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Abstract

We study the light quark mass dependence of theD andDs meson decay constants,fD andfDs
, using a

covariant formulation of chiral perturbation theory (χPT) at next-to-next-to-leading order (NNLO). Using

the HPQCD lattice results for theD(Ds) decay constants as a benchmark we show that covariantχPT can

describe the HPQCD results better than heavy mesonχPT (HMχPT) at both NLO and NNLO. Within the

same framework, taking into account sub-leading (1/mQ, with mQ the heavy quark mass) corrections to

the values of the low-energy constants and employing the lattice QCD results forgBB∗π, we estimate the

ratio of fBs
/fB to be1.22+0.05

−0.04, which agrees well with the HPQCD result1.226(26).

PACS numbers: 12.39.Fe, 13.20.Fc, 14.40.Lb, 12.38.Gc
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I. INTRODUCTION

The decay constants of charged pseudoscalar mesonsπ±, K±, D±, D±
s andB± play an impor-

tant role in our understanding of strong interaction physics, e.g., in measurements of the Cabibbo-

Kobayashi-Maskawa (CKM) matrix elements and in the search for signals of physics beyond the

standard model (SM). At lowest order, the decay width of a charged pseudoscalarP± with valence

quark contentq1q̄2 decaying into a charged lepton pair (ℓ±νℓ) via a virtualW± meson is given by

Γ(P± → ℓ±νℓ) =
G2

F

8π
f 2
Pm

2
ℓMP

(

1−
m2

ℓ

M2
P

)

|Vq1q2 |
2, (1)

wheremℓ is theℓ± mass,|Vq1q2| is the CKM matrix element between the constituent quarksq1q̄2

in P±, andGF is the Fermi constant. The parameterfP is the decay constant, related to the wave

function overlap of theq1q̄2 pair. Measurements of purely leptonic decay branching fractions and

lifetimes allow an experimental determination of the product |Vq1q2fP |. A good knowledge of the

value of either|Vq1q2 | or fP can then be used to determine the value of the other.

These decay constants can be accessed both experimentally and through lattice Quantum Chro-

modynamics (lQCD) simulations. While forfπ, fK , fD, experimental measurements agree well

with lattice QCD calculations, a discrepancy is seen for thevalue offDs
: The 2008 PDG average

for fDs
is 273± 10 MeV [1], about3σ larger than the most preciseNf = 2 + 1 lQCD result from

the HPQCD/UKQCD collaboration [2],241± 3 MeV. On the other hand, experiments and lQCD

calculations agree very well with each other on the value offD, fD(expt) = 205.8±8.9 MeV and

fD(lQCD) = 207 ± 4 MeV. The discrepancy concerningfDs
is quite puzzling because whatever

systematic errors have affected the lQCD calculation offD, they should also be expected for the

calculation offDs
. In this context, constraints imposed by this discrepancy on new physics were

seriously discussed (see, e.g., Ref. [3]).

However, the situation has changed recently. With the new (updated) data from CLEO [4–

6] and Babar [7], together with the Belle measurement [8], the latest PDG average isfDs
=

257.5± 6.1 MeV [9]1. The discrepancy is reduced to2.4σ. Lately the HPQCD collaboration has

also updated its study of theDs decay constant [11]. By including additional results at smaller

lattice spacing along with improved determinations of the lattice spacing and improved tuning of

the charm and strange quark masses, a new value for theDs decay constant has been reported2:

1 The October 2010 average from the Heavy Flavor Averaging Group (HFAG) is similar:fDs
= 257.3± 5.3 MeV

[10].
2 A slightly different but less precise value offDs

= 250.2± 3.6MeV was obtained in Ref. [12] as a byproduct from

the study of theD → K, ℓν semileptonic decay scalar form factor by the same collaboration.
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fDs
= 248.0±2.5 MeV. With the updated results from both the experimental side and the HPQCD

collaboration, the window for possible new physics in this quantity is significantly reduced [11].

