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Ghost points in inverse scattering

constructions of stationary Einstein metrics
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Abstract

We prove a removable singularities theorem for stationary Einstein

equations, with useful implications for constructions of stationary so-

lutions using soliton methods.

1 Introduction

The soliton technique has proved to be a very effective tool for construct-
ing stationary black holes in five dimensions, see e.g. [4, 6, 7, 16, 17]. The
method is used to construct singular solutions of harmonic-map type equa-
tions. One then needs to make sure that the singularity structure of the
resulting harmonic map is compatible with a smooth geometry of the asso-
ciated space-time.

Proceeding in this way, in their ingenious construction of Black Sat-
urns [4], Elvang and Figueras introduce a singular point

α1 := (ρ = 0, z = a1)

on the boundary {ρ = 0} of the Weyl coordinates domain {ρ ≥ 0, z ∈ R},
and fine-tune certain constants to ensure that the metric functions remain
uniformly bounded near α1. Now, the resulting metric ends up being a
rational function of

R1 :=
√

ρ2 + (z − a1)2 .
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This leads to a potential problem because R1 is not differentiable at α1, and
therefore the differentiability of the metric functions at α1 is not apparent.

We will refer to such points as ghost points, as their occurrence does not
seem to be related in any obvious way to desirable geometric properties of
the resulting space-time such as end points of horizons or fixed points of the
isometry action, compare [10–12].

Closer inspection [2] of the Black Saturn metric near α1 shows that, with
the choice of free constants that makes the metric functions bounded, all
the metric functions can be rewritten as rational functions of R2

1; since this
last function is smooth, smoothness of the metric near α1 becomes obvious.
The calculations required to establish this fact turn out to be rather heavy,
requiring quite a bit of effort to coerce Mathematica to produce the re-
sult. We emphasize that the result is non-trivial and requires non-obvious
factorisations and cancellations of odd-order polynomials in R1.

A similar trick of introducing ghost points has been used in other related
constructions [5,8,13,18,19]. The question then arises, whether one needs to
redo the calculations of [2] case by case, or there is a general mechanism which
guarantees that ghost points are smooth points for the resulting metric.

The object of this note is to show that smoothness of the metric at such
points is a consequence of the stationary Einstein equations with matter
fields, without the need to assume more Killing vectors. This can be roughly
stated as follows, see Theorem 2.1 for a precise version:

Theorem 1.1 Singularities of Lipschitz continuous stationary Einstein met-

rics located on timelike submanifolds of codimension m ≥ 2 are removable.

We discuss in somewhat more detail in Section 3 how this theorem takes
care of the ghost point problem.

2 Stationary Einstein equations

We consider a time-independent metric in a space-time of dimension n + 1.
Since the problem we address is purely local, we assume that the space-time
metric functions gµν are given in local spatial coordinates ranging over a ball
B(R) ⊂ R

n, n ≥ 2, of radius R centred at the origin, and the prospective
singularities lie along a smooth submanifold

Σ ≡ Σn−m
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of B(R) of codimension 2 ≤ m ≤ n, with either ∂Σ = ∅ or ∂Σ ⊂ ∂B(R). We
set

B∗(R) := B(R) \ Σ .

In adapted coordinates the metric can be written as

g = −V 2(dt+ θidy
i

︸︷︷︸

=θ

)2 + gijdy
idyj

︸ ︷︷ ︸

=g

, (2.1)

where ∂t is (stationary) Killing, i.e.

∂tV = ∂tθ = ∂tg = 0 . (2.2)

We allow matter fields ϕ = (ϕA) with energy-momentum tensor that de-
pends upon g, ∂g, ϕ and ∂ϕ. For simplicity we assume that the ϕA’s trans-
form as scalars or tensors under coordinate changes, and that the stationary
matter field equations constitute a tensorial system of the form

∆gϕ = F (g, ∂g, ϕ, ∂ϕ) in B∗(R) , (2.3)

though a wider class of more general elliptic systems can be easily incor-
porated in our analysis. We note that (linear) electromagnetic fields, for
example, satisfy this assumption in Lorenz gauge.

