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Abstract

We formulate Fradkin-Vasiliev type theory of massless higher spin fields in AdS5.

The corresponding action functional describes cubic order approximation to gravita-

tional interactions of bosonic mixed-symmetry fields of a particular ”hook” symmetry

type and totally symmetric bosonic and fermionic fields.

1 Introduction

Interacting theories with spectra including graviton along with particles of spin grater

than two provide a fascinating playground for exploring the gravity both on classical and

quantum levels. For example, string theory describes a dynamics of an infinite collection of

massive fields with growing masses and spins and a finite set of massless lower spin fields.

An important feature of higher spin models is infinite symmetries which are believed to

improve conventional quantum inconsistency of Einstein gravity. Higher spin theories with

massless spectra play a distinguished role because they can be considered as an unbroken

phase for massive higher spin theories including string theory itself [1, 2] (see also, e.g.,

[3, 4, 5, 6, 7, 8, 9, 10, 11, 12] for a discussion in the AdS/CFT correspondence context).

The problem of constructing a consistent theory of interactions between higher spin

massless fields and the gravity has been first attacked by Aragone and Deser [13]. According

to them massless fields of spin s > 2 do not minimally interact with the gravity and therefore

no higher spin extension of supergravity theories is possible (see [14, 15] for a review). The

solution has been proposed by Fradkin and Vasiliev in [16, 17] who formulated guiding

principles to construct a consistent interacting theory of higher spin fields. They identified

anti-de Sitter background geometry as a natural background for gravitational higher spin

interactions and explicitly constructed higher spin gauge symmetry algebra [18]. It turns

out that the presence of additional dimensionful parameter – the cosmological constant λ of
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anti-de Sitter spacetime – enables one to build various higher derivative interaction terms

in the action with overall coefficients proportional to the inverse of λ, and this is quite

similar to string theory vertices of massive higher spin fields.1 Let us mention that a wide

class of higher spin cubic (self-)interaction vertices is known in Minkowski space but they

do not however contain minimal couplings with the gravity [21, 22, 23, 24, 25, 26, 27, 28].

More recently the original FV theory has been extended from d = 4 to d = 5 for both

N = 0 pure bosonic and N = 1 supersymmetric cubic interactions of totally symmetric

(Fronsdal) fields [29, 30]. The 5d theory inherits all basic features of the 4d theory and is

governed by the higher spin symmetry superalgebra identified by Fradkin and Linetsky in

the context of the 4d higher spin conformal theory [31, 32].2 The novel feature as compared

to 4d FV theory is an infinite degeneracy of the spectrum of excitations: a field of each

spin enters in an infinitely many copies. In this respect the spectrum of 5d FV-type theory

resembles that of string theory where massive excitations of a given spin appear on different

mass levels growing up to infinity.

Going to higher dimensions one encounters a new phenomenon though: there are more

than one spin number in d > 4 so fields of mixed-symmetry type described by o(d − 1)

Young diagrams appear. Mixed-symmetry AdSd fields may interact to each other and with

totally symmetric fields including gravity so it will be interesting to study their interactions.

In particular, a FV-type theory for mixed-symmetry fields is still unknown.3 In this paper

we partially fulfill this gap and explicitly construct cubic order interacting theory in AdS5

that includes mixed-symmetry field vertices.

We build N = 2 FV-type theory thereby extending N = 0 and N = 1 results obtained

previously [29, 30]. The higher spin algebra that governs consistent interactions in our

model is N = 2 Fradkin-Linetsky superalgebra [31, 32]. It contains N = 2 extended

su(2, 2|2) superalgebra as a maximal finite-dimensional subalgebra so fields of the theory

are organized in su(2, 2|2) supermultiplets. Obviously, AdS5 symmetry algebra su(2, 2) and

R-symmetry algebra u(2) are bosonic subalgebras of su(2, 2|2) superalgebra. Contrary to

spectra of N = 0, 1 theories the N = 2 supermultiplet contains not only totally symmetric

fields but also the so-called ”hook” fields. The ”hooks” are mixed-symmetry fields with

particular symmetry type differing from totally symmetric fields by additional row of a

1In particular, it implies that the straightforward λ → 0 limit is ill-defined thereby conforming the

no-go theorem of [13]. However there exists a tricky limiting procedure that allows one to build some non-

minimal couplings of higher spin fields with the gravity [19]. See also recent papers [20] which consider some

particular vertices of spin-3 massless field with the gravity. Moreover, using the analogy between massless

fields in AdS spacetime and massive fields in Minkowski space these results are extended to interacting

massive spin-3 fields in Minkowski spacetime [20].
2This algebra was also identified as an algebra of global AdS5 HS symmetries within 5d unfolded

formulation proposed in [33] . More general class of conformal higher spin algebras has been described in

[34].
3 The cubic interaction vertices of mixed-symmetry fields in Minkowski spacetime were analyzed within

the light-cone formalism in [35]. Inspired by string field theory some covariant vertices for mixed-symmetry

fields in Minkowski space were constructed in [36].
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single cell in the respective Young diagram. Denoting spins of AdS5 massless gauge fields by

a pair of (half-)integer numbers (s1, s2) we give the content of N = 2 spin-s supermultiplet

{s} = (s, 0)[1] ⊕ (s−
1

2
)[2] ⊕ (s− 1)[4] ⊕ (s− 1, 1)[1] ⊕ (s−

3

2
)[2] ⊕ (s− 2)[1] , (1.1)

where s is a highest spin, while labels in square brackets denote dimensions of u(2) algebra

representations. Each spin-s supermultiplet possesses equal number of 16s−8 bosonic and

fermionic degrees of freedom.

Generally, AdS5 higher spin models based on Fradkin-Linetsky superalgebra describe

an infinite collection of supermultiplets (1.1) with a highest spin s running up to infinity

L∑

k=0

∞∑

s=2

{s}( k ) (1.2)

while k parameterizes a k-th copy of a spin-s supermultiplet. The models considered in

this paper corresponds to L =∞ (unreduced model) or L = 0 (reduced model).

According to (1.1) the spectrum of massless excitations in a full N = 2 supersymmetric

theory includes lower spins 0, 1
2
, 1 contained in the spin-2 (graviton) and spin-3 (hyper-

graviton) supermultiplets. However, we eliminate all these lower spin fields so that the

resulting theory is not supersymmetric in a strong sense, i.e. it is not globally supersym-

metric. It is legitimate because in the cubic approximation one can set to zero a coupling

of any three fields keeping the gauge invariance of the theory intact.4 This allows one to

truncate all vertices with lower spin fields which is equivalent to eliminating them from the

spectrum. It greatly simplifies the whole analysis because within the FV-type theory the

action functionals for lower spin and higher spin fields are formulated in different terms

thereby leading to some technical complications (see, however, [17, 37]).

The paper is organized as follows. In Section 2 we extensively discuss the unfolded for-

mulation of higher spin dynamics in the AdS5 background geometry in spinor language. We

consider totally symmetric fields with integer and half-integer spins and mixed-symmetry

fields of the ”hook” symmetry type. The respective set of unfolded fields is given by phys-

ical, auxiliary and extra fields which play different dynamical roles. We build quadratic

Lagrangians and introduce the set of constraints that express all auxiliary and extra fields

in terms of the physical ones. These constraints play a crucial role in the analysis of the

cubic higher spin interactions. In Sections 2.4 and 2.5 we introduce bosonic and fermionic

auxiliary variables that enable us to represent higher spin fields as expansion coefficients of

4Indeed, a spin s1-s2-s3 cubic coupling can be represented as gΦ
(s1)
a1...as1

Ja1...as1 (Φ(s2),Φ(s3)), where g is

a coupling constant, Φ(si) are spin-si fields, and J
a1...as1 (Φ(s2),Φ(s3)) are higher spin currents bilinear in the

fields and their derivatives. Gauge invariance of the above coupling implies that the currents are conserved

Da1
Ja1a2...as1 (Φ(s2),Φ(s3)) ≈ 0, where ≈ means going on-shell while in the cubic order approximation it

is sufficient to use free field equations for Φ(s1,2). Recall also that Jacobi identities of the gauge algebra

are proportional to g2. As a result, gauge symmetry do not mix different cubic couplings and one can

consistently switch off any of them.
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polynomials in these variables. Introducing auxiliary variables is not just a technical tool

that greatly simplifies the whole consideration but also brings to light such concepts like

Howe duality that allows one to formulate group-theoretical properties of higher spin fields

in a simple and manifest fashion. Section 2 also serves to set our notations and conventions.

In section 3 we review a construction of Fradkin-Linetsky superalgebra with any number

of supersymmetries N giving particular emphasis to the N = 2 case. In Section 3.3

we describe a gauging procedure that introduces local symmetry and provides a link to

unfolded gauge fields considered in Section 2. In Section 3.4 we explicitly describe the

structure of N = 2 higher spin supermultiplets.

Higher spin theories of FV-type are reviewed in Section 4. We formulate all necessary

conditions to be satisfied by the searched-for action in the cubic approximation. In Section

4.1 we formulate the final answer and list all coefficients in the action both for unreduced

and reduced models. Section 5 contains explicit calculations of the coefficients in the action.

Because the total expression for the gauge transformations contains over a hundred terms

we split them in groups associated with different gauge supermultiplet parameters and

analyze them separately. In Section 5.3.1 we explicitly calculate bosonic gauge invariance

for the ”hook” fields and this sets a pattern for calculating the remaining invariance. In

Section 5.3.2 we sketch the main steps of how calculation of the remaining invariance

develops and give the final result for the coefficient functions collected in Section 4.1.

In Conclusion 6 we shortly discuss our results and future perspectives. In Appendix 7

we collect the explicit expressions for the gauge transformations omitted in the main text.

2 Free fields

The isometries of AdS5 spacetime form o(4, 2) algebra and the spectrum of local excitations

of relativistic fields is arranged in terms of labels of irreducible representations of maximally

compact subalgebra o(2)⊕ o(4) = o(2)⊕ o(3)⊕ o(3) ⊂ o(4, 2). The o(2) quantum number

physically means the energy E0 while o(4) quantum numbers are spins (s1, s2) associated

with two o(3) factors of o(4) subalgebra. For massless gauge fields quantum numbers are

linearly dependent so one may represent the energy via spin numbers, E0 = E0(s1, s2),

thereby expressing the fact that massless fields has less degrees of freedom than massive

ones [38, 39]. Let D(s1, s2) denote a space of states of an AdS5 massless gauge field. It is

identified with some highest weight unitary irreducible (infinite-dimensional) representation

of o(4, 2) algebra.

A (real) number of local degrees of freedom propagated by massless fields #D(s1, s2)

with s1 > s2 has been first calculated in [40] using the light-cone form of higher spin
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dynamics and the answer is given by

#D(s1, s2) =





2s1 + 1 , s1 = n , s2 = 0 , n ∈ N ,

4s1 + 2 , s1 = n+ 1/2, s2 = 1/2 , n ∈ N ,

4s1 + 2 , s1 = n , s2 = k , n, k ∈ N ,

4s1 + 2 , s1 = n+ 1/2 , s2 = k + 1/2 , n, k ∈ N .

(2.1)

It is important for our future considerations that non-symmetric bosonic field (s2 6= 0)

have a number of on-shell degrees of freedom twice that of totally symmetric bosonic field

(s2 = 0), while fermionic fields have the same degrees of freedom irrespective of a second

spin value. Massless fields with equal spins s1 = s2 are the so-called doubletons and have

no local degrees of freedom [41, 42, 43].

In this paper we use the unfolded formulation of higher spin dynamics and describe

massless gauge fields as differential 1-forms taking values in some irreducible o(4, 2) repre-

sentations (for review see [44] ). Moreover, we use the well-known isomorphism

o(4, 2) ∼ su(2, 2)

and develop a spinor form of the unfolded dynamics in AdS5 spacetime [33, 29, 45, 46].

Fields of the higher spin models under consideration form particular (super)multiplets

of massless bosonic spin-(s, 0) fields, fermionic spin-(s, 1
2
) fields, and massless spin-(s, 1)

”hook” fields. In what follows we explicitly describe quadratic Lagrangian formulation for

these fields giving particular emphasis to description of ”hook” fields. We start however

from describing su(2, 2) spinor form of the gravity thus setting a pattern for higher spin

generalizations.

2.1 Gauge description of AdS5 spacetime

5d gravity with the negative cosmological constant can be formulated in terms of 1-form

connection taking values in the su(2, 2) algebra5

Ω(x) = dxµ Ωµ
α
β(x) Tα

β , (2.2)

where Tα
β are basis elements of su(2, 2) algebra6 and the connection is traceless, Ωµ

α
α = 0.

As usual, the connection decomposes into the frame field and the Lorentz connection. By

virtue of the compensator mechanism for gravity theories this splitting can be done in

a manifestly su(2, 2) covariant fashion [47, 48]. For the case at hand we introduce the

compensator as an antisymmetric bispinor field

V αβ(x) = −V βα(x) , (2.3)

5Throughout the paper we work within the mostly minus signature and use notation α, β = 1, ..., 4

for su(2, 2) spinor indices, i, j = 1, ...,N for R-symmetry u(N ) indices, µ, ν = 0, ..., 4 for world indices,

a, b = 0, ..., 4 for tangent Lorentz o(4, 1) vector indices.
6An explicit realization of su(2, 2) algebra is discussed in Sections 2.4 and 3.
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normalized so that VαγV
βγ = δα

β and Vαβ = 1
2
εαβγρV

γρ. The compensator field does not

carry local degrees of freedom because it is an auxiliary field with the transformation law

of Stueckelberg type (see [29] for more details). The Lorentz subalgebra in su(2, 2) is

identified with stability transformations of the compensator. It follows that the frame field

Eαβ and Lorentz spin connection ωαβ are defined as [29]

Eαβ = DV αβ ≡ dV αβ + ΩαγV
γβ + ΩβγV

αγ , ωαβ = Ωαβ +
λ

2
EαγVγβ , (2.4)

where λ is a cosmological parameter, λ2 > 0, operator d = dxµ∂µ is the de Rham differential,

and D is the su(2, 2) covariant derivative. Compensator V αβ is Lorentz-invariant so it can

be treated as a symplectic metric that allows one to raise and lower spinor indices in a

Lorentz covariant way as

Xα = V αβXβ , Yα = Y βVβα . (2.5)

In particular, it follows that EαβVαβ = 0 and ωαβVαβ = 0 which implies that the frame and

Lorentz connection are irreducible Lorentz tensors.