An important part of the uncertainties in heavy quark lQCD simulations comes from chiral

extrapolations that are needed in order to extrapolate lQCDsimulations, performed with larger-

than-physical light quark masses, down to the physical point. Recent lQCD studies of theD

(Ds) decay constants, both forNf = 2 + 1 [2, 13] andNf = 2 [14], have adopted the one-loop

heavy-meson chiral perturbation theory (HMχPT) (including its partially-quenched and staggered

counterparts) to perform chiral extrapolations. In particular, the HPQCD collaboration has used

the standard continuum chiral expansions through first order but augmented by second- and third-

order polynomial terms inxq = B0mq/8(πfπ)
2 whereB0 ≡ m2

π/(mu +md) to leading order in

χPT, arguing that the polynomial terms are required by the precision of the data. It is clear that

the NLO HMχPT alone fails to describe its data.

HMχPT [15–17] has been widely employed not only in extrapolating lQCD simulations but

also in phenomenology studies and has been remarkably successful over the decades (see Ref. [18]

for a partial review of early applications). In Ref. [19], wehave argued that a covariant for-

mulation ofχPT may be a better choice for studying heavy-meson phenomenology and lQCD

simulations. This was based on the observation that the counterpart in the SU(3) baryon sector,

heavy baryonχPT, converges very slowly and often fails to describe both phenomenology and

lattice data (particularly the latter), e.g., in the description of the lattice data for the masses of the

lowest-lying baryons [20, 21]. On the other hand, covariantbaryonχPT was shown to provide

a much improved description of the same data [22]. Indeed, inRef. [19] we have shown that for

the scattering lengths of light pseudoscalar mesons interacting withD mesons, recoil corrections

are non-negligible. Given the important role played byfD (fDs
) in our understanding of strong-

interaction physics and the importance of chiral extrapolations in lQCD simulations, it is timely to

examine how covariantχPT works in conjunction with the HPQCDfD (fDs
) data.

In this letter we study the light quark mass dependence of theHPQCDfD andfDs
results [2]3

using a covariant formulation ofχPT. It is not our purpose to reanalyze the raw lQCD data because

the HPQCD collaboration has performed a comprehensive study. Repeating such a process using

a different formulation ofχPT will not likely yield any significantly different results. Instead,

we will focus on their final results in the continuum limit as afunction ofmq/ms, with mq the

3 Although the HPQCD collaboration has updated its study of the fDs
decay constant, it has not done the same for

thefD decay constant, and therefore itsfDs
/fD ratio remains the same but with a slightly larger uncertainty. For

our purposes, it is enough to study the HPQCD 2007 data [2].
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average of up and down quark masses andms the strange quark mass. These results can be treated

as quasi-original lattice data because, for chiral extrapolations, the HPQCD collaboration has used

the NLO HMχPT result plus two polynomials of higher chiral order. Therefore, any inadequacy

of the NLO HMχPT should have been remedied by fine-tuning the two polynomials. Accordingly

the extrapolations should be reliable, apart from the fact that the connection with an order-by-order

χPT analysis is lost. Our present work tries to close this gap.Using the HPQCD continuum limits

as a benchmark instead of the raw data not only greatly simplifies our analysis but also highlights

the most important point we wish to make, namely that the covariant formulation ofχPT is more

suitable for chiral extrapolations of lQCD data than the HMχPT, at least in the present case.

This paper is organized as follows. In Section II, we introduce the relevant effective chiral

Lagrangians and calculate the Feynman diagrams contributing to theD(Ds) decay constants up to

NNLO. In Section III, we show the numerical results and compare them with those of the HMχPT.

We also estimate the ratio offBs
/fB using the values of the low-energy constants (LECs) fixed in

the present study and employing the lattice results forgBB∗π. A short summary follows in Section

IV.

II. THEORETICAL FRAMEWORK

The decay constants of heavy-light pseudoscalar and vectormesons with quark content̄qQ,

with q one of theu, d, ands quarks andQ either thec or b quark, are defined by

〈0|q̄γµγ5Q(0)|Pq(p)〉 = −ifPq
pµ, (2)

〈0|q̄γµQ(0)|P ∗
q (p, ǫ)〉 = fP ∗

q
ǫµ, (3)

wherePq denotes a pseudoscalar meson andP ∗
q a vector meson. In this convention,fPq

has mass

dimension one andfP ∗

q
has mass dimension two [23]. From now on, we concentrate on the charm

sector,D, Ds, D∗, andD∗
s . The formalism can easily be extended to the bottom sector.

