
ar
X

iv
:1

10
3.

02
15

v2
 [

qu
an

t-
ph

]
29

 J
ul

 2
01

1

Reversible Circuit Optimization via Leaving the Boolean Domain∗

Dmitri Maslov†and Mehdi Saeedi‡

October 29, 2018

Abstract

For years, the quantum/reversible circuit community has been convinced that:a) the addition of auxiliary qubits
is instrumental in constructing a smaller quantum circuit;and,b) the introduction of quantum gates inside reversible
circuits may result in more efficient designs. This paper presents a systematic approach to optimizing reversible (and
quantum) circuits via the introduction of auxiliary qubitsand quantum gates inside circuit designs. This advances
our understanding of what may be achieved witha) andb).

1 Introduction

Quantum computing [11] is a computing paradigm studied for two major reasons:

• The associated complexity class, BQP, of the problems solvable by a quantum algorithm in polynomial time,
appears to be larger than the class P of problems solvable by adeterministic Turing machine (in essence, a
classical computer) in polynomial time. One of the best known examples of a quantum algorithm yielding
a complexity reduction when compared to the best known classical algorithm includes the ability to find a
discrete logarithm over Abelian groups in polynomial time (this includes Shor’s famous integer factorization
algorithm as a special case when the group considered isZm). In particular, a discrete logarithm over an elliptic
curve group overGF(2m) can be found by a quantum circuit withO(m3) gates [13], whereas the best classical
algorithm requires a fully exponentialO(

√
2

m
) search.

• Quantum computing is physical, that is, quantum mechanics defines how a quantum computation should be
done. With our current knowledge, it is perfectly feasible to foresee hardware that directly realizes quantum
algorithms,i.e., a quantum computer. It is generally perceived that challenges in realizing large-scale quantum
computation are technological, as opposed to a flaw in the formulation of quantum mechanics.

To have an efficient quantum computer means not only be able toderive favorable complexity figures using big-O
notation and be able to control quantum mechanical systems with a high fidelity and long coherence times, but also
to have an efficient set of Computer Aided Design tools. This is similar to classical computation. A Turing machine
paradigm, coupled with high clock speed and no errors in switching, is not sufficient for the development of the fast
classical computers that we now have. However, due to a greatnumber of engineering solutions, including CAD, we
are able to create very fast classical computers.

To the best of our knowledge, true reversible circuits are currently limited to the quantum technologies. All
other attempts to implement reversible logic are based on classical technologies,e.g., CMOS, and, internally, they
are not reversible. For those latter internally irreversible technologies, it may not be beneficial to consider reversible
circuits, since reversibility is a restriction that complicates circuit design1, but does not provide a speed-up or a lower
power consumption/dissipation due to the internal irreversibility of the underlying technology. In quantum computing,
however, reversibility is out of necessity (apart from the measurements that are frequently performed at the end of a
quantum computation).

∗ c© 2011 IEEE. Reprinted, with permission, from IEEE TCAD, 30(6):806–816, 2011.
This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs-permissions@ieee.org.
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

†D. Maslov is with the Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
‡M. Saeedi is with the Computer Engineering Department, Amirkabir University of Technology, Tehran, Iran.
1A reversible design is a combinational circuit, but not every combinational circuit is necessarily reversible, moreover, most are not.

1

http://arxiv.org/abs/1103.0215v2

Reversible circuits are an important class of computationsthat needs to be performed efficiently for the purpose of
efficient quantum computation. Indeed, multiple quantum algorithms contain arithmetic units (e.g., adders, multipli-
ers, exponentiation, comparators, quantum register shifts and permutations) that are best viewed as reversible circuits;
reversible circuits are indispensable for quantum error correction. Often, efficiency of the reversible implementation
is the bottleneck of a quantum algorithm (e.g., integer factoring and discrete logarithm [11]) or a class of quantum
circuits (e.g., stabilizer circuits [1]).

In this paper, we describe an algorithm that, in the presenceof auxiliary qubits set to value|0〉, rewrites a suitable
reversible circuit into a functionally equivalent quantumcircuit with a lower implementation cost. We envision that
for all practical purposes, a reversible transformation islikely a subroutine in a larger quantum algorithm. When
implemented in the circuit form, such a quantum algorithm may benefit from extra auxiliary qubits carried along to
optimize relevant quantum implementations and/or required for fault tolerance. Those auxiliary qubits may be avail-
able during the stages when a classical reversible transformation needs to be implemented, and our algorithm intends
to draw ancillae from this resource. Our proposed optimization algorithm is best employed at a high abstraction
level,—before multiple control gates are decomposed into single- and two-qubit gates.