The 2-form curvature Rα
β = 1

2
Rµνα

βdxµ ∧ dxν associated with the connection (2.2) is

given by

Rα
β = d Ωα

β + Ωα
γ ∧ Ωγ

β . (2.6)

The zero-curvature equation

Rα
β(Ω0) = 0 (2.7)

locally describes metric of AdS5 spacetime of radius λ−1. Indeed, decomposing curvature

Rα
β in Lorentz-covariant components one finds the torsion tensor along with Riemann

tensor extended by cosmological term proportional to λ2. Setting these tensors to zero

provides a link with Einstein gravity (see [44] for more details). The background gravita-

tional fields will be denoted as Ωα0 β = (hαβ , wαβ) while the background su(2, 2) derivative

will be denoted as D0. From (2.7) it follows that D0 is nilpotent, D2
0 = 0.

2.2 Totally symmetric massless fields in AdS5

The metric-like formulation of higher spin dynamics introduces spin-s massless fields as to-

tally symmetric Lorentz tensors φa1...as(x) or spin-tensor ψ
α̂
a1....as−1/2

(x), where α̂ is a spinor

index. These (spin-)tensors are gauge fields and transform as δφa1...as = D(a1ξa2...as) and

δψα̂a1....as−1/2
= D(a1ξ

α̂
a2...as−3/2), where D is a background Lorentz derivative and ξa1...as−1

and ξα̂a1...as−5/2
are gauge parameters. Both fields and gauge parameters satisfy certain

algebraic conditions, like trace and gamma-transversality constraints [49, 50].

In the framework of the unfolded approach a totally symmetric field of a given spin

is represented as a differential 1-form taking values in a definite o(4, 2) irreducible rep-
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resentation [51, 52, 29, 53].7 The su(2, 2) spinor realization of the unfolded fields is the

following.

• Spin-s bosonic gauge fields [33, 29]:

Ωµ
α1...αs−1

β1...βs−1
(2.8)

• Spin-s fermionic gauge fields [45, 33]:

Ωµ
α1...αs−1/2

β1...βs−3/2
⊕ Ω∗

µ

α1...αs−3/2

β1...βs−1/2
(2.9)

Here symbol ∗ denotes complex conjugation defined by

(Xα)
∗ = XβCβα , (Y α)∗ = CαβYβ , (2.10)

where Cαβ = −Cβα and Cαβ = −Cβα are some real matrices satisfying

CαγC
βγ = δα

β . (2.11)

We notice that fermionic fields are described by a pair of mutually conjugated multispinors

while bosonic fields are self-conjugated. All multispinors are symmetric in upper and lower

groups of indices and traceless with respect to su(2, 2) invariant tensor δαβ . The simplest

fields in the list above are Maxwell field Ωµ, Rarita-Schwinger field Ωµ
α and its conjugated

Ω∗
µα, and the gravity field Ωµ

α
β, cf. (2.2).

Gauge symmetry for the above fields is defined by bosonic 0-from parameter ξ
α1...αs−1

β1...βs−1

and mutually conjugated fermionic 0-from parameters ξ
α1...αs−1/2

β1...βs−3/2
and ξ∗

α1...αs−3/2

β1...βs−1/2
. The

respective transformations of 1-from gauge fields are given by

δΩ
α1...αs−1

β1...βs−1
= D0ξ

α1...αs−1

β1...βs−1
, (2.12)

and

δΩ
α1...αs−1/2

β1...βs−3/2
= D0ξ

α1...αs−1/2

β1...βs−3/2
(2.13)

along with the complex conjugated expression.

The metric-like fields discussed in the beginning of the section are encoded into the

unfolded field (2.8) and (2.9) as their particular components that can be singled out by

imposing particular gauge fixing of the above symmetry. Such a mechanism is similar to

that one used in the gravity theory: the frame field contains a component to be identified

with the metric after gauge fixing local Lorentz symmetry.

7Let us mention other useful approaches to higher spin dynamics of totally symmetric fields proposed

in Refs. [54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
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2.3 ”Hook” massless fields in AdS5

The first non-trivial example of non-symmetric fields is given by ”hooks” which are bosonic

spin-(s, 1) massless fields. They can be described as tensor fields φa1...as, b1(x) with two

groups of symmetrized Lorentz indices satisfying Young symmetry condition [64, 65].8 The

gauge transformations are δφa1...as, b1 = Da1ξa2...as, b1 +Db1ρa1...as + ..., where the dots denote

appropriate Young symmetrizations needed to adjust symmetry properties of both sides.

Here the gauge parameters ξa2...as, b1 and ρa1...as are rank-(s − 1, 1) tensor and rank-(s, 0)

tensor, respectively. Both fields and gauge parameters satisfy certain trace conditions [65].

It is worth noticing that in 5d Minkowski spacetime massless spin-(s1, 1) fields are dual

to massless totally symmetric spin-(s1, 0) fields while those with s2 > 1 do not propagate

local degrees of freedom. This fact is in agreement with that local degrees of freedom of 5d

Minkowski fields are described by irreducible tensor representations of little Wigner algebra

o(3). In AdS5 spacetime local degrees of freedom of massless fields are classified according

to o(3)⊕ o(3) so mixed-symmetry massless fields with s2 > 1 are not dynamically trivial.

A remarkable feature of non-symmetric fields is that they have different number of

gauge symmetries on Minkowski spacetime and AdSd spacetime [38, 39]. Namely, given

a mixed-symmetry massless field in Minkowski spacetime we observe that only a part of

gauge symmetries can be deformed to AdSd spacetime. In the case under consideration,

the symmetry that survives in AdSd corresponds to the gauge parameter ξa2...as, b1 . Lacking

one of gauge symmetries on AdSd results in a mismatch between numbers of degrees of

freedom propagated by φa1...as, b1(x) in Minkowski and AdSd spacetimes.

In AdS5 the spinor realization of the unfolded spin-(s, 1) bosonic gauge fields is based

on the following 1-forms [33, 46, 53]:

Ωµ
α1...αs

β1...βs−2
⊕ Ω∗

µ
α1...αs−2

β1...βs
(2.14)

By analogy with fermionic fields the ”hooks” are complex fields described by a pair of

mutually conjugated multispinors. All multispinors are symmetric in upper and lower

groups of indices and traceless with respect to su(2, 2) invariant tensor δαβ . Spinor version

of gauge symmetry ξa2...as, b1 for the AdS5 ”hook” fields is defined by mutually conjugated

0-from parameters ξ α1...αs

β1...βs−2
and ξ∗

α1...αs−2

β1...βs
as

δΩ α1...αs

β1...βs−2
= D0ξ

α1...αs

β1...βs−2
(2.15)

along with the complex conjugated expression.

The simplest example of a non-symmetric field, an antisymmetric tensor, is absent in

(2.14). This happens because AdS5 antisymmetric gauge fields are doubletons which do not

carry local degrees of freedom [41, 42, 43]. Therefore we set s > 1 and the first non-trivial

example is given by spin-(2, 1) field. Its spinor realization is given by symmetric bispinor

Ωµ
αβ along with the complex conjugated Ω∗

µ αβ .

8Exhaustive discussion of mixed-symmetry bosonic gauge fields both in Minkowski and AdS spacetimes

can be found, e.g., in Refs. [66, 38, 67, 39, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78].
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2.4 Auxiliary spinor variables

In practice it is convenient to represent higher spin fields considered in the previous sections

as expansion coefficients of polynomials with respect to some set of auxiliary spinor vari-

ables. It also brings to light a rich algebraic structure known as Howe duality that allows

one to control group-theoretical properties of (spin-)tensor fields in a manifest fashion.

Let us introduce two sorts of auxiliary Grassmann even variables aα and bβ , α, β =

1, ..., 4. It is assumed that aα, b
β and their derivatives

∂

∂aα
,

∂

∂bβ
act in the space P8 of

polynomials in eight spinor variables

F (a, b) =

∞∑

m,n=0

F α1...αm

β1...βn
aα1
· · · aαm b

β1 · · · bβm , (2.16)

where expansion coefficients are multispinors totally symmetric in the upper and lower

groups of indices.

Space P8 is a module of gl(4) algebra realized by the following basis elements

Gα
β =

1

2
{aα,

∂

∂aβ
}+

1

2
{bβ,

∂

∂bα
} , (2.17)

that produce gl(4) commutation relations via usual commutator. Algebra gl(4) acts ho-

mogeneously in P8 thereby decomposing it into finite-dimensional irreducible submodules.

The expansion coefficients in (2.16) are then identified with gl(4) tensors.

The condition that elements F (a, b) ∈ P8 form an irreducible submodule under gl(4)

transformations is expressed by a set of the following constraints [29],

Na = aα
∂

∂aα
: NaF (a, b) = mF (a, b) , (2.18)

Nb = bα
∂

∂bα
: NbF (a, b) = nF (a, b) , (2.19)

where m and n are some integers, and

T− =
1

4

∂2

∂aα∂bα
: T−F (a, b) = 0 . (2.20)

Then one observes that above operators Na, Nb and T
− supplemented by

T+ = aαb
α (2.21)

form gl(2) algebra. By construction the above gl(4) and gl(2) algebras are mutually com-

muting. It is important that gl(4) invariant conditions (2.18)-(2.20) are the highest weight

(HW) conditions of gl(2) algebra. Indeed, by an appropriate change of basis one can

identify elements T± with upper- and lower-triangular subalgebras of gl(2) algebra, while
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Na,b are its Cartan elements. Algebra gl(2) can be decomposed in a standard fashion as

gl(2) = sl(2)⊕ gl(1), where the sl(2) part is given by

T±, T 0 =
1

4
(Na +Nb + 4) (2.22)

while the following combination

G0 = Na −Nb (2.23)

is identified with gl(1) basis element. The commutation relations of sl(2) subalgebra are

given by

[T 0, T±] = ±
1

2
T± , [T−, T+] = T 0 . (2.24)

By definition, element G0 is central and therefore commutes with any element of sl(2).

The above consideration also remains valid for sl(4) ⊂ gl(4) subalgebra. To this end

one notes that condition (2.20) still defines HW vector of sl(4) ⊂ gl(4) while conditions

(2.18) and (2.19) fix some integer weight of sl(4) via

T 0F (a, b) =
1

4
(m+ n+ 4)F (a, b) , (2.25)

along with the following eigenvalue of gl(1)

G0F (a, b) = (m− n)F (a, b) . (2.26)

We see that P8 is in fact a bimodule over gl(4) and gl(2) algebras and its structure suggests

that the above two algebras form Howe dual pair [79].

In addition to commuting auxiliary variables we introduce auxiliary Grassmann odd

variables ψi and ψ̄
j with i, j = 1, ...,N . It enables us to supersymmetrize the above pure

bosonic construction. To this end we introduce a superspace P8|2N of polynomials

F (a, b, ψ, ψ̄) =

∞∑

m,n=0

N∑

k,l=0

F
α1...αn| i1...ik
β1...βm | j1...jl

aα1
. . . aαn b

β1 . . . bβmψi1 · · ·ψik ψ̄
j1 · · · ψ̄jl , (2.27)

where expansion coefficients are multispinors with two groups of totally symmetric indices

and two groups of totally anti-symmetric indices. Superspace P8|2N is a module of gl(4|N )

superalgebra with the following basis elements

Gα
β =

1

2
{aα,

∂

∂aβ
}+

1

2
{bβ,

∂

∂bα
} ,

Qi
α = aαψ̄

i +
∂

∂bα
∂

∂ψi
, Q̄α

i = bαψi +
∂

∂aα

∂

∂ψ̄i
,

Ui
j =

1

2

[
ψi,

∂

∂ψj

]
+

1

2

[
ψ̄j ,

∂

∂ψ̄i

]
,

(2.28)

and P8|2N decomposes into gl(4|N ) invariant submodules.
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Introducing Grassmann odd variables enables one to extend the above bosonic realiza-

tion of gl(2) algebra. The respective basis elements of sl(2) are given by [30]

P+ = T+ − ψiψ̄
i , P− = T− +

1

4

∂2

∂ψ̄i∂ψi
, P 0 = T 0 +

1

4
(Nψ +Nψ̄ −N ) , (2.29)

and gl(1) basis element is

Z0 = G0 +Nψ −Nψ̄ , (2.30)

where

Nψ = ψi
∂

∂ψi
, Nψ̄ = ψ̄i

∂

∂ψ̄i
. (2.31)

The respective sl(2) commutation relations are

[P 0, P±] = ±
1

2
P± , [P−, P+] = P 0 . (2.32)

By construction, the above gl(2) algebra and gl(4|N ) superalgebra are mutually commuting

and form Howe dual pair. It makes possible to study gl(4|N ) irreducible submodules in

P8|2N via imposing the following sl(2) HW condition

P−F (a, b, ψ, ψ̄) = 0 , (2.33)

along with some fixed eigenvalues of sl(2) Cartan element P 0 and gl(1) element Z0. It

is worth noting that the present construction describes only particular class of gl(4|N )

irreducible representations.