The coupling of theD (Ds) mesons to the vacuum or to Nambu-Goldstone bosons through the

left-handed current is described by the following leading chiral order Lagrangian:

L(1)
source = a〈(c′P ∗

µ −
∂µP

mP

)u†〉, (4)

where a is a normalization constant with mass dimension two,P = (D0, D+, D+
s ), P ∗

µ =

(D∗0, D∗+, D∗
s), mP is the characteristic mass of theP triplet introduced to conserve heavy
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quark spin symmetry in themQ → ∞ limit, i.e., m̊D at NLO andmD at NNLO (see Table 1), and

u2 = U = exp[ iΦ
F0

] with Φ the pseudoscalar octet matrix andF0 their decay constant in the chiral

limit. We have introduced a dimensionless coefficientc′ to distinguish the vector and pseudoscalar

fields, which is 1 if heavy quark spin symmetry is exact. We need to stress that in our covariant

formulation ofχPT we do not keep track of explicit1/mQ corrections that break heavy quark spin

and flavor symmetry, instead we focus on SU(3) breaking. Thisimplies that different couplings

have to be used forD(D∗) andB(B∗) mesons. In the present work we only need to make such a

differentiation in calculating diagram Fig. (1d). In Eq. (4) we have therefore explicitly pointed out

thatc′ may be different from 1. In all the other places, we will simply setc′ equal to 1.

The leading-order (LO) SU(3) breaking of theD meson decay constants is described by the

following next-to-leading order (NLO) chiral Lagrangians

L(3) = −
a

16π2F 2
0

[

bD〈(P
∗
µ −

∂µP

mP

)M〉+ bA〈P
∗
µ −

∂µP

mP

〉〈M〉

]

, (5)

wherebD andbA are two LECs andM = diag(m2
π, m

2
π, 2m

2
K −m2

π). Here and in the following

〈· · · 〉 always denotes the trace in the corresponding flavor space.

To study the NLO SU(3) breaking, one has to take into account theDD∗ (DsD
∗
s) andDDs

(D∗D∗
s) mass splittings. Experimentally theDD∗ andDsD

∗
s splittings are similar:

∆DD∗ = 141.4MeV and ∆DsD∗

s
= 143.8MeV. (6)

Therefore in our calculation we will take an average of thesetwo splittings, i.e.,∆ = (∆DD∗ +

∆DsD∗

s
)/2 = 142.6MeV. It should be noted that theDD∗ mass splitting is of sub-leading order

in the 1/mQ expansion of heavy quark effective theory. The numbers above show that SU(3)

breaking of this quantity is less than2%. The mass splitting in principle can also depend on the

light quark masses but we expect that the dependence of this “hyperfine” splitting should be much

weaker than that of theD mass4, mD, which we discuss below.

At NLO, the following Lagrangian is responsible for generating SU(3) breaking between the

D andDs masses [19]:

L(2) = −2c0〈PP †〉〈χ+〉+ 2c1〈Pχ+P
†〉, (7)

which yields

m2
D = m2

0 + 4c0(m
2
π + 2m2

K)− 4c1m
2
π, (8)

4 This seems to be supported by quenched lQCD calculations, see, e.g., Refs. [24, 25].

5



m2
Ds

= m2
0 + 4c0(m

2
π + 2m2

K) + 4c1(m
2
π − 2m2

K). (9)

One may implement this mass splitting in two different ways by either using the HPQCD contin-

uum limits on theD andDs masses [2] to fix the three LECs:m0, c0, andc1, or taking into account

only theDDs mass splitting

− 8c1(m
2
K −m2

π) = (m2
Ds

−m2
D +m2

D∗

s
−m2

D∗)/2 = ∆s(mD +mDs
+mD∗ +mD∗

s
)/2, (10)

where we have introduced∆s ≡ mDs
− mD ≈ mD∗

s
−mD∗ ≈ (mDs

− mD + mD∗

s
− mD∗)/2.