The Einstein equations with (possibly zero) cosmological constant Λ for
a metric satisfying (2.1)-(2.2) read (see, e.g., [3] or [1])







V ∆gV = −1
4
|λ|2g + T00 −

(
n+1
n−1

Λ− trg(T )
n−1

)

V 2 ,

divg(V λ) = 2V
[

T0 −
(

n+1
n−1

Λ− trg(T )

n−1

)

V 2 θ
]

,

Ric(g)− V −1Hess gV = 1
2V 2λ ◦ λ+ Tg +

(
n+1
n−1

Λ− trg(Tg)
n−1

)

g ,

(2.4)

where Tg := Tijdx
idxj , T0 = T0i dx

i, and

λij = −V 2(∂iθj − ∂jθi) , (λ ◦ λ)ij = λi
kλkj .

Altogether the Einstein-matter field equations, which are supposed to hold
in B∗(R), can therefore be written as







∆gϕ = F (g, ∂g, ϕ, ∂ϕ) ,

∆gV = F1(g, ∂g) + T̃V ,

divg(dθ)− d(divg(θ)) = F2(g, ∂g) + T̃θ ,

Ric(g)− V −1Hess gV = F3(g, ∂g) + T̃g ,

(2.5)
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for some (explicitly computable) F1, F2 and F3 which are polynomials in g,
g
−1, ∂g and quadratic in ∂g and some T̃V , T̃θ and T̃g which arise from Tµν .

We have:

Theorem 2.1 Under the conditions above, suppose that (g, ϕ) ∈ C0,α(B(R))∩
C2(B∗(R)) and V > 0 in B(R). Assume further that

1. either α = 1,

2. or n−m
n

< α < 1 and there exists a constant C, possibly depending upon

(g, ϕ), such that

|∂g|+ |∂ϕ| ≤ C distRn(·,Σ)α−1 , (2.6)

and

|Tµν |+ |F | ≤ C(1 + |∂g|2 + |∂ϕ|2) .

Then

g , ϕ ∈ Cω(B(R/2)) .

The proof will use the following simple lemma, whose proof is deferred
until after the proof of Theorem 2.1.

Lemma 2.2 Let Ω be an open subset of Rn and Σ ⊂ Ω be a smooth subman-

ifold of codimension m ≥ 2 which either has no boundary or has boundary

contained in ∂Ω. Assume that u ∈ W 1,2(Ω) satisfies

∂i(a
ij∂ju) = ∂ig

i + f in Ω \ Σ

in the sense of distributions for some aij ∈ L∞(Ω), f ∈ L1(Ω) and gi ∈
L2(Ω). Then u satisfies the above equation in Ω in the sense of distributions.

Proof of Theorem 2.1: By hypothesis there exist coordinates yi in which
the metric coefficients and the fields satisfy

V, θi, gij, ϕ ∈ C0,α(B(R)) ∩ C2(B∗(R)) . (2.7)

Standard arguments (compare [15]) show that the metric is in fact smooth
away from Σ:

V, θi, gij, ϕ ∈ C0,α(B(R)) ∩ C∞(B∗(R)) . (2.8)
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Since the problem is local, it suffices to establish the desired regularity
in a small ball B(ǫ) centered at a point on Σ ∩ B(R/2), which is assumed
to be the origin. By a linear change of coordinates we can without loss of
generality assume that gij(0) = δji . Furthermore, we can also assume that

Σ ∩B(10ǫ) = {y = (y′, 0) : y′ ∈ π(Σ)} (2.9)

for some open set π(Σ) ⊂ B(10ǫ) ∩ R
n−m.

Most of our arguments rely on elliptic estimates. Of the four equations
in (2.5), the last two are not manifestly elliptic. As is well known, this
issue can be cured by passing to harmonic space-coordinates and using an
appropriately chosen time function.

Suppose, first, that n−m
n

< α < 1.
For ǫ > 0 let xi be solutions of the problem

∆gx
i = 0 , xi|S(ǫ) = yi .

where S(ǫ) := ∂B(ǫ) is a yi–coordinate sphere of radius ǫ.
By [9, Theorem 8.34], and elliptic regularity away from the origin, we

have xi ∈ C1,α(B̄(ǫ)) ∩ C∞(B(ǫ) \ Σ). If we write

xi = yi + f i ,

then f i solves the divergence-type equation

∂i(
√

det ggij∂jf
ℓ) = −∂i(

√

det ggiℓ) = −∂i(
√

det ggiℓ − δℓi ) .