2 Related work

In existing literature, ignoring modifications, there are three basic algorithms for reversible circuit optimization.

• Template optimization [8]. Templates are circuit identities. They possess the property that a continuous subcir-
cuit cut from an identity circuit is functionally equivalent to a combination of the remaining gates. A template
application algorithm matches and moves as many gates as possible based on the description of a template. It
then replaces the gates with a different, but simpler circuit, as specified by the particular template being used.

• A variation of peephole optimization [12]. This algorithm optimizes a reversible circuit composed with NOT,
CNOT and Toffoli gates. The algorithm relies on a database storing optimal implementations of all 3-bit re-
versible circuits and some small 4-bit implementations. Itthen finds a continuous subcircuit within a circuit to
be simplified such that gates in it operate on no more than 4 bits. Following this, it computes the functionality
of this piece and replaces with an optimal implementation when possible to find one. This algorithm isnot
limited to NOT, CNOT and Toffoli library, rather, it relies heavily on the number of optimal implementations
that could be accessed, and an efficient algorithm for findingand/or transforming a target circuit into the one
having a large continuous piece that allows simplification.

• Resynthesis (e.g., [8]). In its most general formulation, this is an approach where a subcircuit of a given circuit
is resynthesized, and if the result of such resynthesis is a preferred implementation, the replacement is done.
Peep-hole optimization is a type of such generic interpretation of the resyntheis. The authors of [8] used a
heuristic to perform resynthesis and did not limit the number of bits in a circuit to be resynthesized.

Recently, a BDD-based (Binary Decision Diagram-based) reversible logic synthesis algorithm was introduced
[18]. This algorithm employs ancillary bits to synthesize reversible circuits. In principle, this synthesis algorithm
could be turned into a circuit optimization approach via employing it as a part of resynthesis. However, this approach
appears to be inefficient due to the tendency of the synthesisalgorithm to use both a larger number of qubits and a
larger number of gates than other reversible logic synthesis algorithms.

3 Preliminaries

A qubit (quantum bit) is a mathematical object that represents the state of an elementary quantum mechanical system
using its two basic states—|0〉, a low energy state, and|1〉, a high energy state. Moreover, any such elementary single
qubit quantum system may be described by a linear combination of its basic states,|ψ〉= α |0〉+β |1〉, whereα andβ
are complex numbers.

Upon measurement (computational basis measurement), the state collapses into one of the basis vectors,|0〉 or
|1〉, with the probability of|α|2 and|β|2, respectively (consequently,|α|2+ |β|2 = 1). A quantumn-qubit system|φ〉 is
a tensor product of the individual single qubit states,|φ〉= |ψ1〉⊗ |ψ2〉⊗ ...⊗|ψn〉. Furthermore, quantum mechanics
prescribes that the evolution of a quantumn-qubit system is described by the multiplication of the state vector by a
proper size unitary matrixU (a matrixU is called unitary ifUU† = I , whereU† is the conjugate transpose ofU and
I is the identity matrix). As such, the set of states of a quantum system forms a linear space. A vector/state|φλ〉 is

2

called an eigenvector of an operatorU if U |φλ〉= λ |φλ〉 for some constantλ. The constantλ is called the eigenvalue
of U corresponding to the eigenvector|φλ〉.

An n-qubit quantum gate performs a specific 2n×2n unitary operation on the selectedn qubits it operates on in a
specific period of time. Previously, various quantum gates with different functionalities have been described. Among
them, the CNOT (controlled NOT) acts on two qubits (control and target) where the state of the target qubit is inverted
if the control qubit holds the value|1〉. The matrix representation for the CNOT gate is:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

The Hadamard gate,H, maps the computational basis states as follows:

H |0〉= 1√
2
(|0〉+ |1〉)

H |1〉= 1√
2
(|0〉− |1〉)

The Hadamard gate has the following matrix representation:

1√
2

[

1 1
1 −1

]

The unitary transformation implemented by one or more gatesacting on different qubits is calculated as the tensor
product of their respective matrices (if no gate acts on a given qubit, the corresponding matrix is the identity matrix,
I). When two or more gates share a qubit they operate on, most often, they need to be applied sequentially. For a set
of k gatesg1, g2, ..., gk forming a quantum circuitC, the unitary calculated byC is described by the matrix product
MkMk−1...M1 whereMi is the matrix ofith gate (1≤ i ≤ k).