In the second approach, using the experimental data formD, mDs
, mD∗, andmD∗

s
, one obtains

c1 = −0.225. We found that the HPQCD continuum limits on theD andD∗ masses can be

described very well using Eqs. (8,9). We also found that using Eqs. (8,9) or Eq. (10) gives very

similar results in our analysis of theD (Ds) decay constants. The results shown below are obtained

using Eq. (10) to implement the SU(3) breaking and light quark mass evolution of theD (Ds)

masses.

In order to calculate loop diagrams contributing to the decay constants one needs to know the

coupling,gDD∗φ, with φ denoting a Nambu-Goldstone boson. This is provided at the leading chiral

order by the following Lagrangian [19]:

L(1) = igm̊D〈P
∗
µu

µP − PuµP ∗†
µ 〉 (11)

whereuµ = i(u†∂µu − u∂µu
†) and m̊D = 1972.1 MeV, the average ofD, Ds, D∗, andD∗

s

masses. The couplingg can be determined from theD∗+ → D0π+ decay width, which yields

gDD∗π = 0.60 ± 0.07 [19]. At the chiral order we are working, one can takegDD∗φ = gDD∗π.

If heavy quark flavor symmetry is exact, we expectgBB∗π = gDD∗π. Otherwise deviations are

expected. We will come back to this later.

TABLE I. Numerical values of (isospin-averaged) masses [9]and decay constants (in units of MeV) used

in the present study. The eta meson mass is calculated using the Gell-Mann-Okubo mass relation:m2
η =

(4m2
K −m2

π)/3.

m̊D mD ∆s ∆ mB ∆s(B) ∆(B) mπ mK mη fπ F0

1972.1 1867.2 102.5 142.6 5279.3 88.7 47.5 138.0 495.6 566.792.4 1.15fπ
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(a) (b)
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(c) (d) (e)

FIG. 1. Feynman diagrams contributing to the calculation offD andfDs
up to next-to-leading order (NLO):

(a) and (b) are LO and NLO tree level diagrams, loop diagrams (c), (d), and (e) contribute at NLO.

Up to NLO, theD(Ds) decay constants receive contributions from the Feynman diagrams

shown in Fig. 1. Studies of these decay constants within the framework of HMχPT have a long

history [26–28]. Here we are going to present the first covariantχPT calculation. Insertion of the

mass splittings betweenD, Ds, D∗, andD∗
s in the loop diagrams shown in Fig. 1 generates the

NNLO contributions which are implemented in the present case by making the following replace-

ments in the NLO results:

mDs
→ mD +∆s, mD∗ → mD +∆, and mD∗

s
→ mD +∆+∆s, (12)

with the values of these quantities given in Table I. It should be noted that there is no new counter-

term appearing atO(p4).

Computation of the tree-level diagrams Figs. (1a,1b) is trivial. Fig. (1a) giveŝa = a/mp with

mass dimension one for bothD andDs . Fig. (1b) yields

δ1 = â

[

−
1

16π2F 2
0

(

bA(2m
2
K +m2

π) + bDm
2
π

)

]

, (13)

δ2 = â

[

−
1

16π2F 2
0

(

bA(2m
2
K +m2

π) + bD(2m
2
K −m2

π)
)

]

, (14)

whereδ1 is forD andδ2 for Ds.

Diagram Fig. (1c) is the wave function renormalization, from which one can calculate the wave

function renormalization constants, which can be written as

Zi =
∑

j,k

ξi,j,k
d φw(p

2
i , m

2
j , m

2
k)

d p2i
|p2

i
=m2

i
, (15)

wherepi denotes the four-momentum ofD (Ds), mi the mass ofD (Ds), mj the mass ofD∗ (D∗
s),

andmk the mass ofπ, η, andK. The coefficientsξi,j,k are given in Table II. The functionφw is

7



defined as5

φw(p
2
i , m

2
V , m

2
M) =

(gm̊D)
2

4F 2
0m

2
V

[

(

−2m2
M

(

p2i +m2
V

)

+
(

m2
V − p2i

)

2 +m4
M

)

B0

(

p2i , m
2
M , m2

V

)

+A0

(

m2
V

) (

−p2i +m2
M −m2

V

)

+ A0

(

m2
M

) (

−p2i + 3m2
M +m2

V

)

]

, (16)

where the functionsA0 andB0 are defined in the Appendix.