Up to now we considered complex gl(4|N ) superalgebra. However, we are interested in

su(2, 2|N ) superalgebra that is defined as an appropriate real form of sl(4|N ) ⊂ gl(4|N ).

The respective reality condition are given by

(aα)
∗ = bβCβα , (bα)∗ = Cαβaβ , (ψi)

∗ = ψ̄i , (ψ̄i)∗ = ψi , (2.34)

where conjugation matrices are defined by (2.11). Then it follows that aα and bβ are in

the fundamental and the conjugated fundamental representations of su(2, 2) while ψi and

ψ̄i are in the fundamental and the conjugated fundamental representations of u(N ).

In Section 3.1 we discuss a star-product realization of the above construction. Finally,

we note that the Howe dual pair gl(4|N ) and gl(2) coincides with that one discussed in

[72] within the BRST framework.

2.5 Gauge fields as polynomials in auxiliary variables

The unfolded gauge fields discussed in Sections 2.2 and 2.3 can be collectively represented

as a pair of mutually conjugated multispinors

Ωµ
α1... αs1+s2−1

β1... βs1−s2−1
⊕ Ω∗

µ
β1... βs1−s2−1

α1... αs1+s2−1 , (2.35)

11



provided that s1 = s and s2 = 0, 1
2
, 1. Using spinor auxiliary variables introduced in the

previous section we define the above massless gauge fields as follows

Ω(a, b|x) = dxµΩµ
α1... αs1+s2−1

β1... βs1−s2−1
(x) aα1

... aαs1+s2−1
bβ1... bβs1−s2−1 (2.36)

along with the complex conjugated Ω∗(a, b|x). The associated linearized higher spin cur-

vature is a 2-from R1 =
1

2
dxµ ∧ dxνR1 µν(a, b|x) given by

R1 = D0Ω ≡ d Ω + Ω0
α
β(b

β ∂

∂bα
− aα

∂

∂aβ
) ∧ Ω , (2.37)

where Ω0
α
β is the background 1-form connection satisfying the zero-curvature condition

(2.7), and the background covariant derivative is given by

D0 = d+ Ω0
α
β(b

β ∂

∂bα
− aα

∂

∂aβ
) . (2.38)

Subscript 1 indicates that curvature (2.37) is a linearized part of some full non-Abelian

curvature introduced in Section 3.3. The gauge transformations are

δΩ = D0ξ , (2.39)

where a gauge parameter is a 0-form ξ = ξ(a, b|x). As a corollary of D2
0 = 0 it follows that

δR1(a, b|x) = 0 , (2.40)

while the respective Bianchi identities read as

D0R1(a, b|x) = 0 . (2.41)

Using gl(2) basis elements (2.22) one easily formulates algebraic conditions on Ω(a, b|x)

that single out an irreducible field of a given spin as the respective gl(2) HW condition

T−Ω(a, b|x) = 0 , (2.42)

along with particular eigenvalues of Cartan elements

NaΩ(a, b|x) = (s1 + s2 − 1)Ω(a, b|x) ,

NbΩ(a, b|x) = (s1 − s2 − 1)Ω(a, b|x) .

(2.43)

The last two conditions can be equivalently rewritten as

T 0Ω(a, b|x) =
1

2
(s1 + 1)Ω(a, b|x) ,

G0Ω(a, b|x) = 2s2Ω(a, b|x) .

(2.44)
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It is obvious that the associated curvatures satisfy the same algebraic constraints.

In the subsequent analysis we use the following set of differential operators in auxiliary

spinor variables [29]

S− = aα
∂

∂bβ
V αβ , S+ = bα

∂

∂aβ
Vαβ , S0 = Nb −Na . (2.45)

They explicitly involve the compensator field and form sl(2) algebra

[S0, S±] = ±
1

2
S± , [S−, S+] = S0 . (2.46)

Note that the above set of sl(2) elements commute with other sl(2) elements introduced

earlier in Section 2.4. It is worth noting that sl(2) algebra (2.46) can be interpreted as

Howe dual algebra for the Lorentz subalgebra of su(2, 2). We hope to consider this issue

in a more detail elsewhere.

Irreducible su(2, 2) gauge fields can be further decomposed with respect to Lorentz

subalgebra. The resulting Lorentz fields are given by the following collection of differential

1-forms

ωtµ
α1... αs1+s2+t−1, β1... βs1−s2−t−1(x) , 06 t6 s1 − s2 − 1 , (2.47)

that satisfy the Young symmetry condition and the Vαβ-transversality condition. Recall

that compensator V αβ can be used to raise and lower indices in the Lorentz-invariant

manner, see (2.5). Fields (2.47) can be described as expansion coefficients of

ωt(a, b|x) = dxµωtµ(a, b| x) . (2.48)

Irreducibility conditions imposed on Lorentz-covariant tensors have the form of two gl(2)

HW conditions

S−ωt = 0 , T−ωt = 0 . (2.49)

The first condition is in fact the Young symmetry condition while the second one tells us

that Lorentz tensors are transversal to compensator V αβ. The last condition expresses

the fact that we describe Lorentz irreps in a manifestly su(2, 2) covariant manner. Indeed,

operators (2.45) enables one to write down a decomposition of an irreducible su(2, 2) gauge

field as

Ω(a, b|x) =
s1−s2−1∑

t=0

(S+)t ω t(a, b|x). (2.50)

Since sl(2) algebras (2.24) and (2.46) mutually commute one concludes that the second

HW condition in (2.49) on ω t(a, b|x) follows from HW condition (2.42) on Ω(a, b|x).

The background covariant derivative can be cast into explicit Lorentz-covariant form

as D0 = D0 + σ− + λσ0 + λ2σ+, where D0 stands for Lorentz derivative constructed with

respect to background Lorentz connection wαβ, while σ-operators satisfy the relations

(σ±)
2 = 0 , {σ0, σ±} = 0 , D2 + λ2 {σ−, σ+}+ λ2 (σ0)

2 = 0 , (2.51)
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that follow from D2
0 = 0. The explicit expressions for σ-operators are given in [46]. It is

worth noting that non-trivial σ0 appears not only for fermionic totally symmetric fields but

also for bosonic and fermionic mixed-symmetry fields.

Lorentz-covariant fields ωt at different values of parameter t play different dynamical

roles. One distinguishes between physical, auxiliary, and extra fields.

• For integer spin-(s, 0) system: fields with t = 0 are called physical, fields with t = 1

are auxiliary ones, fields with t > 1 are called extra fields.

• For half-integer spin-(s, 1
2
) system: fields with t = 0 are physical ones, fields with t > 0

are extra fields. The absence of auxiliary fields is a manifestation of the first-order

form of the fermionic field equations.

• For integer spin-(s, 1) system: fields with t = 0 are physical and auxiliary ones, fields

with t > 0 are extra fields. Physical field is identified with Reωt, an auxiliary field

is identified with Imωt. In particular, it allows one to cast the dynamical equations

of non-symmetric fields into the first-order form. The analogous decomposition into

pure real and imaginary parts duplicates the number of (real) extra fields. For more

details see [46].

The unfolded dynamical higher spin equations of motion can be represented as a system

of variational equations and certain constraints. Variational equations involve just physical

and auxiliary fields, and auxiliary field is expressed via first derivative of the physical field,

while the constraints express all extra fields via derivatives of the physical field. The next

two sections discuss the action functional and the appropriate constraints.

2.6 Higher spin action functionals

One of basic advantages of using the unfolded formulation is that quadratic action func-

tionals for higher spin fields can be represented in a manifestly gauge-invariant fashion.

The actions have the form of a bilinear combination of linearized curvatures so the gauge

invariance of the action is a direct consequence of (2.40).

The AdS5 action functional involves HS fields described as polynomials in two sets of

auxiliary variables X1 = (a1α, β
β
1 ) and X2 = (a2α, β

β
2 ). The action functional is built then

in the following schematic form

S =

∫

M5

Ĥ
(
E, V,

∂

∂X1
,
∂

∂X2

)
∧ R(X1) ∧ R(X2)

∣∣∣
X1=X2=0

, (2.52)

where Ĥ is a polynomial in the compensator and auxiliary variable derivatives acting

on a tensor product of two field strengths R(X). Also, since the integrand is 5-form it

follows that Ĥ is a 1-form proportional to the frame field Eαβ
µ . Expansion coefficients of Ĥ

with respect to derivatives in auxiliary variables are some su(2, 2) covariant tensors built
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of V αβ and δαβ and their combinations parameterize various types of index contractions

between curvatures. Any such action is manifestly su(2, 2) invariant and automatically

gauge-invariant with respect to the gauge transformations (2.39).

Generally, actions of the type (2.52) do not describe propagation of a correct number

of on-shell degrees of freedom because of redundant dynamical modes associated with the

extra fields. In order to eliminate their contribution one should fix the operator Ĥ in an

appropriate form by virtue of the extra field decoupling condition. It requires that the

variation of the quadratic action with respect to extra fields is identically zero,

δS2

δωex
≡ 0 . (2.53)

Extra fields maintain an explicit gauge invariance of the action functional but the above

condition constrains them to fall out of the quadratic action. Having decoupled extra fields,

the action can be cast into a minimal form with just two fields, physical and auxiliary ones,

but then the residual gauge invariance is implicit. Nonetheless, for both versions of the

action, minimal form with two fields and non-minimal with added extra fields, the respective

free field equations of motion always have manifestly gauge-invariant form, i.e., they are

represented as linear combinations of linearized higher spin curvatures.

The action for spin-(s1, s2) massless gauge field is searched in the following form [29,

45, 46]

S
(s1,s2)
2 =

∫

M5

Ĥ ∧R(a1, b1) ∧R
∗(a2, b2)|ai=bi=0 , s2 = 0,

1

2
, 1 , (2.54)

where R and R∗ are mutually conjugated linearized spin-(s1, s2) curvatures (2.37) and Ĥ

is the following 1-form differential operator

Ĥ =
(
α(p, q)Eαβ

∂2

∂a1α∂a2β
b12 + β(p, q)Eαβ ∂2

∂bα1 ∂b
β
2

a12

+γ(p, q)Eα
β ∂2

∂a2α∂b
β
1

c12 + ζ(p, q)Eα
β ∂2

∂a1α∂b
β
2

c21

)
(c12)

2s2 .

(2.55)

Here Eαβ is the frame field (2.4). For quadratic action under consideration the frame field

is taken to be background

Eαβ = hαβ , (2.56)

so dynamical fields are contained in the linearized curvatures only. The coefficients α, β, γ

and ζ are functions of operators

p = a12b12 , q = c12c21 , (2.57)
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where

a12 = Vαβ
∂2

∂a1α∂a2β
, b12 = V αβ ∂2

∂bα1∂b
β
2

,

c12 =
∂2

∂a1α∂b
α
2

, c21 =
∂2

∂a2α∂b
α
1

.

(2.58)

These functions are responsible for various types of index contractions between the back-

ground frame field, compensator and curvatures.

Below we list solutions of the extra field decoupling condition for totally symmetric

bosonic and fermionic fields, and for bosonic ”hook” fields. Note that quadratic actions

are defined modulo total derivative contributions.

• Spin-(s, 0) bosons:

α(p, q) = 2

∫ 1

0

dτ
(
1 + q

∂

∂q

)
ρ(τp + q) ,

ζ(p, q) + γ(p, q) = 0 , β(p, q) = 0 , γ(p, q) = ρ(p+ q) .

(2.59)

• Spin-(s, 1
2
) fermions:

α(p, q) = −

∫ 1

0

dτ
∂

∂p
ρ(pτ + q) ,

γ(p, q) = 0 , β(p, q) = 0 , qζ(p, q) = ρ(p + q) .

(2.60)

• Spin-(s, 1) bosons:

α(p, q) = −

∫ 1

0

dτ
∂

∂p
ρ(pτ + q) ,

γ(p, q) = 0 , β(p, q) = 0 , qζ(p, q) = ρ(p + q) .

(2.61)

We see that the quadratic action for a given spin is fixed unambiguously up to overall factors

parameterized by polynomials ρ(p + q) of fixed order, ρ(p + q) = ρ0(p + q)s1−2 for s2 = 0

fields and ρ(p+q) = ρ0(p+q)
s1−s2−1 for s2 6= 0 fields, ρ0 are arbitrary constants. Constants

ρ0 cannot be fixed from the free field analysis and represent the leftover ambiguity in the

coefficients. On the other hand, requiring gauge invariance in the cubic theory fixes ρ(p+q)

unambiguously, see Section 4.
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2.7 Generalized Weyl tensors and constraints

As discussed in the previous section in order to have a manifest higher spin gauge invariance,

the quadratic action is always written down with the extra fields, at least formally. It turns

out that on the interaction level variation of the action with respect to extra fields cannot

be consistently required to vanish identically. It follows that proper constraints should

be imposed expressing extra fields in terms of physical fields thereby preserving a correct

number of gauge symmetries and physical degrees of freedom.

