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Nan Su

Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main, Germany

Abstract.

The weak-coupling expansion of the QCD free energy is knawmorderg® loggs, however, the resulting series is poorly
convergent at phenomenologically relevant temperatimehis proceedings, | discuss hard-thermal-loop pertishaheory
(HTLpt) which is a gauge-invariant reorganization of thetpebative expansion for gauge theories. | review a recéMit®™
HTLpt calculation of QCD thermodynamic functions. | shovatithe NNLO HTLpt results are consistent with lattice data
down to temperatures 2T;.
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INTRODUCTION HARD-THERMAL-LOOP

PERTURBATION THEORY
The current generation of ultrarelativistic heavy-ion-col
lision experiments should exceed the energy density neg-ard-thermal-loop perturbation theory is a gauge-
essary for the formation of a quark-gluon plasma. Initialinvariant extension of screened perturbation theory [9].
temperatures of RHIC are up to twice the QCD critical The basic idea of the technique is to add and subtract
temperaturele ~ 170 MeV. The strong coupling con- an effective mass term from the bare Lagrangian, and
stant at these initial temperatures is approximadely 2 to associate the added piece with the free Lagrangian
or as = g5/4m ~ 0.3, which is some intermediate value, and the subtracted piece with the interactions. In gauge
neither |nf|n|t85|ma”y small nor |nf|n|te|y Iarge. Theo- theoriesy however, S|mp|y add|ng and Subtracting alocal
retically, one expected that this state of matter could benass term violates gauge invariance [10]. Instead one
described in terms of weakly interacting quasiparticles;agdds and subtracts an HTL improvement term, which
however, data from RHIC suggested that the state of malgresses the propagators and vertices self-consistently
ter created there behaved more like a strongly coupledg that the reorganization is manifestly gauge invari-
fluid with a small viscosity.[l]. This has inspired work ant [11]. HTLpt has recently been pushed to NNLO
on strongly-coupled formalisms. However, some observangd the details of the formalism and calculations are
ables such as jet quenching [2] and elliptic flow [3] canpresented in Refs. [12, 13, 14]. Here only a few selected
also be described using perturbative methods and so fesuylts from QCD [14] are reviewed.
is difficult to judge whether the plasma is strongly or \ith rescaled dimensionless parameter, ;"=
weakly coupled based only on RHIC data. The initial Mp/q/(21T) and fI = p/(2nT), the renormalized

temperatures of the upcoming experiments at LHC areyNLO thermodynamic potential for QCD withN;
expected up to 4 6T¢ and due to asymptotic freedom of flayors and\,, colors reads

QCD, this corresponds to a smaller coupling constant. A

key question is then whether the matter generated can b@nnLo 7de 15 5 caas|[ 15 45
described in terms of weakly interacting quasiparticles al Zgo, + 4dy 4 3T {_Z 7%
these higher temperatures. 135 495 i 5 S0
The weak-coupling expansion of the QCD free energy — - S — e <Iog 5 + 27 + VE) rﬁ%] +
is known up to ordeggloggs [6, 7]. Unfortunately, the s 15 - n
resulting series shows no sign of convergence at phe- | 42 1o. gl 53
nomenologically relevant temperatures. There are sev- 8 [ 8 + 2 Mo +15 (Iog 2 2 +ye+2log 2> i
eral ways of reorganizing the perturbative series at finite o caOs\2[45 1 165 it
temperature [8] and they are all based on a quasiparti- — 9 mD] + ( 3T ) a1y 8 ('0 2
cle picture where one is perturbing about an ideal gas of , ,
massive quasiparticles, rather than that of massless par-— 72 logrip — 84_6 _74l(-]) + 19¢ (_3))
ticles. In the following | will discuss recent advances in 55 117 114(-1) 11(-3)

the application of hard-thermal-loop perturbation theory 1485 | pa o 79 l0q 2 ™\ .
(HTLpY). e (OQE_MHH o0 ‘1—1) mD]
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FIGURE 1. Comparison of LO, NLO, and NNLO predictions for the scaledgsure folNs = 3 (left panel) andNs = 4 (right
panel) with lattice data from Bazavov et al. [4] and Borsatyal. [5]. See main text for details.