Diagram Fig. (1d) provides current renormalization, whichhas the following form

Ci = âc′
∑

j,k

ξi,j,kφc(m
2
i , m

2
j , m

2
k), (17)

whereξi,j,k are given in Table II withi running overD andDs, j overD∗ andD∗
s , andk overπ,

η, K. The functionφc is defined as

φc(m
2
i , m

2
V , m

2
M) = −

(gm̊D)mP

8F 2
0m

2
im

2
V

[

(

m2
M −m2

V

) (

m2
i −m2

M +m2
V

)

B0

(

0, m2
M , m2

V

)

− 2m2
iA0

(

m2
M

)

+
(

−2m2
i

(

m2
M +m2

V

)

+m4
i +

(

m2
M −m2

V

)

2
)

B0

(

m2
i , m

2
M , m2

V

)

]

. (18)

It should be noted thatCi vanishes in NLO HMχPT but plays an important role in covariantχPT.

Diagram Fig. (1e) also provides current correction

Ti = â
∑

j=π,η,K

ζi,jA0(m
2
j )/F

2
0 , (19)

with ζi,j given in Table III.

TABLE II. Coefficients,ξi,j,k, appearing in Eqs. (15,17).

D∗ D∗
s

π η K π η K

D 3 1
3 0 0 0 2

Ds 0 0 4 0 4
3 0

5 To be consistent, the productgm̊D is only appropriate for NLO. At NNLO, it has to be replaced byg′mD with

g′ = gm̊D/mD ≈ 0.63 before performing expansions in terms of1/mD either to obtain the HMχPT results or to

remove the power-counting-breaking pieces. The same applies to the calculation ofCi [see Eq. (17)].

8



TABLE III. Coefficients,ζi,j, appearing in Eq. (19).

π η K

D −3
8 − 1

24 −1
4

Ds 0 −1
6 −1

2

The total results are then

fi = â(1 + Zi/2) + δi + Ti + Ci. (20)

Because of the largeD meson masses,Ci andZi contain so-called power-counting-breaking

(PCB) terms. As explained in detail in Ref. [19] one can simply expand these functions in terms

of 1/m̊D at NLO or1/mD at NNLO and then remove the PCB pieces. This procedure is in fact

the same as the extended-on-mass-shell (EOMS) scheme. Thisscheme was first developed for

baryon chiral perturbation theory [29, 30] and has been shown to be superior to heavy baryon

χPT in a number of cases, see, e.g., Refs. [22, 31, 32]. With thefull results forCi andZi given

above the expansion can easily be performed and then one obtains C̃i andZ̃i, which have a proper

power-counting as prescribed in Ref. [19]. At the end one finds

f̃i = â(1 + Z̃i/2) + δi + Ti + C̃i, (21)

the expression that is used in the actual calculations. By expandingZi andCi in terms of1/m̊D at

NLO or 1/mD at NNLO and keeping the lowest order in1/m̊D (1/mD) one can easily obtain the

corresponding HMχPT results.

III. RESULTS AND DISCUSSION

Before presenting the numerical results, we should make it clear that in our present formulation

of χPT we have focused on SU(3) breaking in the context of the chiral expansions but we have not

utilized explicitly heavy quark symmetry that relates the couplings of theD mesons with those of

theD∗, B, andB∗ mesons.

In the present case, we encounter three LECs:a, bD, andbA. At this point, light quark mass

dependent lQCD results are extremely useful. By a least-squares fit to the HPQCD results , one

can fix those three LECs appearing in our calculation.

9



First we treat theD, Ds, D∗, andD∗
s mesons as degenerate, i.e., we work up to NLO. The

corresponding results are shown in Fig. 2, where the HMχPT results are obtained by expanding

our covariant results in terms of1/m̊D and keeping only the lowest-order terms. It is clear that the

covariant results (withχ2=41) are in much better agreement with the HPQCD continuum limits

than the HMχPT results (withχ2 = 201) 6. This is not surprising because as we mentioned

earlier the HPQCD collaboration has added second and third order polynomial terms inxq to

perform their extrapolation. Furthermore one can notice that at larger light quark masses the

difference between the covariantχPT and the HMχPT results becomes larger. This highlights the

importance of using a covariant formulation ofχPT in order to make chiral extrapolations if lattice

simulations are performed with relatively large light quark masses. Similar conclusions have been

reached in studying the light quark mass dependence of the lowest-lying octet and decuplet baryon

masses [22].