We assume that constraints for extra fields should have the following form [29, 30, 46]

Υ̂+
2 ∧ r

t = 0 , 06 t < s1 − s2 − 1 , s2 = 0,
1

2
, 1 , (2.62)

where Υ̂+
2 is some 2-form operator increasing grading t by one. It satisfies the condition

σ+ ∧ Υ̂+
2 = 0 (2.63)

that guarantees that the number of independent algebraic relations imposed on the curva-

ture rt coincides with the number of components of extra fields ωt>0 modulo pure gauge

components of the form δωt+1 = σ−ξ
t+2. One can show that the operator Υ̂+

2 is uniquely

fixed in the form

Υ̂+
2 = σ0 ∧ σ+ . (2.64)

Constraints (2.62) are described by 4-form which in d = 5 dimensions is dual to 1-form so

it follows that the number of equations in (2.62) coincides with the number of components

of ω t+1. Therefore, field ωt+1 can be expressed via derivatives of the field ωt for any t > 0.

Finally, one can obtain fields ωt expressed in terms of derivatives of the field ω0 with an

order of highest derivatives equal to t. The schematic form of the corresponding expressions

is

ωt ∼
( ∂

λ∂x

)t
ω0 . (2.65)

On the non-linear level such expression for extra fields provide a useful parameterization

of higher derivatives in the higher spin interaction terms.

Next we cite the proposition known in the literature as the first on-mass-shell theorem,

see, e.g., [80, 51, 52, 33].

Proposition 2.1. Variational equations of motion for spin-(s1, 0) and spin-(s1, 1/2) fields

supplemented with the constraints for extra fields can be equivalently rewritten as

R
α1...αs1−1

β1...βs1−1
= H2δρC

α1...αs1−1γ1...γs1−1δρ
0 Vγ1β1 · · ·Vγs1−1βs1−1

, (2.66)

and

R
α1...αs1−1/2

β1...βs1−3/2
= H2 δρC

α1...αs1−1/2γ1...γs1−3/2δρ

1/2 Vγ1β1 · · ·Vγs1−3/2βs1−3/2
, (2.67)

plus analogous expression for complex conjugated curvatures. Here H2 δρ = hδ
γ ∧ hγρ. To-

tally symmetric multispinor C
α1...α2s1
0 is a generalized bosonic Weyl tensor, and totally sym-

metric multispinors C
α1...α2s1

1/2 and its complex conjugated constitute generalized fermionic

Weyl tensor.
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In particular, the above proposition tells us that all Lorentz-covariant curvatures except

for that with t = s1− 1 for bosons and t = s1− 3/2 for fermions can be set to zero on-shell

provided appropriated constraints are imposed. The proposition generalizes the well-known

construction of Weyl tensor in gravity.

Now we formulate and prove the analogous proposition for AdS5 mixed-symmetry fields

of particular integer spin (s1, 1). Actually, higher spin field equations of the form R = H2C

are known to describe AdS5 ”hook” field dynamics [33]. Here we prove that these equations

do arise as variational equations supplemented by some constraints thus guaranteeing the

proposed action functional for ”hook” fields (2.54) correctly describes physical degrees of

freedom.

Proposition 2.2. Variational equations of motion for spin-(s1, 1) fields supplemented with

the constraints can be equivalently rewritten as

R
α1...αs1

β1...βs1−2
= H2δρC

α1...αs1γ1...γs1−2δρ
1 Vγ1β1 · · ·Vγs1−2βs1−2

R∗ α1...αs1−2

β1...βs1
= H2

δρC∗
1β1...βs1γ1...γs1−2δρV

γ1α1 · · ·V γs1−2αs1−2 .

(2.68)

Here H2 δρ = hδ
γ ∧hγρ. Totally symmetric multispinors Cα1...α2s

1 and C∗
1β1...β2s are mutually

conjugated and constitute generalized Weyl tensor for ”hook” fields.

Proof. The main idea behind the proof is to observe that both the variational equations of

motion for the physical and auxiliary fields and constraints for extra fields can be visualized

as a system of linear equations imposed on curvature components. The kernel of the linear

system should be identified with generalized Weyl tensors so finding it is in fact the content

of the above Proposition.

More precisely, Lorentz-covariant curvatures can be cast into the following form

rµν
α1... αs+t, β1... βs−t−2 ⇒ r(δρ)|α1... αs+t, β1... βs−t−2 , (2.69)

where antisymmetric 2-form indices were converted to symmetric spinor indices by virtue

of a 2-from composed of the background frame field, H2 (δρ) = hδ
γ∧hγρ. The tensor product

(δρ) ⊗ (α1... αs+t, β1... βs−t−2) contains a set of irreducible Lorentz-covariant multispinor

components rα1...αk, β1...βl for some definite integers k, l. Field equations and constraints

impose various linear relations on these components.

As a first step we consider the curvature t = 0 and analyze which of its components do

not vanish on the equations of motions. The equations of motion have the form Ê∧r t=0 = 0,

where Ê is a 2-form operator satisfying the conditions [S−, Ê ] = 0 and [T−, Ê ] = 0, i.e.

when acting on the Lorentz-covariant curvature it preserves its Young symmetry and V αβ-

transversality properties. Operator Ê is proportional to background frame 2-form Hαβ and

is a differential operator in auxiliary spinor variables. The exact expression for Ê can be

found in [46].
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The explicit analysis of the component form of equations of motion is straightforward

but technically involved to be given here in all detail. However, since we work with linear

equations it is possible to estimate the lower bound of the respective kernel dimension

just by comparing the numbers of variables and equations by #(kernel) = #(variables)−

#(equations). The explicit analysis confirms that a rank of the linear system is maximal

and the above formula is exact.

Denoting t = 0 curvature component rα1...αk, β1...βl satisfying the Young symmetry and

V αβ-transversality conditions as a pair (k, l) we find that the following multispinor compo-

nents of t = 0 curvature remain non-zero on-shell: (s+2, s−2), (s, s−4) (s, s), (s−2, s−2).

Consider the Bianchi identities for t = 0 curvature, Dr t=0 + λ σ0r
t=0 + σ−r

t=1 = 0,

where σ-operators satisfy (2.51). Projecting these Bianchi identities on components (s, s)

and (s − 2, s − 2) gives rise to conditions λ rα1...αs, β1...βs = 0 and λ rα1...αs−2, β1...βs−2 = 0.

Note that these components originate from the term with σ0 operator.

Then we consider constraints (2.62) at t = 0. They can be equivalently represented as

1-form taking values in (s−1, s−3) multispinor corresponding to extra field with t = 1. It

implies that by virtue of this constraint the t = 1 extra field can be completely expressed

as the first derivative of t = 0 field. Again, considering the constraint as a system of linear

equations on t = 0 curvature one finds that its (s+2, s− 2), (s, s− 4) components vanish.

To summarize, we proved that equations of motion along with the first of constraints can

be equivalently rewritten as r t=0 = 0. The rest of the proof is straightforward and reduces

to the observation that curvatures r t>0 satisfy the cohomological equation σ−r
t>0 = 0 as

it follows form the respective Bianchi identities. Modulo exact contributions the general

solution is
rα1... αs+t, β1... βs−t−2 = 0 , 0 < t < s− 2 ,

rα1... α2s−2 = H2δρC
α1...α2s−2δρ
1 , t = s− 2 ,

(2.70)

where H2 δρ = hδ
γ ∧ hγρ and totally symmetric multispinor Cα1...α2s

1 should be identified

with the generalized Weyl tensor. The analogous expression is valid for complex conjugated

curvatures. We see that the above expressions can be equivalently cast into the form of

the Proposition 2.2.

Using auxiliary variables expression (2.66), (2.67), (2.2) can be uniformly cast into the

following form

Rs1,s2(a, b|x) = H2α
β ∂2

∂aα∂bβ
Resµ(µ

2s2 Cs1,s2(µa+ µ−1b|x)) , (2.71)

R∗s1,s2(a, b|x) = H2α
β ∂2

∂aα∂bβ
Resµ(µ

−2s2 C∗s1,s2(µa+ µ−1b|x)) , (2.72)
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where s2 = 0, 1
2
, 1, and H2αβ = hαγ ∧ hγβ and Resµ singles out the µ-independent part of

Laurent series in µ. A function of one spinor variable

C(µa+ µ−1b) =
∑

k, l

µk−l

k! l!
Cα1...αkβ1...βlaα1

. . . aαk
bβ1 . . . bβl (2.73)

has totally symmetric coefficients Cα1...αkβ1...βl and bβ = bγVγβ.

We observe that generalized Weyl tensor for bosonic non-symmetric spin-(s1, s2) field is

given by a pair of mutually conjugated generalized Weyl tensors for totally symmetric spin-

s1 field. In particular, it implies that the number of physical degrees of freedom is twice

that of symmetric spin-s1 field, cf. (2.1). In the flat limit λ = 0 the above mixed-symmetry

field decomposes into two independent totally symmetric spin-s1 fields. Indeed, there are no

mixed-symmetry fields on Minkowski spacetime since the respective little Wigner algebra

o(3) has just totally symmetric representations. It conforms the Brink-Metsaev-Vasiliev

conjecture [39] asserting that an irreducible massless field in AdSd decomposes in the flat

limit into a collection of irreducible massless fields in Minkowski spacetime.9 In the case

of AdS5 spacetime a set of Minkowski fields drastically reduces so that a non-symmetric

bosonic field decomposes into a pair of equal spin totally symmetric Minkowski fields [40].

To conclude this section one should note that the naive flat limit λ = 0 of the unfolded

quadratic action (2.54) for AdS5 massless spin-(s, 1) fields is inconsistent in the sense a

half of PDoF is lost [39]. However, such a type of inconsistency may be ignored on the

non-linear level since the higher spin interaction terms contain a factor of λ−1 so the naive

flat limit in the AdS5 interacting theory is singular. This drawback could be cured within

the Stueckelberg-like approach developed for mixed-symmetry fields in [39, 70, 81] thus

allowing one to study consistent passings of interacting theory from AdS5 to Minkowski

spacetime.

3 Fradkin-Linetsky superalgebra

3.1 Higher spin superalgebra cu(2N−1, 2N−1|8)

Let Grassmann even variables aα, b
β with α, β = 1, ..., 4 and Grassmann odd variables ψi

and ψ̄j with i, j = 1, ...,N satisfy the following non-vanishing (anti-)commutation relations

[aα, b
β]⋆ = δβα , {ψi, ψ̄

j}⋆ = δji , (3.1)

9The conjecture was originally put forward in the group-theoretical terms while its field-theoretical

justification based on unfolded formalism has been proposed in [74] for AdSd mixed-symmetry fields of

general shape. There, however, the proof could only be provided in full rigor for fields up to four rows,

due to technicalities in the manipulation of so-called cell-operators. The proof of the conjecture in the

general case was given in [76] where BRST extension of the unfolding formalism was used, that dispensed

the authors of [76] with an explicit manipulation of cell-operators.

20



with respect to Weyl star-product

(F ⋆ G)(a, b, ψ, ψ̄) = F (a, b, ψ, ψ̄) (exp△)G(a, b, ψ, ψ̄) , (3.2)

where

△ =
1

2

( ←−
∂

∂aα

−→
∂

∂bα
−

←−
∂

∂bα

−→
∂

∂aα
+

←−
∂

∂ψi

−→
∂

∂ψ̄i
+

←−
∂

∂ψ̄i

−→
∂

∂ψi

)
.

Thus we get particular Weyl -Clifford star-product algebra with elements F = F (a, b, ψ, ψ̄)

(2.27). The above variables are sufficient to build basis elements of N -extended gl(4|N )

superalgebra,

Tα
β =

1

2
{aα, b

β}⋆ , Qi
α = aαψ̄

i , Q̄β
i = bβψi , Ui

j =
1

2
{ψi, ψ̄

j}⋆ . (3.3)

Basis elements Ui
j form R-symmetry algebra U(N ) ⊂ gl(4|N ). The graded supercommu-

tator has the standard form [F ,G}⋆ = F ⋆ G − (−1)π(F )π(G)G ⋆ F , where the Z2 grading

π is defined by

F (−a,−b, ψ, ψ̄) = (−1)π(F )F (a, b, ψ, ψ̄) , π(F ) = 0 or 1. (3.4)

Factoring out an ideal of gl(4|N ) generated by the central element

N = aαb
α − ψiψ̄

i (3.5)

yields subalgebra sl(4|N ) ⊂ gl(4|N ) and the AdS5 superalgebra su(2, 2|N ) is defined as a

real form of sl(4|N ) singled out by the reality conditions defined below.

Higher spin extension of su(2, 2|N ) introduced in [31] under the name shsc∞(4|N ) and

called cu(2N−1, 2N−1|8) in [34] is associated with the star product algebra of all polynomials

F (a, b, ψ, ψ̄) satisfying the condition [32, 33, 34]

[N,F ]⋆ = 0 . (3.6)

Thus, Fradkin-Linetsky superalgebra is spanned by star-(anti)commutators of the elements

of the centralizer of N in the Weyl-Clifford star product algebra. The above commutator

can be equivalently cast into the form

[N,F ]⋆ = (Na −Nb +Nψ −Nψ̄)F , (3.7)

where Na,b and Nψ,ψ̄ are Euler operators (2.18),(2.19),(2.31). Then condition (3.6) is rep-

resented as

(Na +Nψ)F = (Nb +Nψ̄)F , (3.8)

so it follows that an element F ∈ cu(2N−1, 2N−1|8) depends on equal numbers of even and

odd variables with upper and lower indices. Expanding out elements F (a, b, ψ, ψ̄) with

respect to both even and odd variables yields expression (2.27). From (3.8) it follows that

total numbers of upper and lower indices of expansion coefficients coincide. It is worth to
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comment that expression (3.7) is in fact an adjoint star product realization of Howe dual

gl(1) basis element Z0 (2.30).