Let

f ℓ
ǫ (x) := f ℓ(ǫx) , ψiℓ

ǫ (x) :=
√

det g(ǫx)giℓ(ǫx) , ψ̄iℓ
ǫ (x) := ψiℓ

ǫ (x)− ψiℓ
ǫ (0) .

Then
∂i(ψ

ij
ǫ ∂jf

ℓ
ǫ ) = −ǫ ∂i ψ̄iℓ

ǫ in B(ǫ) .

Applying [9, Theorem 8.33] to the equation satisfied by f ℓ
ǫ on a ball of radius

two we obtain (note that the first term |u|0 there can be discarded by the
usual argument that exploits injectivity of the Laplace equation)

‖f ℓ
ǫ ‖C1,α(B(1)) ≤ Cǫ ‖ψ̄iℓ

ǫ ‖C0,α(B(1)) ≤ Cǫ1+α . (2.10)

It thus follows that
∂xi

∂yj
= δij +O(ǫα) in B(ǫ) . (2.11)
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The implicit function theorem shows the xi’s can be used as a coordinate
system near yi = 0 for all ǫ small enough. In what follows we choose some
such value of ǫ.

As for the choice of a spacelike slice, we will now show that we can assume
without loss of generality that

divg(θ) = 0 in B(ǫ) for sufficiently small ǫ . (2.12)

To use the freedom of defining t (equivalently, to fix the gauge freedom of θ),
we make a coordinate change of the form t̃ = t + h(y). The metric g then
takes the form

g = −V (dt̃+ (θi − h,i) dy
i

︸ ︷︷ ︸

=:θ̃i dyi≡θ̃

)2 + gij dy
i dyj .

To obtain (2.12), we pick h ∈ W 1,2(B(ǫ)) to be a solution to

∆gh = divg(θ) in B(ǫ) , and h|S(ǫ) = 0 .

By [9, Theorems 8.12 and 8.34], we have

h ∈ C1,α(B̄(ǫ)) ∩W 2,2(B(ǫ)) ∩ C∞(B(ǫ) \ Σ) .

Recalling (2.6) and rewriting the above equation for h as

gkℓ ∂k ∂ℓh = −∂ℓh ∂k(
√

det g gkℓ) +
1√
det g

∂k(
√

det g gkℓθℓ) ,

we can apply [9, Theorem 9.11 and Lemma 9.16] to get,

∂2h ∈ Lq(B(ǫ)) for any 1 < q <
m

1− α
;

here and in what follows the norm might depend upon ǫ, but this is irrelevant
since a small epsilon has been now fixed. We have thus achieved (2.12) with
a penalty that the derivatives ∂θ no longer satisfy a pointwise estimate given
by (2.6) but the weaker estimate

∂θ ∈ Lq(B(ǫ)) for any 1 < q <
m

1− α
. (2.13)

The above suffices for our purposes. We emphasize that V and g remain
unchanged under the redefinition of θ, equivalently of time, as above.
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To prepare for our passing to the coordinates xi, we need some bound for
the Hessian of f i. For y ∈ R

n, we will write y = (y′, y′′) where y′ ∈ R
n−m

and y′′ ∈ R
m. In view of (2.9) we have

d(y) := distRn(y,Σ) = |y′′| for y ∈ B(5ǫ) \ Σ . (2.14)

Define

Q′

s,S = {y : s/4 ≤ |y′′| ≤ 5s/4, |y| ≤ S} ,
Qs,S = {y : s/2 ≤ |y′′| ≤ s, |y| ≤ S} .

Then, by (2.6), f ℓ
s satisfies

|ψij
s ∂i∂jf

ℓ
s | ≤ C sα+1 in Q′

1,s−1 ǫ .