Taking into account the mass splittings betweenD, Ds, D∗, andD∗
s as prescribed by Eq. (12)

one obtains the NNLOχPT results. Fitting them to the HPQCD extrapolations, one finds the

results shown in Fig. 3. Compared to Fig. 2, it is clear that the agreement between the covariant

χPT results with the HPQCD extrapolations becomes even better. Furthermore the covariantχPT

results (withχ2 = 16) is still visibly better than the HMχPT results (withχ2 = 59), but now the

difference between the covariant and the HMχPT results becomes smaller. The three LECs in the

NNLO covariantχPT have the following values:̂a = 208 MeV, bD = 0.318, bA = 0.166.

If we had fitted the HPQCD extrapolations by neglecting the loop contributions, we would have

obtained a even better agreement (χ2 = 9). In Ref. [22] we also found that the lattice baryon mass

data could be fitted better with the LO (linear inmq) chiral extrapolation. But there we found

that the NLO chiral results in fact describe the experimental data better than the LO (linear) chiral

extrapolation. This just shows that the lattice baryon massdata behave more linearly as a function

of light quark masses at large light quark masses and chiral logarithms play a more relevant role

at smaller light quark masses, as one naively expects.

Another way of understanding the importance of chiral logarithms is to perform separate fits for

lattice simulations obtained at different light quark masses. One expects that at smaller light quark

masses (e.g.,mπ < 300 MeV) covariantχPT and HMχPT results should perform more or less

similarly. On the other hand, if the light quark masses are larger, covariantχPT should be a better

6 It should be noted that the absolute value ofχ2 as defined here does not have a clear-cut physical meaning. Itonly

reflects to what extent the chiral results agree with the HPQCD extrapolations.
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FIG. 2. (Color online) Light quark mass dependence offD (solid lines) andfDs
(dashed lines). The black

lines show the results of the NLO HMχPT and the blue lines the results of the covariant NLO ChPT. The

red lines are the continuum extrapolations of the HPQCD collaboration [2]. The ratior = mq/ms is related

to the pseudoscalar meson masses at leading chiral order throughm2
π = 2B0msr andm2

K = B0ms(r + 1)

with B0 = m2
π/(mu +md) andmq = (mu +md)/2, wheremu, md, andms are the physical up, down,

and strange quark mass.

choice. In Fig. 4, we show the fitted results obtained from fitting the HPQCD extrapolations in two

different regions of light quark masses,mq/ms ≤ 0.2 (left panel) andmq/ms > 0.2 (right panel).

It is clearly seen that fitting lattice data with large light quark masses using the HMχPT results

may give unreliable extrapolations. Here we have used the NNLO HMχPT and covariantχPT

results for comparison. The difference will become even larger if the NLOχPT results are used.

We should also mention that even formq/ms ≤ 0.2 (mπ ≤ 307 MeV) the HPQCD extrapolations

are better described by covariantχPT than by HMχPT judging from theχ2 analysis (although the

difference is so small that it can hardly be appreciated by just looking at the left panel of Fig. 4).

We have checked that our covariant results are stable with respect to variations of certain input

parameters within reasonable ranges, e.g.,mρ < µ < 2 GeV and0.53 < g < 0.67, whereµ is

the renormalization scale andg theDD∗π coupling defined in Eq. (11). With our standard choice:

g = 0.6 andµ = 1 GeV, we have also noticed that for the NNLO covariantχPT to produce a

smallerχ2 than the linear chiral extrapolation,c′ has to be larger than 1.23. If we use the quenched

lQCD result,c′ = 1.35 ± 0.06 [33], the fit is even better7. On the other hand, our results remain

7 Using the results from a more recent calculation by the UKQCDcollaboration [34], one obtainsc′ ≈ 1.18± 0.13,
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FIG. 3. (Color online) Same as Fig. 2, but the chiral expansions are calculated up to NNLO.

qualitatively the same with eitherc′ = 1 or c′ = 1.35. Therefore we have presented the results

obtained withc′ = 1.