To single out an appropriate real form of the complex higher spin algebra cu(2N−1, 2N−1|8)

we impose reality conditions in the following way [34]. Introduce an involution † defined

by the relations

(aα)
† = ibβCβα , (bα)† = iCαβaβ , (ψi)

† = ψ̄i , (ψ̄i)† = ψi , (3.9)

where Cαβ and Cαβ are some real antisymmetric matrices defining complex conjugation

(2.10),(2.11), cf. (2.34). An involution reverses an order of product factors and conjugates

complex numbers (F ⋆ G)† = G† ⋆ F †, (µF )† = µ∗F †, µ ∈ C, where ∗ denotes complex

conjugation. The involution † leaves invariant the defining star product commutation

relations (3.1) and satisfies (†)2 = Id. The action (3.9) of † extends to an arbitrary element

F of the star product algebra.

Using the involution † enables one to define a real form of the Lie superalgebra built

by virtue of a graded commutators of elements by imposing the condition [82]

F † = −iπ(F )F . (3.10)

This condition defines the real higher spin algebra cu(2N−1, 2N−1|8) [34]. It contains the

N extended AdS5 superalgebra su(2, 2|N ) as its maximal finite-dimensional subalgebra.

3.2 Factorized higher spin superalgebra hu0(2
N−1, 2N−1|8)

Superalgebra cu(2N−1, 2N−1|8) is not simple and contains infinitely many ideals IP (N),

where P (N) is any star-polynomial of the central element N , spanned by the elements of

the form {x ∈ IP (N) : x = P (N) ⋆ F, F ∈ cu(2N−1, 2N−1|8)} [32]. There are different

quotient superalgebras

cu(2N−1, 2N−1|8)/IP (N) . (3.11)

In particular, one may consider maximally factorized superalgebra with P (N) = N . In

Ref. [34] a real form of this quotient algebra singled out by conditions (3.10) has been

denoted as hu0(2
N−1, 2N−1|8).

We note that the element N is in fact the basis element P+ of gl(2) algebra realized by

(2.29) on the linear space of cu(2N−1, 2N−1|8) superalgebra. It follows that factoring out

N ≡ P+ leaves supertraceless elements only, i.e.,

P−F (a, b, ψ, ψ̄) = 0 , (3.12)

and therefore hu0(2
N−1, 2N−1|8) superalgebra is spanned by elements with supertraceless

expansion coefficients in (2.27). Put differently, representatives of the quotient superalgebra

are identified with the HW vectors of gl(2) algebra, cf. (2.33).
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The quotient algebra can also be defined using the projecting technique elaborated

in [29, 30, 83]. To this end one introduces some element Π that satisfies the following

conditions

Π ⋆ N = N ⋆ Π = 0 , Π ⋆ F = F ⋆ Π , ∀F ∈ cu(2N−1, 2N−1|8) . (3.13)

In particular, it implies that Π is some function of N

Π =M(N) . (3.14)

Obviously, the second condition in (3.13) is satisfied and one can explicitly check that the

first condition (3.13) reduces to the following differential equation

xM ′′(x)− (N − 4)M ′ − 4xM = 0 , (3.15)

where x is an indeterminate variable, and M ′(x), M ′′(x) are the first and the second

derivatives of M(x). For N 6= 4 we obtain that the above equation is solved by

M(x) =

∞∑

n=0

2n

(2n)!! (2n+ 3−N )!!
x2n , (3.16)

while for the exceptional case N = 4 we find that

M(x) = e2x . (3.17)

The simple form of Π in the case of N = 4 may be traced back to that su(2, 2|N ) is not

simple and possesses an additional ideal to be factored out to obtain psu(2, 2|4). It follows

that its higher spin extension hu0(8, 8|8) is not simple as well. We hope to consider this

issue in more detail elsewhere.

3.3 Gauging cu(2N−1, 2N−1|8) superalgebra

The gauging procedure introduces cu(2N−1, 2N−1|8) as local symmetry in the corresponding

higher spin model. According to a general analysis of [82] we consider basis elements eI
of Lie superalgebra cu(2N−1, 2N−1|8) with definite parities π(eI) = 0, 1. Then one defines

gauge connections of cu(2N−1, 2N−1|8) as 1-forms Ω = dxµΩIµ eI . Their parities coincide

with those of the basis elements, π(ΩIµ) = π(eI) = 0, 1. Gauge transformation and curvature

are defined in a standard fashion

Rµν = ∂µΩν − ∂νΩµ + [Ωµ,Ων ]⋆ , (3.18)

and

δΩµ = Dµξ ≡ ∂µξ + [Ωµ, ξ]⋆ , δRµν = [Rµν , ξ]⋆ . (3.19)

Here brackets [·, ·]⋆ denote commutator and it is assumed that basis elements eI commute

with gauge connections. On the other hand, gauge connections commute as

ΩIµΩ
J
ν = (−)π(eI )π(eJ )ΩJν Ω

I
µ , (3.20)
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in accordance with boson-fermion spin statistics. Thus we obtain that gauge fields associ-

ated with cu(2N−1, 2N−1|8) are 1-forms (2.35) satisfying

Ω α1...αm

µβ1...βn
Ω α1...αl
ν β1...βk

= (−)(m+n)(k+l) Ω α1...αl
ν β1...βk

Ω α1...αm

µ β1...βn
. (3.21)

R-symmetry algebra indices are implicit here. Let us note that constructing gauge superal-

gebra cu(2N−1, 2N−1|8) involves two mutually commuting Grassmann algebras, one formed

by gauge connections and another formed by auxiliary variables themselves. It is worth

noting that the above definition replaces a graded commutator by usual commutator. This

happens because for cu(2N−1, 2N−1|8) Lie superalgebra we chosen the so-called first-class

Grassmann shell [84] (see also [82]).

3.4 N = 2 higher spin supermultiplets

From now on we set N = 2 and confine ourselves to the case of cu(2, 2|8) superalgebra.

Expanding out an arbitrary element of cu(2, 2|8) with respect to Grassmann odd variables

one obtains

F = Fe1 + F i
o11
ψi + Fo12 i ψ̄

i + Fe21 (ǫ
mnψmψn) + Fe22 (ǫmnψ̄

mψ̄n) + Fe31 ψkψ̄
k

+Fe32 i
j ψjψ̄

i + F i
o21

ψi(ψkψ̄
k) + Fo22 i ψ̄

i(ψkψ̄
k) + Fe4(ψkψ̄

k)(ψmψ̄
m) .

(3.22)

Here expansion coefficients are Fe, o = Fe, o(a, b), subscripts e (even) and o (odd) indicate

bosons and fermions, while their indices enumerate different fields of the supermultiplet.

Expansion coefficients Fe32
i
j are traceless Fe32 i

i = 0. Fields Fe, o(a, b) do not necessarily

have equal numbers of aα and bβ , so (Na −Nb)Fe, o(a, b) = p Fe, o(a, b), where p = 0, 1, 2.

Expanding out F (a, b) in aα and bβ yields traceful coefficients, i.e., F α1...αnγ
β1...βmγ

= 0, and

therefore they decompose into a collection of traceless components. Namely, for any fixed

n and m, a multispinor F α1...αn

β1...βm
decomposes into the set of irreducible traceless components

F ′α1...αk
β1...βk

, with all k + l6m+ n, k − l = m− n, k> 0, l> 0.

It follows from (3.22) that the spectrum of cu(2, 2|8) gauge fields is represented by the

following sum

Ω =:

∞∑

k=0

∞∑

s=2

D
(k)
[1] (s)⊕D

(k)
[2] (s−

1

2
)⊕D(k)

[4] (s−1)⊕D(k)
[1] (s−1, 1)⊕D(k)

[2] (s−
3

2
)⊕D(k)

[1] (s−2) ,

(3.23)

where D(k)(s1, s2) denotes a k-th copy of spin-(s1, s2) unitary irreducible representation

of su(2, 2) (2.1). Numbers in square brackets denote dimensions of R-symmetry algebra

u(2) representations. We note that the difference between highest and lowest spins in a

supermultiplets equals 2 and highest spin field in the supermultiplet is always bosonic.

Using formula (2.1) one can explicitly verify a balance of bosonic and fermionic degrees of

freedom.
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By way of an example let us consider s = 2 (graviton) supermultiplet. Modulo infinite

degeneracy its field content is given by (2[1],
3
2 [2]
, 1[4], (1, 1)[1],

1
2 [2]
, 0). We stress that (1, 1)[1]

representation corresponds to massive not massless antisymmetric field Bµν [85]. Spin

s = 3 (hypergraviton) supermultiplet is given by (3[1],
5
2 [2]
, 2[4], (2, 1)[1],

3
2 [2]
, 1[1]). It is this

supermultiplet where a ”hook” field appears for the first time. It is worth to comment that

N = 3 supermultiplet contains the same spin fields as N = 2 supermultiplet but there

appears also a fermionic ”hook” field. Spin-(s, 2) field appears in N = 4 supermultiplet.

Generally, it follows from (3.7) that a value of the second spin is given by s26N /2.

4 A general view of FV-type action

For the analysis of interactions we use perturbation expansion with the dynamical fields

Ω1 treated as fluctuations above the AdS5 background

Ω = Ω0 + Ω1 , (4.1)

where vacuum gauge fields Ω0 satisfy the zero-curvature condition (2.7). Both gauge

transformations and non-linear curvatures are given by formulas (3.18) and (3.19). Since

R(Ω0) = 0, we have R = R1 +R2 , where

R1 = dΩ1 + Ω0 ⋆ ∧Ω1 + Ω1 ⋆ ∧Ω0 , R2 = Ω1 ⋆ ∧Ω1 . (4.2)

It follows that linearized curvatures R1 are of the first order in fluctuations while R2 contain

their quadratic combinations. Gauge transformations for the first order fields are given by

δΩ1 = D0ξ + [Ω1, ξ]⋆ , δR1 = [R1, ξ]⋆ . (4.3)

Let us note that the lowest order part of the above gauge transformation has the form

(2.39), (2.40).

Higher spin gravitational interactions in the cubic approximations can be described by

FV-type action functional

S(Ω) =
1

2
A
(
R(Ω), R(Ω)

)
, (4.4)

where R(Ω) are 2-form curvatures associated to gauge fields of higher spin superalgebra.

A(F,G) = A(G,F ) is a bilinear symmetric inner product of the type (2.52) defined for any

differential 2-forms F and G (for more details see [29, 30, 86, 87]).

It is important that the above action is to be supplemented by off-shell constraints

(2.62),

Υ̂(R1) = 0 . (4.5)

In other words, to maintain gauge invariance of the action in the cubic approximation one

has to add constraints which are some linear combinations of the linearized higher spin
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curvatures. The constraints express all extra fields via derivatives of physical fields as in

(2.65).

Before explicitly constructing cubic order theory for AdS5 higher spin fields it will be

useful to consider the general scheme of how to prove establish gauge invariance of the

FV-type coupling. For a more detailed discussion see [16, 17, 29, 30]. The gauge invariance

of the action can be achieved by attributing to fields Ω1 a suitable transformation law.

Indeed, the action can be made invariant provided Ω1 transform as

δΩ1 = Dξ +∆(R, ξ) , (4.6)

where ∆(R, ξ) denotes some R-dependent deformation of the original transformation law

(3.19) such that ∆(0, ξ) = 0. These deformations are the so-called improved diffeomor-

phisms which are intrinsic to all theories containing propagating gravity [88]. In what

follows we denote the undeformed transformation (3.19) as δalgΩ1 thus emphasizing its

origin in cu(2, 2| 8) superalgebra.

Within the perturbation scheme both the action and the gauge transformations are

expanded as
S(Ω1) = S2(Ω1) + S3(Ω1) + ... ,

δΩ1 = δ0Ω1 + δ1Ω1 + ... .

(4.7)

Here zeroth order transformation δ0Ω1 is given by expression (2.39). Since quadratic action

is invariant under linearized transformations, δ0S2 = 0, it follows that the action in the

cubic approximation stays invariant against deformed transformations (4.6) if

δalgS +∆S2 + ... = 0 , (4.8)

where the dots stand for higher order corrections O(Ω3
1ξ). Recalling that the quadratic

action does not depend on extra fields and auxiliary fields are expressed via derivatives of

physical fields, one obtains ∆S2 =
δS2

δω0
∆ω0, where ω0 denote physical fields.10 Let us note

that both
δS2

δω0
and deformation ∆ are proportional to linearized curvature R1. According

to (4.8) a deformation of the original gauge transformation (4.6) guaranteeing the cubic

order gauge invariance of the action does exists provided that δalgS is a definite bilinear

combination of curvatures and the gauge parameter ξ, i.e.,

δalgS ∼ R1R1 ξ + ... . (4.9)

We observe that up to higher order corrections δalgS vanishes provided that free field

equations are fulfilled,
δS2

δω0
= 0. Using constraints (4.5) and Propositions 2.1 and 2.2 one

reformulates the gauge invariance condition in the cubic approximation as follows

δalgS
∣∣∣
R1=C

= 0 , (4.10)

10Recall that the physical field ω0 is the Lorentz field ωt (2.48) at t = 0 and for hook fields it is identified

with Reω0, see the discussion in the end of Section 2.5.
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where C are generalized Weyl tensors. In particular, fulfilling the invariance condition

(4.10) guarantees the existence of an appropriate deformation ∆ of the algebraic gauge

transformation law for the physical field.

Note that algebraic gauge variations of auxiliary and extra fields are also deformed

but these corrections are irrelevant for the action variation in the cubic approximation.