Thus, by [9, Theorem 9.11] and (2.10),

‖∂2f ℓ
s‖Lq(Q

1,s−1 ǫ/2)
≤ C sα+1

[
Hn−m(Σs)

]1/q
for any 1 < q <∞ ,

where Hn−m denotes the (n−m)-dimensional Hausdorff measure: More pre-
cisely, we first apply [9, Theorem 9.11] to cubes of unit size and f ℓ

s − L(f ℓ
s )

with L(f ℓ
s ) being the linearization of f ℓ

s at the center of those cubes, and
then sum the acquired estimates over a collection of non-overlapping cubes
covering the desired region. Because of the simple geometry of Σs (compare
(2.9)), the number of cubes in each such collection is proportional to sm−n,
which is itself proportional to the Hausdorff dimension above. Scaling back,
it follows that

‖∂2f ℓ‖Lq(Qs,ǫ/2) ≤ C sα−1+m/q for any 1 < q <∞ .

Now if we pick q such that α − 1 + m/q > 0, we can sum the above over
dyadic rings in the tranverse direction to get

‖∂2f ℓ‖Lq(B(ǫ/2)) ≤ C for any 1 < q <
m

1− α
. (2.15)

We pass now to the coordinates xi = yi + f i, and still use the symbol g,
g, θ and ϕ for the space-time metric, the spatial metric, the shift one-form
and the matter fields in the new coordinates. Shifting the xi’s by a constant
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vector if necessary, we can assume that xi(0) = 0. Furthermore, one has in
the new coordinates

V, θi, gij, ϕ ∈ C0,α(B(ǫ)) ∩ C∞(B∗(ǫ)) .

Estimate (2.15) shows that xi ∈ W 2,q(B(ǫ/2)), and by (2.6), (2.13), the
chain rule and the transformation law for tensors one deduces that

|∂xg|+ |∂xϕ| ∈ Lq(B(ǫ/2)) for any 1 < q <
m

1− α
. (2.16)

In the coordinates xi the Einstein-field equations (2.5) can be rewritten
in the following form







∆gϕ
A = F (g, ∂g, ϕ, ∂ϕ) ,

∆gV = F1(g, ∂g) + T̃V ,

∆gθi = F(i)(g, ∂g)− (T̃θ)i ,

∆ggij − ∂i(∂j log V ) = F(i)(j)(g, ∂g) + (T̃g)ij ,

(2.17)

where we have used (2.12). Using (2.16) together with the given growth rate
of F and T , one sees that (V, θ, g, ϕ) ∈ W 1,2(B(ǫ/2)) while the right side of
(2.17) belongs to Lp(B(ǫ/2)) for any p < m

2(1−α)
. Also, by Lemma 2.2, (2.17)

is satisfied across Σ in the sense of distribution. It is useful to write the last
equation in (2.17) as

∆ggij = ∂i(∂j log V ) + F̃3(g, ∂g) + (T̃g)ij . (2.18)

To proceed, we distinguish two cases according to whether α > 1 − m
2n

or α ≤ 1 − m
2n
. In the former case, we apply [14, Theorem 5.5.3(b)] to

the first three equations of (2.17) to assert that (ϕ, V, θ) ∈ C1,σ(B(ǫ/3)) for
some σ > 0. In particular, ∂ log V ∈ C0,σ(B(ǫ/3)). Applying [14, Theorem
5.5.3(b)] again to (2.18), we get g ∈ C1,σ(B(ǫ/4)).

In the latter case, we use [14, Theorem 5.5.3(a)]. Applying this result
to the first three equations in (2.17) and then to (2.18) as in the previous
paragraph we get (ϕ, V, θ, g) ∈ W 1,q(B(ǫ/4)) for any 1 < q < m

2(1−α)−m
n
. In

other words, in B(ǫ/4), (2.16) is improved with α replaced by α+
(
α− n−m

n

)
.

Repeating this process for a finite number of time, we arrive at a situation
when the argument in the previous paragraph applies.