Chiral perturbation theory not only helps extrapolating lQCD simulations to the physical light

quark masses. It also benefits from this process because oncethe values of the relevant LECs are

fixed by fitting the lQCD data,χPT predicts observables involving the same set of LECs. In the

present case, assuming that the1/mQ corrections to the values of the three LECsbD, bA, andg are

small, we can calculate the ratio offBs
/fB by making the following replacements in our NNLO

covariantχPT results:

mD → mB, ∆ → ∆(B), and ∆s → ∆s(B). (22)

It is found that deviations ofbD andbA from those determined from theD(D∗) mesons affect the

fBs
/fB ratio only by small amounts. ChangingbD andbA by∼ 15% changesfBs

/fB ratio by only

about 1%. On the other hand, the effect ofgBB∗π is much larger. If heavy quark flavor symmetry

were exact, one would havegBB∗π = gDD∗π = 0.6. However, lattice QCD simulations indicate

thatgBB∗π is most likely smaller thangDD∗π. For instance, two most recentNf = 2 studies give

gBB∗π = 0.516(5)(33)(28)(28) [35] andgBB∗π = 0.44 ± 0.03+0.07
−0.00 [36]. Using 0.516 as the

central value and 0.60 (0.44) as the upper(lower) bounds forgBB∗π, we find:

fBs
/fB = 1.22+0.05

−0.04, (23)

which is compatible with the result of Ref. [33] but with larger uncertainties.
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FIG. 4. (Color online) Same as Fig. 3, but on the left panel only the lattice extrapolations withmq/ms ≤ 0.2

are fitted while on the right panel only those withmq/ms > 0.2 are fitted.

which agrees very well with the most precise result from the HPQCD collaboration:fBs
/fB =

1.226(26) [37]. The uncertainty of∼ 0.05 does not take into account all sources of uncertainties8,

but nevertheless it represents a reasonable estimate by covering a range ofgBB∗π values suggested

by the two recent lQCD calculations and possible1/mQ corrections tobD andbA.

IV. SUMMARY AND CONCLUSIONS

We have derived a covariant formulation ofχPT in order to study theD andDs decay constants.

To simplify the analysis, we have taken extrapolated lattice data (the HPQCD continuum limits)

as a benchmark and focused on the light quark mass evolution of fD andfDs
, in particular on

the SU(3) breaking pattern. We find that covariantχPT describes the HPQCD extrapolations

considerably better than HMχPT at a given order, although both approaches show improvement

when going from NLO to NNLO. Our studies show once more that ifthe lattice simulations are

performed with relatively large light quark masses (e.g.,mπ > 300 MeV), a covariant formulation

of χPT is a better choice for chiral extrapolations, particularly at low chiral orders.

Lattice QCD calculations have made remarkable progress in recent years. For “gold plated”

physical quantities such as the decay constants studied in this work, the overall uncertainties have

been reduced to a few percent. Chiral perturbation theory plays an important role in understand-

ing some of the systematic errors, such as those from finite volume and extrapolations of the light

quark masses to their physical values. On the other hand these precise lattice data are also valuable

to fix the relevant LECs appearing inχPT, which can then be used to predict physical observables

8 For instance, the small uncertainties propagated from the lQCD results offD (fDs
).
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involving the same LECs. In the present work, we have used theHPQCDD (Ds) data in combi-

nation with two lattice determinations ofgBB∗π in order to predict the ratiofBs
/fB = 1.22+0.05

−0.04.

This ratio turns out to be more sensitive to the value ofgBB∗π than to possible1/mQ corrections

to the two relevant LECs,bD andbA.
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VI. APPENDIX

The functionsA0 andB0 appearing in the calculation of theD andDs meson decay constants

in the text are defined as, respectively:

A0(m
2) = −

1

16π2
m2 log

(

µ2

m2

)

, (24)

B0(p
2
i , m

2
1, m

2
2) =


























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
















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




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(
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(
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1 (p
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.

(25)

In the present work, the loop results are regularized using the modified minimal subtraction scheme

and, unless otherwise specified, the regularization scaleµ is set at 1 GeV.
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