

n2
1

)(

n2

n1

)2m−2

,

ǫ2m =

(

n2
1 − n2

2

n2
1

)

n2
2

(

n2

n1

)2N−2m

, . . . (A12g)

ǫN+1 =

(

n2
1 − n2

2

n2
1

)

n2
2

(

n2

n1

)N−1

. (A12h)

We see that coefficients ǫ2m with even index are rela-
tively small and their contribution may be omitted. The
main contribution is made by coefficients ǫ2m−1 with odd
subscripts — see plot on Fig. 8.
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FIG. 8: The coefficients ǫj from formulas (A12). Red circles
correspond to odd subscript and blue diamonds – to even
ones. n1 = 2.035 (Ta2O5), n2 = 1.45 (SiO2). Number of
Ta2O5 layers is assumed to be N1 = 20, and number of SiO2

layers — N2 = 19.

We may rewrite formulas (A12) for the reflected wave
phase φ in the form useful for the calculation of ther-
morefractive noise. For this case we have to assume that
layers positions are not fluctuated ζj = 0 but there are
fluctuations of path lengths due to variation of refractive
index in each layer:

θ2j = exp
[

2ik(n1,2 + δn1,2)(zj+1 − zj)
]

≃

≃ − [1+ π∆j] , ∆j =
δnj

nj
. (A13)

Here ∆j is the relative fluctuation of refraction index in
j-th layer. Finally the phase of reflected wave has the fol-
lowing dependence on fluctuations of refractive indexes:

iφ = iπ

N+1∑

j=1

εj ∆j, ∆j ≡
δnj

nj
, (A14a)
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FIG. 9: The coefficients εj from formulas (A14). n1 =

2.035 (Ta2O5), n2 = 1.45 (SiO2). Number of Ta2O5 layers
is assumed to be N1 = 20, and number of SiO2 layers —
N2 = 19.

ε1 =
1

n1

(

1− n2
2

(

n2

n1

)2N
)

, (A14b)

ε2 =
1

n1

(

n2

n1

)

(

1− n2
2

(

n2

n1

)2(N−1)
)

, (A14c)

ε3 =
1

n1

(

n2

n1

)2
(

1− n2
2

(

n2

n1

)2(N−2)
)

, (A14d)

ε4 =
1

n1

(

n2

n1

)3
(

1− n2
2

(

n2

n1

)2(N−3)
)

, . . . ,

(A14e)

εN =
1

n1

(

n2

n1

)N−1
(

1− n2
2

(

n2

n1

)2
)

, (A14f)

εN+1 =
1

n1

(

n2

n1

)N
(

1− n2
2

(

n2

n1

)0
)

. (A14g)

We present plot εj in Fig. 9.
Account of a cap. To account for the outer half wave-

length layer (cap) we have to consider the transmission
line model shown in Fig. 7. In the zeroth approximation

we put ζc = ζ0 = 0 and obtain Z
(0)
c = Z

(0)
0 . In the first

order approximation we use the expansion in series for

θ0 to account for layer positions fluctuations:

θ20 ≃ 1+ 2ik2(ζ0 − ζc), (A15)

Zc ≃ ρ2
2Z0 + (Z

(0)
0 − ρ2)2ik2(ζ0 − ζc)

2ρ2 − (Z
(0)
0 − ρ2)2ik2(ζ0 − ζc)

=

= Z0 + ik2(ξ0 − ξc)

(

(Z
(0)
0 )2 − ρ22

ρ2

)

(A16)

Now using (A10) and k1,2 = kρo/ρ1,2 we rewrite:

Zc = ρ0

(

ρ1

ρ2

)N+1

+ (A17a)

+ ρ0ikζc



1−

[

ρo

ρ2

(

ρ1

ρ2

)N+1
]2


+ (A17b)

+ ρo ikζ0
ρ21 − ρ22

ρ22

(

ρ2o
ρ22

)(

ρ1

ρ2

)2N

+ (A17c)

+ ρo ikζ1

(

ρ21 − ρ22
ρ22

)

+ (A17d)

+ ρo ikζ2
ρ21 − ρ22

ρ22

(

ρ2o
ρ22

)(

ρ1

ρ2

)2N−2

+ (A17e)

+ ρo ikζ3

(

ρ1

ρ2

)2(
ρ21 − ρ22

ρ22

)

+ (A17f)

+ ρo ikζ4
(ρ21 − ρ22)

ρ22

(

ρ0

ρ2

)2(
ρ1

ρ2

)2N−4

+ . . .

(A17g)

+ ρo ikζ2m−1

(

ρ1

ρ2

)2m−2(
ρ21 − ρ22

ρ22

)

+ (A17h)

+ ρo ikζ2m
(ρ21 − ρ22)

ρ22

(

ρ0

ρ2

)2(
ρ1

ρ2

)2N−2m

+ . . .

From these formulas one can obtain expressions (2.17) to
expand into series the reflected wave B

B =
Zc − ρo

Zc + ρo
Ae2ikζ0 ≃ R

(0)
0 A(1 + iφ) (A18)
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