In any event, one obtains (g, ϕ) ∈ C1,σ(B(ǫ/100)). A standard bootstrap
argument based on Schauder estimates proves smoothness; analyticity readily
follows.
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When α = 1 we replace α by any number in (1− m
2n
, 1) and arrive to (2.16)

as before. Since Tµν is a tensor, it gives a bounded contribution to (2.17),
leading to a metric with improved regularity as before. Similarly F is a tensor
giving a bounded contribution to (2.3), and we obtain (g, ϕ) ∈ C1,σ(B(ǫ/2))
by the same method as above. The result follows. �

To finish this section, we provide the

Proof of Lemma 2.2: Let ξ ∈ C∞

c (Ω), we need to show that

∫

Ω

aij ∂iu ∂jξ dx =

∫

Ω

(gi ∂iξ + f ξ) dx . (2.19)

Let η be a smooth cut-off function on R such that η(t) = 0 for t ≤ 1 and
η(t) = 1 for t ≥ 2. For δ sufficiently small, define

̺δ(x) =







η
(

d(x,Σ)
δ

)

for m ≥ 3 ,

η
(

log(− log d(x,Σ))
log(− log δ)

)

for m = 2; .

By hypothesis we have

∫

Ω

aij ∂iu ∂j(ξ ̺δ) dx =

∫

Ω

(gi ∂i(ξ ̺δ) + f ξ ̺δ) dx .

(2.19) can be reached by passing δ → 0 using Lebesgue’s dominated con-
vergence theorem, Cauchy-Schwarz’s inequality and the explicit form of ̺δ.
Note that when m = 2, we need to use

∫ 1

0

1

t (log t)2
dt <∞ .

We omit the details. �

3 Ghost points

We show how Theorem 2.1 applies to stationary solutions obtained by intro-
ducing ghost points in the solitonic solution-generating technique. Here the
space-time metric that one wishes to construct is invariant under an abelian
isometry group R× T

n−2, where the R factor represents t–translations. The
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metric depends only upon two coordinates (ρ, z), which can be thought of
as cylindrical coordinates on R

3. In this construction, if the ghost point is
placed at (ρ = 0, z = 0), one obtains a solution of the vacuum Einstein
equations gµν defined on

{t ∈ R , (x, y, z) ∈ B(δ) ⊂ R
3} × T

n−3 ,

where
x = ρ cosϕ , y = ρ sinϕ .

Note that one S1 factor from T
n−2 has been interpreted as a rotation around

the z–axis of R3. Furthermore, there exists a neighborhood of the origin in
which the metric functions are analytic functions of (ρ2, z, d), where d is the
Euclidean distance to the origin in R

3:

d :=
√

ρ2 + z2 .

So the singular set
Σ = {x = y = z = 0} × T

n−3

has dimension n − 3 within each slice t = const, hence codimension three.
To apply Theorem 2.1 we need to verify that, reducing δ if necessary,

there exists ε > 0 such that det gij > ε and gtt < −ε. (3.1)

Note that the function d is Lipschitz-continuous, but not differentiable. This
implies that the metric functions are in C∞(B∗(R)) ∩ C0,1(B(R)). Theo-
rem 2.1 with α = 1 shows then that the metric functions are real-analytic in
a whole neighborhood of the origin of Rn, as desired.

In the case of the Black Saturn metric we have n = 4, and the space-
dimension of the singular set is one. To verify that this metric is analytic
near its ghost point α1 = (ρ = 0, z = a1), one needs to verify (3.1). A
direct verification in the coordinate system used in [4] fails, because at this
point gtt becomes null for all Black Saturn metrics (indeed, α1 always lies on
the ergosurface for those metrics). This can be bypassed by checking that
the limit of the metric at α1 is Lorentzian, and that the determinant of the
matrix of scalar products of all Killing vectors there has a strictly negative
value. This guarantees that some linear combination of Killing vectors is
timelike at α1, and our theorem applies.

As another application, our analysis reduces the question of regularity
of the metrics of [5, 8, 13, 18, 19] near their ghost points to showing that the
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components of the metric tensor in coordinates (x, y, z) have a finite limit
at the ghost points, and verifying (3.1) there (after perhaps replacing ∂t by
a different, timelike Killing vector if necessary). We note that this might
require tedious symbolic algebra calculations, and our experience with the
Black Saturn metrics suggests that the checking of the timelike character of
the orbit of the isometry group through the ghost point might be non-trivial.
In any case we have not attempted to carry this out.
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