Indeed, auxiliary and extra fields contribute both to the cubic action and to constraints

(4.5) but due to the extra field decoupling condition they enter the action only in trilinear

combinations Ω1Ω1Ω1. The cubic approximation variation of the action is given by bilin-

ear combinations Ω1Ω1. It immediately follows that first order corrections of the gauge

transformation law for auxiliary and extra fields are irrelevant in the gauge variation of the

action and it is sufficient to know just their zeroth order part. On the other hand, because

linearized curvatures R1 transform homogeneously (4.3) the gauge variation of constraints

(4.5) is of the first order in Ω1. Therefore, to maintain gauge invariance of the constraints

one deforms extra field gauge transformations by terms linear in Ω1. However, they do not

contribute to the variation of the action.

The above consideration provides a general scheme of how to achieve a gauge invariance

in FV-type theories. However, higher spin models in question possess several peculiar

features as local supersymmetry and an infinite degeneracy of the spectrum. It follows

that the action should fulfill additional conditions.

• R-symmetry invariance. The N = 2 superalgebra cu(2, 2 |8) is invariant under global

u(2) rotations of supercharges (3.3). Therefore, a corresponding field theory should

also exhibit such a global symmetry, referred to as R-symmetry.

• Factorization condition. Superalgebra cu(2, 2|8) gives rise to an infinite set of copies

for a given spin field. The factorization condition diagonalizes a quadratic part of

the action (4.4) so that different copies of the same spin field do not mix up in the

quadratic action.

• C-invariance condition. The action possesses a cyclic property with respect to the

central element N of cu(2, 2| 8) superalgebra,

A(N ⋆ F,G) = A(F,G ⋆ N) , (4.11)

where F,G are cu(2, 2| 8) elements and hence they commute with N (3.6).

In the subsequent sections we consider each of the above conditions. Note that the factor-

ization condition and the C-invariance condition were originally formulated in [29] for pure

bosonic theory while their N = 1 extension was considered in [30].

The full action (4.4) is naturally split into a sum of bosonic and fermionic parts

A(F,G) = B(Fe, Ge) + F(Fo, Go) , (4.12)
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where subscripts e (even) and o (odd) indicate bosonic and fermionic components of F and

G, while B and F are bosonic and fermionic actions, respectively.

The fermionic part is a sum of actions for two su(2)-valued totally symmetric fermions

F(Fo, Go) = F1(Fo1 , Go1) + F2(Fo2 , Go2) , (4.13)

where

F1(Fo1 , Go1) =
1

2

∫
Ĥo1 ∧Go12 i ∧ F

i
o11

+
1

2

∫
Ĥo1 ∧ Fo12 i ∧G

i
o11

(4.14)

F2(Fo2 , Go2) =
1

2

∫
Ĥo2 ∧Go22 i ∧ F

i
o21 +

1

2

∫
Ĥo2 ∧ Fo22 i ∧G

i
o21 . (4.15)

The bosonic part is a sum of actions for five u(2)-valued bosonic fields

B(Fe, Ge) = B1(Fe1, Ge1) + B31(Fe31 , Ge31)

+B32(Fe32 , Ge32) + B4(Fe4 , Ge4) + B2(Fe2 , Ge2) ,

(4.16)

where each term is defined as follows. Actions for totally symmetric fields are

B1(Fe1 , Ge1) =

∫
Ĥe1 ∧ Fe1 ∧Ge1 , B31(Fe31 , Ge31) =

∫
Ĥe31 ∧ Fe31 ∧Ge31 ,

B32(Fe32 , Ge32) =

∫
Ĥe31 ∧ Fe31 i

j ∧Ge31 j
i , B4(Fe4 , Ge4) =

∫
Ĥe4 ∧ Fe4 ∧Ge4 ,

(4.17)

while the action for non-symmetric fields is

B2(Fe2, Ge2) =
1

2

∫
Ĥe2 ∧ Fe22 ∧Ge21 +

1

2

∫
Ĥe2 ∧Ge22 ∧ Fe21 . (4.18)

From now on the symbol of exterior product ∧ will be systematically omitted. By construc-

tion, all the above actions are invariant under R-symmetry transformations u(2). They are

of the type (2.54) defined by operators Ĥe, o = Ĥe, o(E) (2.55) which depend on dynamical

gravitation field described by the frame Eαβ . To construct the cubic order action we use

the following anzats for operators Ĥe, o = Ĥe, o(E). Namely, we set a part of coefficients or

their linear combinations to zero

βe(p, q) = 0 , ζe(p, q) = −γe(p, q) , (4.19)

for spin-s bosonic fields, and

βe,o(p, q) = 0 , γe,o(p, q) = 0 , (4.20)

for spin-s fermionic fields and spin-(s, 1) bosonic fields. Note that the above choice is

consistent with the quadratic action coefficients (2.59)-(2.61).
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It is important to comment that describing gauge fields as differential forms and using

the compensator mechanism that makes su(2, 2) symmetry manifest guarantees that the

full action (4.12) is explicitly su(2, 2) covariant and diffeomorphism invariant. Note that we

treat gravitational fields appearing in the full action in two different setups, as the frame

field Eαβ that explicitly enters operators Ĥe, o = Ĥe, o(E) and gauge connection Ωαβ of

su(2, 2) ⊂ cu(2, 2|8). As a result, the gauge variation δalgS of the full action (4.12) involves

two types of terms resulting from varying operators Ĥe, o(E) and curvatures R(Ω1). The

invariance of the first type results from the explicit su(2, 2) covariance and diffeomorphism

invariance of the whole setup. The invariance of the second type gives rise to the condition

(4.10) which now takes the form

A(R1, [R1, ξ]⋆) ≈ 0 . (4.21)

here A is given by (4.12) and ≈ means that all linearized curvatures R1 are replaced

by generalized Weyl tensors according to Propositions 2.1 and 2.2. Gauge parameter

ξ ∈ cu(2, 2|8) is arbitrary.

The above discussion of the gauge invariance in the cubic approximation is valid for a

higher spin model with cu(2, 2|8) local symmetry but the same methods are also applied

for a reduced system governed by factorized superalgebra hu0(2, 2| 8). To build a reduced

model we use the approach elaborated for N = 0 pure bosonic system in [29] and for N = 1

system in [30] which consists of inserting the projecting operator Π (3.13) into the action

of cu(2, 2|8) system as

A(F,G)→ A0(F,G) = A(F,Π ⋆ G) , (4.22)

where A(F,G) is given by (4.12). Then A0(F,G) defines an action of the reduced model.

Because the projecting operator Π(N) is some fixed function of N (3.16) it follows that the

C-invariance condition guarantees

A(F,Π ⋆ G) = A(F ⋆ Π, G) , (4.23)

so the bilinear form in the action with Π inserted remains symmetric. The idea is that all

terms in F and G proportional to N do not contribute to the action (4.22) which therefore

is defined on the quotient subalgebra hu0(2, 2|8). Note that A0(F,G) is well-defined as a

functional of polynomial functions F and G because for polynomial F and G only a finite

number of terms in the expansion of Π in auxiliary variables contributes. The explicit

expression for N = 2 projecting operator Π is given in Section 4.1.

4.1 Summary of results

In this section we list all the coefficients in the action for cu(2, 2|8) model.
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• Spin-(s1, 0) sector is given by

αe1(p, q) = 2γe1(p+ q)−
1

2
Φ0

∫ 1

0

dτ Resννe
1

2
(−ν−1+ν(τp+q))

γe1(p) = −ζe1(p) = −
Φ0

4

∫ 1

0

dττ Resννe
1

2
(−ν−1+ντp)

(4.24)

αe31(p, q) =
1

2
αe1(p, q) γe31(p) =

1

2
γe1(p)

αe4(p, q) =
1

4
αe1(p, q) γe4(p) =

1

4
γe1(p)

(4.25)

αe32(p, q) = 2γe32(p+ q)−
1

8
Φ0

∫ 1

0

dτ Resννe
1

2
(−ν−1+ν(τp+q))

γe32(p) = −ζe32(p) = −
Φ0

16

∫ 1

0

dττ Resννe
1

2
(−ν−1+ντp)

(4.26)

According to (4.19) all coefficients βe1(p, q) = βe31(p, q) = βe32(p, q) = βe4(p, q) = 0.

• Spin-(s1, 1) sector is given by

αe2(p, q) = ζe2(p, q) +
Φ0

q

∫ 1

0

dτResνν
−1e

1

2
(−ν−1+ν(τp+q))

ζe2(p, q) = −
Φ0

q(p + q)

∫ 1

0

dτResνν
−1e

1

2
(−ν−1+ντ(p+q))

(4.27)

According to (4.20) coefficients βe2(p, q) = 0 and γe2(p, q) = 0.

• Spin-(s1,
1
2
) sector is given by

αo1(p, q) = ζo1(p, q) +
Φ0

2q

∫ 1

0

dτ Resν e
1

2
(−ν−1+ν(pτ+q))

ζo1(p, q) = −
Φ0

2q(p+ q)

∫ 1

0

dτ Resν e
1

2
(−ν−1+ν(p+q)τ)

(4.28)

αo2(p, q) =
1

4
αo1(p, q) ζo2(p, q) =

1

4
ζo1(p, q) (4.29)

According to (4.20) coefficients βo1(p, q) = βo2(p, q) = 0 and γo1(p, q) = γo2(p, q) = 0.

Here Φ0 is an arbitrary factor properly normalized in terms of the cosmological constant λ

and the gravitational constant κ.

The action of the reduced hu(2, 2|8) model is defined according to (4.22), where the

form of the projecting operator is read off from the general expression (3.16) at N = 2

Π(N) =

∞∑

n=0

2n

(2n)!! (2n+ 1)!!
N2n . (4.30)
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5 Calculation of gauge invariance

The novel feature of N = 2 analysis compared to N = 0, 1 case is the appearance of ”hook”

fields. In this section we study the invariance condition (4.21) giving particular emphasis

to calculations involving fields of ”hook” symmetry type. Our analysis of the cubic order

interaction vertices is heavily based on the technique elaborated in the previous papers on

N = 0, 1 FV-type theory [29, 30]. In particular, we do not repeat here calculations related

to totally symmetric fields and use results obtained in [29, 30].

5.1 Factorization condition for ”hook” fields

We begin by noting that due to (super)traces of cu(2, 2| 8) gauge fields su(2, 2|2) super-

multiplets are not irreducible and decompose into (super)traceless components (see Section

3.4). Having in mind (2.33) we call a gauge field Ω(a, b, ψ, ψ̄|x) supertraceless if it fulfills

the following algebraic constraint

P−Ω(a, b, ψ, ψ̄|x) = 0 , (5.1)

where operator P− is given by (2.29). It follows that using operators P− and P+ allows

one to decompose any element Ω(a, b, ψ, ψ̄|x) of cu(2, 2|8) superalgebra into irreducible

su(2, 2|2) supermultiplets as

Ω(a, b, ψ, ψ̄|x) =
∞∑

k=0

∞∑

s1=2

χ(k, s1) (P
+)k Ωk, s1(a, b, ψ, ψ̄|x) , (5.2)

where χ(k, s1) are arbitrary coefficients, s1 denotes the highest integer spin in a supermul-

tiplet and Ωk,s1 are supertraceless (5.1). The supertraceless decomposition can be equiva-

lently rewritten (modulo finite field redefinitions) in the manifest su(2, 2) fashion with all

multispinors being traceless rather than supertraceless

Ω(a, b|x) =
∞∑

k=0

∞∑

s1=2

v(n, s1) (T
+)n Ωn,s1(a, b|x) , (5.3)

where v(n, s1) are arbitrary coefficients and Ωn,s1(a, b|x) describe an n-th copy of irre-

ducible field of a given spin (s1, s2) (2.43). Note that s2 = 0, 1
2
, 1 is implicit in the above

decompositions. The decomposition analogous to (5.3) is valid for the curvatures

R(a, b|x) =
∞∑

n, s1=0

v(n, s1) (T
+)n Rn,s1(a, b|x) , (5.4)

where Rn,s1(a, b|x) are associated with irreducible fields Ωn,s1(a, b|x).

The factorization condition requires

S2(Ω) =
∞∑

n=0

∞∑

s1=2

∑

s2

Sn,s1,s22 (Ωn,s1+2,s2) , (5.5)
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where S2 is a quadratic part of (4.4) and Sn,s1,s22 is a quadratic action for a n-th copy of a

given spin field (recall that it may take values in u(2) irreps). The condition diagonalizes

S2, i.e. the terms containing products of the fields Ωn, s1,s2 and Ωm, s1,s2 with n 6= m in the

trace decomposition (5.3) should all vanish. Note that normalization coefficients vn(T
0)

in expansion (5.3) can be chosen in such a way that all copies of the same spin in the

quadratic actions enter (5.5) with the same overall factor. The factorization condition for

totally symmetric fields has been explicitly calculated in Refs. [29, 30]. In this section we

perform the analogous analysis for ”hook” fields.

From the above discussion it follows that the factorization condition in the spin-(s1, 1)

sector is valid provided that

B2(Fe2, T
+Ge2) = B̃2(T

−Fe2, Ge2) , (5.6)

where action B̃2 is defined for some set of new parameters (α̃e2, ζ̃e2) expressed in terms of

old parameters (αe2, ζe2), see (2.55) and (2.61). Then one finds that two actions differ from

each other by the following term
∫
Qe2(p, q)Eα

β ∂2

∂a2α∂b
β
2

(c12)
2Fe21(a1, b1)Ge22(a2, b2) , (5.7)

which is required to vanish,

Qe2(p, q) ≡ (1 + p
∂

∂p
)αe2(p, q) + (1 + q

∂

∂q
) ζe2(p, q) = 0 . (5.8)

The new coefficients are expressed through the old ones as follows

α̃e2(p, q) = 4

(
(2 + p

∂

∂p
)
∂

∂p
+ (3 + q

∂

∂q
)
∂

∂q

)
αe2(p, q) ,

ζ̃e2(p, q) = 4

(
2

q
+ (1 + p

∂

∂p
)
∂

∂p
+ (4 + q

∂

∂q
)
∂

∂q

)
ζe2(p, q) .