(CAO’S) (SFO’S) [1_5i B @(l [ 344 MeV [16] is used here. The bands correspond to
3m T 2nmp 16 2 varying the renormalization scalg by a factor of 2
144 24 319 111 747/ (-1) aroundu = 2rtT which are the central lines.
= 77 109Mb — e + gae+ 5221002 75 (= The lattice data from the Wuppertal-Budapest collab-
, N oration uses the stout action. Since their results show
17 (_3)> + 315 (|09E _8 log2+ ¥ essentially no dependence on the lattice spacings (it is
47 {(-3) 4 2 7 smaller than the statistical errors), they provide a centin
9\ . mé sas\2[51 25 i uum estimate by averaging the trace anomaly measured
+ ﬂ) ﬂb+9oﬁ + ( - ) amp 12 ('095 using their two smallest lattice spacings corresponding
to N; = 8 andN; = 10 [5]. Using standard lattice tech-
1 3 66I 5 47'(-1) 27(-3) niques, the continuum-estimated pressure is computed
+ Zﬁ’ BVE " 25 0g 2+ 5(-1) 5(-3) from an integral of the trace anomaly. The lattice data
. X from the hotQCD collaboration are theé\l, = 8 results
—15 <|09E 21 + )& +2log 2> ﬁb+30ﬁ using both the asqtad and p4 actions [4]. The hotQCD
2 2 m results have not been continuum extrapolated and the er-
as\2 [15 45 ror bars correspond to only statistical errors and do not
+ SF (;) {a(%— 32log2 — 7%} : (1) factor in the systematic error associated with the calcula-

tion which, for the pressure, is estimated by the hotQCD
In order to complete a calculation, a prescription iscollaboration to be between 5 - 10%.

required to determine the mass parametassand my. As can be seen from Fig. 1 the successive HTLpt
Here the Debye mass is set to the mass parameter @fpproximations represent an improvement over that of a
three-dimensional electric QCD (EQCD) [7], immp = naive weak-coupling expansion; however, as in the pure-
me. In Ref. [7], it was calculated to NLO giving glue case [13], the NNLO result represents a significant
5 correction to the LO and NLO results. That being said the

M = 47T0’sT2 {CA+SF I Cals (E’ + 11 NNLO HTLpt result agrees quite well with the available

3 3m \4 2 lattice data down to temperatures on the order §f 2
11, [ CaSFOs (3 4 7 7. [ 340 MeV for bothNs = 3 andN; = 4.
+ 7Iog§) +— (4_1_§| 2+ EVE+6|09 2) In Fig. 2, | show the NNLO approximation to the

N scaled QCD trace anomaly as a functiofdior Ny = 3
+ S 0s <} _ﬁl|092_ ye _§|0 E) _ §%} (2) (left panel) andN; = 4 (right panel). The left panel
m\3 3 shows data from both the Wuppertal-Budapest collabora-
tion and the hotQCD collaboration taken from the same
In Fig. 1, | show the scaled QCD pressure for— 3 data sets displayed in Fig. 1. In thg case of the hotQCD,
(left panel) andNt = 4 (right panel) as a function of. the resul_ts for_thetrace anomaly using the p4 action show
The results at LO, NLO, and NNLO use the BN mass|arge lattice size affects at all temperatures shown and_the
given by Eq. (2) as well asy = 0. For the strong cou- a_sqtad results for the trace anomaly show Igrge lattice
pling constantas, three-loop running [15] with\s = size effects foil ~ 200 MeV. The right panel displays a

The quark mass is set ity = 0.
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FIGURE 2. Comparison of NNLO predictions for the scaled trace anomatly N; = 3 (left panel) andNs = 4 fermions (right
panel) lattice data from Bazavov et al. [4] and Borsanyi ef5! See main text for details.

parameterization (solid blue curve) of the trace anomaly.
for Ny = 4 published by the Wuppertal-Budapest collab-
oration [5] since the individual data points were not pub-
lished. Both panels show very good agreement with the*
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data forT <414 MeV.

CONCLUSIONSAND OUTLOOK

In this proceedings, | briefly reviewed recent NNLO
results for the QCD thermodynamics using HTLpt. From
comparison with lattice data fo¥s € {3,4}, it has been
shown that HTLpt is consistent with available lattice data
down toT ~ 2T, for the pressure and the trace anomaly.
In closing, | emphasize that HTLpt provides a gauge
invariant reorganization of perturbation theory for cal-
culating static and dynamic quantities in thermal field
theory. Given the good agreement with lattice data for9-
thermodynamics, it would be interesting to apply HTLpt
to the calculation of real-time quantities at temperatures

that are relevant for LHC.
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