(5.9)

They will be further constrained by the C-invariance condition discussed below. One can

show that the factorization condition (5.8) and the extra field decoupling condition (2.53)

are compatible and the solution is given by (2.61). Quite analogously one considers totally

symmetric fields and proves that the coefficients are fixed by the factorization and extra

field decoupling conditions as in (2.59) and (2.60), see [29, 30].

5.2 The C-invariance condition

Let us discuss the C-invariance condition (4.11). The exact formula for N ⋆ F reads

N ⋆ F = (T+ − T−)F − Fe1 (ψkψ̄
k)− F i

o11
ψi (ψkψ̄

k)− Fo12 i ψ̄
i (ψkψ̄

k)

−Fe31 (ψkψ̄
k) (ψmψ̄

m)−
1

2
Fe31 −

1

4
F i
o21 ψi −

1

4
Fo22 i ψ̄

i −
1

2
Fe4 (ψmψ̄

m) .

(5.10)
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where F is given by (3.22). Imposing the C-invariance condition results in the mutual

conjugation of the trace creation operator T+ and trace annihilation operator T− with

respect to the inner product A:

A(T±F,G) = −A(F, T∓G) , (5.11)

while the relative coefficients between different type actions are fixed as

B1 = 2B31 , B1 = 4B4 , F1 = 4F2 . (5.12)

In particular, condition (5.11) implemented in the ”hook” field sector along with the

factorization condition yields additional relations for coefficients (5.9),

α(p, q) + α̃(p, q) = 0 , ζ(p, q) + ζ̃(p, q) = 0 . (5.13)

It is worth noting that the factorization condition is implemented on the free field level only

while the C-invariance conditions is valid for the non-linear action as well. In particular, we

see that condition (5.11) for free fields is a stronger version of the factorization condition.

Also, conditions (5.12) for free fields are too restrictive because they relate normalization

constants in front of different spin quadratic actions.

The C-invariance condition also implies that it is sufficient to consider the invariance

condition (4.10) only for the fields satisfying the tracelessness condition (2.42). Because

curvatures decompose into traceless components as (5.4) we single out the zeroth order

terms in T+ and denote them as

R(a, b|x) ≡
∞∑

s1=2

Rs1(a, b|x) (5.14)

By definition, each term in this expansion is traceless, T−Rs1 = 0. Recall that both the

second spin value s2 = 0, 1
2
, 1 and u(2) indices are implicit here. One may explicitly prove

that the invariance condition (4.10) is now takes the form

A(R, [R, ξ]⋆) ≈ 0 , (5.15)

where ≈ means that all linearized curvatures are replaced by generalized Weyl tensors

according to Propositions 2.1 and 2.2. The idea of the proof is to consider the variation

A(R, [R, ξ]⋆) with curvatures decomposed according to the trace decomposition (5.4). Then

using formula [29]

T+F (a, b) = T+ ⋆ F (a, b) +
(
T− −

1

2
G0
)
F (a, b) , (5.16)

where T± and G0 are given by (2.22), (2.23), along with the C-invariance condition in the

form (5.11) enables one reduce step by step a degree in T+ thereby ending up with pure

traceless curvatures R and new gauge parameter ξ → T+ ⋆ ξ. More detailed exposition can

be found in [29, 30].
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5.3 Cubic order gauge invariance

Gauge transformations of cu(2, 2| 8) superalgebra are defined by 0-form parameter ξ =

ξ(a, b, ψ, ψ̄|x) expanded out analogously to (3.22),

ξ = ξe1 + ξio11 ψi + ξo12 i ψ̄
i + ξe21 (ǫ

mnψmψn) + ξe22 (ǫmnψ̄
mψ̄n) + ξe31 ψkψ̄

k

+ξe32
i
j ψiψ̄

j + ξio21 ψi(ψkψ̄
k) + ξo22 i ψ̄

i(ψkψ̄
k) + ξe4(ψkψ̄

k)(ψmψ̄
m) .

(5.17)

Because the curvatures R(a, b, ψ, ψ̄|x) are transformed homogeneously (3.19) it follows that

the component form of δR(a, b, ψ, ψ̄|x) comprises over a hundred terms. In what follows

we consider invariance with respect to each type of gauge transformations associated with

supermultiplet parameters (5.17), but explicit calculations are too lengthy to present them

here. Instead, we explicitly analyze the invariance with respect to bosonic symmetry defined

by ξe1, while the rest of gauge invariance analysis is given schematically just emphasizing

key points. Explicit expressions for gauge transformations are relegated to Appendix 7.

5.3.1 Cubic order invariance for ”hook” fields

In this section we study the gauge invariance with respect to bosonic parameter ξe1 =

ξe1(a, b) in the ”hook” field sector. Let us note that the respective symmetry does not

mix different type fields, see (A.4). The gauge invariance for totally symmetric fields was

analyzed in [29, 30].

A general variation of the action for ”hook” fields (4.18) is given by

δB2 =

∫
Ĥe2 δRe22 Re21 +

∫
Ĥe2 Re22 δRe21 . (5.18)

Substituting δRe21 = [Re21 , ξe1]⋆ and δRe22 = [Re22 , ξe1]⋆ from (A.4) we obtain

δB2 =

∫
Ĥe2 (Re22 ⋆ ξe1)Re21 −

∫
Ĥe2 (ξe1 ⋆ Re22)Re21

+

∫
Ĥe2 Re22 (Re21 ⋆ ξe1)−

∫
Ĥe2 Re22 (ξe1 ⋆ Re21) .

(5.19)

In order to calculate the above variation in the form (5.15) we set all traces in Re21 and

Re22 to zero and for respective traceless components use the following representation in

terms of Weyl tensors, cf. (2.71) and (2.72),

Re21(a, b) = Resνν
−2eν

−1aα
∂

∂cα
+νbβ ∂

∂cβHγρ
2

∂2

∂cγ∂cρ
Ce21(c)

∣∣∣
c=0

,

Re22(a, b) = Resνν
−2eνaα

∂
∂cα

+ν−1bβ ∂

∂cβHγρ
2

∂2

∂cγ∂cρ
Ce22(c)

∣∣∣
c=0

.

(5.20)
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We find that up to non-zero multiplicative constant variation δB2 is given by
∫
H5 k̄

2Resν e
1

2
(νv̄1−ν−1ū1)ν−2(νk̄ + ū2)

2Φ(Z) Ce22(c1)Ce21(c2)ξ(a3, b3)

−

∫
H5 k̄

2Resν e
1

2
(−νv̄1+ν−1ū1)ν−2(νk̄ + ū2)

2Φ(Z) Ce22(c1)Ce21(c2)ξ(a3, b3)+

(5.21)

+

∫
H5 k̄

2Resν e
1

2
(ν−1v̄2−νū2)ν−2(νk̄ + v̄1)

2Φ(Y ) Ce22(c1)Ce21(c2)ξ(a3, b3)

−

∫
H5 k̄

2Resν e
1

2
(−ν−1v̄2+νū2)ν−2(νk̄ + v̄1)

2Φ(Y ) Ce22(c1)Ce21(c2)ξ(a3, b3) ,

where we used the following notation

k̄ =
∂2

∂c1α∂cα2
, ūi =

∂2

∂cαi ∂a3α
, v̄i =

∂2

∂ci α∂bα3
, (5.22)

and

Z ≡ AB = (νk̄ + ū2)(ν
−1k̄ − v̄2) , Y ≡ FD = (νk̄ + v̄1)(ν

−1k̄ − ū1) , (5.23)

while the function Φ(Z) is given by

Φ(Z) = Z(αe2(Z,−Z)− ζe2(Z,−Z)) . (5.24)

Quantity H5 is a 5-form defined as H5 = hα
βhβ

γhγ
ρhρ

δhδ
α [29]. The invariance condition

(5.15) requires the above variation to vanish. Because it is legitimate to omit generalized

Weyl tensors and H5k̄
2 in the left-hand-side of (5.21) we obtain the following equation

Resν e
1

2
(νv̄1−ν−1ū1)ν−2A2Φ(AB) − Resν e

1

2
(−νv̄1+ν−1ū1)ν−2A2Φ(AB)

+Resν e
1

2
(ν−1v̄2−νū2)ν−2F 2Φ(FD) − Resν e

1

2
(−ν−1v̄2+νū2)ν−2F 2Φ(FD) = 0 .

(5.25)

Let us define a function Φ̃(A,B) = A2Φ(AB) and rewrite the above equation as follows

Resνν
−2
(
e

1

2
(νv̄1−ν−1ū1)Φ̃(A,B) − e

1

2
(−νv̄1+ν−1ū1)Φ̃(A,B) +

e
1

2
(ν−1v̄2−νū2)Φ̃(F,D) − e

1

2
(−ν−1v̄2+νū2)Φ̃(F,D)

)
= 0 .

(5.26)

An educated guess is that the function Φ̃(A,B) = Φe20 Resµ(µ
−2e

1

2
(µA+µ−1B)), where Φe20

is an arbitrary constant, is a solution to the above equation. Indeed, substituting this

function back into (5.26) gives

Resνν
−2µ−2

(
e

1

2
(νv̄1−ν−1ū1)+

1

2
(µA+µ−1B) − e

1

2
(−νv̄1+ν−1ū1)+

1

2
(µA+µ−1B) +

e
1

2
(ν−1v̄2−νū2)+

1

2
(µF+µ−1D) − e

1

2
(−ν−1v̄2+νū2)+

1

2
(µF+µ−1D)

)
= 0 ,

(5.27)
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or

Resνν
−2µ−2

(
e

1

2
(νv̄1−ν−1ū1)+

1

2
(µ(νk̄+ū2)+µ−1(ν−1k̄−v̄2)) − e

1

2
(−νv̄1+ν−1ū1)+

1

2
(µ(νk̄+ū2)+µ−1(ν−1k̄−v̄2)) +

e
1

2
(ν−1v̄2−νū2)+

1

2
(µ(νk̄+v̄1)+µ−1(ν−1k̄−ū1)) − e

1

2
(−ν−1v̄2+νū2)+

1

2
(µ(νk̄+v̄1)+µ−1(ν−1k̄−ū1))

)
= 0 .

(5.28)

The first and the forth terms are equal to each other under ν ↔ µ, while the second and

the third terms are equal to each other under ν ↔ −µ. Therefore, we conclude that the

function

Φ(A) = Φe20 A
−2Resµ

(
µ−2 exp

1

2
(µA+ µ−1)

)
, (5.29)

where A is some indeterminate variable, solves the invariance condition in the sector of

”hook” fields. As a result, we arrive at the following equation on the coefficient functions

A(α(A,−A)− ζ(A,−A)) = Φ0A
−2Resµ

(
µ−2 exp

1

2
(µA+ µ−1)

)
. (5.30)

The left-hand-side of the above equation does not vanish at A = 0 because the coefficient

ζ(A,−A) is not necessarily polynomial and contains poles in A. Contrary, the right-hand-

side is polynomial but the zeroth order inA is not generally zero so the equation is consistent

at A = 0. Let us note that though the above equation involves the coefficients which are

functions of two variables p and q it defines dependence on just one variable. Actually this

is due to the fact that equation (5.30) involves a function of a single variable ρ(p+q) which

defines normalization constants in front of quadratic actions (2.59)-(2.61).

Equation (5.30) can be cast into the following convenient integral form

α(A,−A)− ζ(A,−A) =
Φe20
2
A−2

∫ 1

0

dτResνν
−1e

1

2
(ν−1+ντA) . (5.31)

We write down the answer in terms of function

ρ(p) = −
Φ0

2p

∫ 1

0

dτResνν
−1e

1

2
(−ν−1+ντp) . (5.32)

It follows that the coefficient functions take the the form

ζ(p, q) =
ρ(p+ q)

q
, (5.33)

α(p, q) =
ρ(p + q)

q
+

Φ0

2q

∫ 1

0

dτResνν
−1e

1

2
(−ν−1+ν(τp+q)) . (5.34)

One can explicitly check that the above formal series satisfy the following identities

(
p
∂2

∂p2
+ 3

∂

∂p
+

1

4

)
ρ(p) = 0 , (5.35)

(
(2 + p

∂

∂p
)
∂

∂p
+ (3 + q

∂

∂q
)
∂

∂q
+

1

4

)
α(p, q) = 0 , (5.36)
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which are in fact conditions (5.9), (5.13). Thus it is shown that the coefficient functions

for ”hook” fields satisfy the factorization condition, the C-invariance condition, extra field

decoupling condition and the invariance condition (5.15). One concludes that the action

for ”hook” fields is consistently defined both on the free field and interaction levels.

5.3.2 The remaining invariance

Gauge invariance of actions for totally symmetric bosonic and fermionic fields with respect

to ξe1(a, b) has been considered in [29, 30]. The common feature of the variation in different

field sectors of the full action is that coefficient functions α(p, q), β(p, q), γ(p, q), and ζ(p, q)

in (2.55) appear only through particular combinations identified with functions Φ(X) of

the type (5.24); exact expressions are collected in (A.1)-(A.3). It follows that considering

the gauge variation is more convenient in terms of functions Φ(X). Taking into account

the results obtained in the previous section we list functions Φ(X) for spin-s1 fields and

for spin-(s1, 1) in the following manner

Φ(X) = Φ0Ψ(X) , Ψ(X) = X−2s2Resν
(
ν−2s2 exp

1

2
(ν−1 + νX)

)
, (5.37)

where X is an indeterminate variable, normalization constants Φ0 are arbitrary, and s2 =

0, 1
2
, 1. This result tells us that gauge invariance with parameter ξe1 fixes all coefficients

inside actions for each type of supermultiplet fields and leaves arbitrary overall constants.

The remaining gauge invariance imposes on them some linear relations so that all these

constants are expressed via a single normalization constant.

Prior discussing the remaining gauge invariance let us make the following observation.

By virtue of the C-invariance condition the invariance with respect to ξe1(a, b) yields the

invariance with respect to bosonic parameters ξe31(a, b) and ξe4(a, b). Indeed, suppose we

proved invariance of the action with respect to ξe1, i.e. the condition (4.10) is satisfied,

A(R, [R, ξe1]⋆) ≈ 0. It follows that the same is true also for another element R′ = N ⋆

R = R ⋆ N of gauge cu(2, 2| 8) superalgebra, i.e. A(N ⋆ R, [N ⋆ R, ξe1]⋆) ≈ 0. Since

N is central element of cu(2, 2| 8) and by virtue of the C-invariance condition one obtains

A(R, [R,N ⋆N ⋆ξe1]) ≈ 0 for some new gauge parameter ζ = N ⋆N ⋆ξe1. In fact, parameter

ζ is a combination of ζe1, ζe31 , and ζe4, expressed via T+ and T− acting on original ξe1. The

invariance with respect to ξe1, ξe31 , and ξe4 can also be checked by direct calculation: varying

with respect to ξe31 and ξe4 gives the same relation between the respective normalization

constants Φ0 as guaranteed by the C-invariance condition (5.12) and gives equations on

coefficient functions equivalent to those that follow from the variation with respect to ξe1.

Analogous reasoning is also applied to the gauge transformations with fermionic param-

eters ξo1 and ξo2 and it follows that gauge invariance ξo2 is guaranteed by gauge invariance

ξo1 and the C-invariance condition. As a result, we obtain that it is sufficient to check

gauge invariance for three bosonic parameters ξe1, ξe21 , ξe32 i
j and for one fermionic pa-

rameter ξo11 i. Expression for these gauge transformations are given in Appendix 7. The
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invariance associated with other gauge parameters is guaranteed through the C-invariance

condition. In fact, imposing the gauge invariance with respect the above parameters leaves

just four independent constants Φ0 (5.37) in front of actions B1, B2, B32, and F1. They will

be respectively denoted as Φe10 , Φe20 , Φe320 , and Φo10 .

Now we discuss the gauge invariance and linear relations on four normalization constants

imposed by each type of gauge symmetry. In order to find these relations one needs to

use the following identities between functions Ψ0(X), Ψ 1

2

(X), Ψ1(X) and their derivatives

with different values of a second spin

X
∂Ψ 1

2

(X)

∂X
+Ψ 1

2

(X) =
1

2
Ψ0(X) ,

∂Ψ0(X)

∂X
=

1

2
Ψ 1

2

(X) ,

X
∂Ψ1(X)

∂X
+ 2Ψ1(X) =

1

2
Ψ 1

2

(X) ,
∂Ψ 1

2

(X)

∂X
=

1

2
Ψ1(X) .

(5.38)

Let us shortly discuss each of four types of gauge symmetry. Firstly, consider gauge

symmetry with parameter ξe21 = ξe21(a, b) and its conjugated cousin. Because this sym-

metry is bosonic it follows that fermionic and bosonic sectors of the full action (4.12)

transform independently. In the fermionic sector the gauge symmetry mixes up fields Ωo1
and Ωo2 (A.5), (A.6) and by direct calculation one obtains that fermionic sector is invari-

ant provided normalization constants are related as F1 = 4F2, cf. (5.12). In the bosonic

sector the gauge symmetry mixes up four fields Ωe1 , Ωe2 , Ωe31 , and Ωe4 (A.7). Calculating

the respective action’s variation, using identities (5.38) and the C-invariance condition one

obtains

Φe20 = 2Φe10 , (5.39)

while B31 = 1
2
B1 and B4 = 1

4
B1. It follows that normalization constants in this sector of

fields are totally fixed in terms of Φe10 .

Quite analogously we consider gauge symmetry with su(2) matrix-valued parameter

ξe32
i
j = ξe32

i
j(a, b). Since this symmetry is bosonic it follows that fermionic and bosonic

sectors of the full action (4.12) transform independently. In the fermionic sector the gauge

symmetry mixes up fields Ωo1 and Ωo2 (A.8) and by direct calculation one obtains that

fermionic sector is invariant provided normalization constants are related as F1 = 4F2,

cf. (5.12). In the bosonic sector the gauge symmetry mixes up four fields Ωe1 , Ωe32 i
j, and

Ωe4 (A.9). Calculating the respective action’s variation, using identities (5.38) and the

C-invariance condition one obtains

Φe320 =
1

4
Φe10 , (5.40)

while B4 = 1
4
B1. It follows that normalization constants in this sector of fields are com-

pletely fixed in terms of Φe10 . It also implies that all bosonic coefficients are fixed uniquely

and the overall normalization constant is Φe10 .

Finally, we analyze fermionic su(2) vector-valued parameter ξio11 = ξio11(a, b) and its

conjugated one. The respective gauge transformation is supersymmetric and mixes up
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all bosonic fields and all fermionic fields, see (A.10). Calculating the respective action’s

variation, using identities (5.38) and the C-invariance condition one obtains

Φo10 = −Φe10 , (5.41)

B31 =
1
2
B1, B4 =

1
4
B1, and F1 = 4F2, cf. (5.12). It follows that all normalization constants

are fixed uniquely and expressed in terms of Φe10 to be denoted as

Φ0 ≡ Φe10 . (5.42)

The final expressions for coefficient functions are collected in Section 4.1.

6 Conclusion

In this paper we built and analyzed FV-type formulation of AdS5 totally symmetric and

mixed-symmetry massless fields interacting between themselves and with the gravity. Our

consideration is performed in the cubic order approximation. We considered two models

with gauge symmetry corresponding to reduced and unreduced N = 2 Fradkin-Linetsky

higher spin superalgebras, cu(2, 2|8) and hu0(2, 2|8). We have built the projecting operator

that explicitly factorizes unreduced superalgebra cu(2, 2|8) to obtain reduced superalgebra

hu0(2, 2|8). Moreover, we have found projecting operators for any N .

It is worth noting that constructing the interaction vertices brings to light very powerful

algebraic tools like Howe dual pairs of classical Lie (super)algebras realized on a superspace

of auxiliary variables. One of the most important implications of Howe duality is the gl(1)

invariance condition referred to as the C-invariance condition for the action functional

(4.11). This condition is the direct analog of the sp(2) invariance for Vasiliev equations for

totally symmetric fields [89]. Indeed, N is the basis element of gl(1) considered as Howe

dual algebra to su(2, 2 | 2) superalgebra in the star product realization. Then the condition

[N,F ]⋆ = 0 (3.6) tells us that fields are gl(1) invariants and this invariance should be

retained on the action level via the C-invariance condition.

Let us now discuss some future research directions. First of all, it would be worth

pursuing our analysis to N > 2 thereby including mixed-symmetry fields of any value of

the second spin s2 and not only ”hook” fields with s2 = 1. Further progress depends on

establishing for spins s2 > 1 the proposition analogous to those of Section 2.7. Namely,

it is necessary to formulate a proper set of constraints for unfolded fields such that one

obtains correct on-shell dynamics. We hope to return to this problem elsewhere.

Much more important and difficult task however is to construct nonlinear equations

of motion for mixed-symmetry fields in all orders thereby extending Vasiliev equations for

totally symmetric fields [89]. Contrary to the on-shell theory one may consider also the

so-called off-shell formulation of higher spin dynamics that introduces higher spin fields

and their non-linear gauge symmetries without imposing any field equations. It will be
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interesting to develop the off-shell nonlinear formulation for mixed-symmetry fields both in

Minkowski and AdS spacetimes as it has been done in the case of totally symmetric fields

[90, 91, 92].

It would be useful to extend results of the present paper to higher dimensions d > 5 and

consider a FV-type theory based on the higher spin algebra hu(1|(1, 2) : [M, 2]) from [83].

Gauging this algebra yields generalized ”hook” massless fields in AdSd spacetime, which

are fields with one row of any length and one column of any height (in fact, the height is

bounded from below by a dimension d).
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Appendix

Coefficient functions. Spin-(s, 0) case, see [29]:

Φ(X) = −X(α(X,−X)− 2γ(X,−X)) . (A.1)

Spin-(s, 1
2
) case, see [30]:

Φ(X) = X(α(X,−X) + ζ(X,−X)) . (A.2)

Spin-(s, 1) case, see (5.24):

Φ(X) = X(α(X,−X)− ζ(X,−X)) . (A.3)

In what follows we list explicit expressions for gauge transformations. We use commu-

tators [F,G]⋆ = F ⋆ G−G ⋆ F and anticommutators {F,G}⋆ = F ⋆ G+G ⋆ F .

The gauge symmetry with parameter ξe1(a, b).

δRe1 = [Re1 , ξe1]⋆ , δRe4 = [Re4 , ξe1]⋆ ,

δRe21 = [Ro21 , ξe1]⋆ , δRe22 = [Ro22 , ξe1]⋆ ,

δRe31 = [Re31 , ξe1]⋆ , δRe32
i
j = [Re32

i
j, ξe1]⋆ ,

δRi
o11 = [Ri

o11 , ξe1]⋆ , δRo12 i = [Ro12 i, ξe1]⋆ ,

δRi
o21 = [Ri

o21 , ξe1]⋆ , δRo22 i = [Ro22 i, ξe1]⋆ ,

(A.4)
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The gauge symmetry with parameter ξe21(a, b) in the fermionic sector.

δRi
o11 = −ǫ

ij{Ro12j , ξe21}⋆ −
1

2
ǫij [Ro22j , ξe21]⋆ , δRo12 i = 0 , (A.5)

and

δRi
o21

= 2ǫij [Ro12j , ξe21]⋆ + ǫij{Ro22j , ξe21}⋆ , δRo22 i = 0 . (A.6)

The analogous transformations hold for the conjugated gauge parameter ξe22 .

The gauge symmetry with parameter ξe21(a, b) in the bosonic sector.

δRe1 = −[Re22 , ξe21]⋆ ,

δRe21 = [Re1 , ξe21]⋆ + {Re31 , ξe21}⋆ +
1

2
[Re4 , ξe21]⋆ ,

δRe22 = 0 , δRe32
i
j = 0 ,

δRe31 = 2{Re22 , ξe21}⋆ , δRe4 = −2[Re22 , ξe21 ]⋆ .

(A.7)

The gauge symmetry with parameter ξe32(a, b) in the fermionic sector. The sym-

metry associated with parameter ξe32(a, b, ψ) = ξe32
i
j(a, b)(ψiψ̄

j), where we assume that all

su(2) traces are zero, has the following form

δRi
o11

= −
1

2
{Rj

o11
, ξj

i}⋆ −
1

4
[Rj

o21
, ξj

i]⋆ ,

δRo12 i =
1

2
{Ro12 j, ξ

j
i}⋆ −

1

4
[Ro22 j, ξ

j
i]⋆ ,

δRi
o21 = −[R

j
o11 , ξj

i]⋆ −
1

2
{Rj

o21 , ξj
i}⋆ ,

δRo22 i = −[Ro12 j , ξ
j
i]⋆ +

1

2
{Ro22 j , ξ

j
i}⋆ .

(A.8)

The gauge symmetry for ξe32(a, b) in the bosonic sector. The symmetry associated

with parameter ξe32(a, b, ψ) = ξe32
i
j(a, b)(ψiψ̄

j), where we assume that all su(2) traces are
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zero, has the following form

δRe1 =
1

4
[Re32

m
n, ξe32

n
m]⋆ , δRe21 = 0 , δRe31 = 0 ,

δRe32
i
j = [Re1 , ξe32

i
j ]⋆ −

1

2
[Re4 , ξe32

i
j ]⋆+

+
1

2

(
{Re32

i
n, ξe32

n
j}⋆ −

1

2
δij {Re32

m
n, ξe32

n
m}⋆
)
−

−
1

2

(
{Re32

m
j, ξe32

i
m}⋆ −

1

2
δij {Re32

m
n, ξe32

n
m}⋆
)
,

δRe4 = −
1

2
[Re32

m
n, ξe32

n
m]⋆ .

(A.9)

Supersymmetry transformations. Let us choose supersymmetric parameter in the

form ξo12 = ξi(a, b)ψ̄
i.

δRe1 =
1

2
[Ri

o11 , ξi]⋆ , δRe4 =
1

2
{Ri

o21 , ξi}⋆ ,

δRi
o11

= ǫij{Re21 , ξj}⋆ , δRo12 i = [Re1 , ξi]⋆ −
1

2
{Re32

m
i, ξm}⋆ −

1

2
{Re31 , ξi}⋆ ,

δRe21 = 0 , δRe22 =
1

2
ǫij{Ro12 i, ξj}⋆ −

1

4
ǫij[Ro22 i, ξj]⋆ ,

δRe31 =
1

4
[Ri

o21
, ξi]⋆ +

1

2
{Rm

o11
, ξm}⋆ ,

δRe32
i
j = {R

i
o11 , ξj}⋆ −

1

2

(
[Ri

o21 , ξj]⋆ −
1

2
δij [R

m
o21 , ξm]⋆

)
,

δRi
o21

= 2ǫij [Re21 , ξj]⋆ , δRo22 i = [Re31 , χi]⋆ − [Re32
m
i, ξm]⋆ − [Re4 , ξi]⋆ .

(A.10)
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