Given any unitary gateU overm qubits|x1x2 · · · xm〉, a controlled-U gate withk control qubits|y1y2 · · · yk〉 may
be defined as an(m+ k)-qubit gate that appliesU on |x1x2 · · · xm〉 iff |y1y2 · · · yk〉=|1〉⊗k (we use|1〉⊗k to denote the
tensor product ofk qubits, each of which resides in the state|1〉). For example, CNOT is the controlled-NOT with a
single control, Toffoli gate is a NOT gate with two controls,and Fredkin gate is the controlled-SWAP (a SWAP gate
maps|ab〉 into |ba〉) with a single control.

For a circuitCU implementing a unitaryU , it is possible to implement a circuit for the controlled-U operation by
replacing every gateG in CU by a controlled gate controlled-G. It is often useful to consider unitary gates with control
qubits set to value zero. In circuit diagrams,◦ is used to indicate conditioning on the qubit being set to value zero
(negative control), while• is used for conditioning on the qubit being set to value one (positive control).

In this paper, we consider reversible circuits. A reversible gate/operation is a 0−1 unitary, and reversible circuits
are those composed with reversible gates. Amultiple control Toffoli gateCmNOT (x1,x2, · · · ,xm+1) passes the firstm
qubits unchanged. These qubits are referred to ascontrols. This gate flips the value of(m+1)th qubit if and only if
the control lines are all one (positive controls). Therefore, action of the multiple control Toffoli gate may be defined
as follows: xi(out) = xi(i < m+1),xm+1(out) = x1x2 · · ·xm⊕ xm+1. Negative controls may be applied similarly. For
m= 0, m= 1, andm= 2 the gates are called NOT, CNOT, and Toffoli, respectively.

It has been shown that there are a number of problems that may be solved more efficiently by a quantum algorithm,
as opposed to the best known classical algorithm. One such algorithm is the Deutsch-Jozsa algorithm [3]. To illustrate
this algorithm, letf : {0,1}→ {0,1} be a single-input single-output Boolean function. Note that there are only four
possible single-input single-output functions, namely,f1(x) = 0, f2(x) = 1, f3(x) = x, f4(x) = x̄. We can easily verify
that f1 and f2 are constant, andf3 and f4 are balanced (meaning the number of ones in the output vectoris equal to
the number of zeroes). Imagine we have a black box implementing function f , but we do not know which kind it
is—constant or balanced. The goal is to classify this function, and one is allowed to make queries to the black box.
With classical resources, we need to evaluatef twice to tell, with certainty, iff is constant or balanced. However,
there exists a quantum algorithm, known as Deutsch-Jozsa algorithm, that performs this task with a single query tof .
Figure 1 shows the quantum circuit implementing the Deutsch-Jozsa algorithm whereU f : |x,y〉 7→ |x,y⊕ f (x)〉. The
quantum state (Figure 1) evolves as follows:

|ψ0〉= |01〉

|ψ1〉=
[|0〉+ |1〉√

2

]

⊗
[|0〉− |1〉√

2

]

3

|0〉 H
U f

H

|1〉 H

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉

Figure 1: Quantum circuit implementing the Deutsch algorithm.

(a)

��������

(b)

•

��������

(c)

����	
�

��������

(d)

Figure 2: Four possible Deutsch-Jozsa oracles for a single-input function: (a)f (x) = 0, (b) f (x) = 1, (c) f (x) = x, (d)
f (x) = x̄.

|ψ2〉=

±
[

|0〉+|1〉√
2

]

⊗
[

|0〉−|1〉√
2

]

f(0) = f(1)

±
[

|0〉−|1〉√
2

]

⊗
[

|0〉−|1〉√
2

]

f(0) 6= f(1)

|ψ3〉=±| f (0)⊕ f (1)〉⊗
[|0〉− |1〉√

2

]

.

A measurement of the first qubit at the end of the circuit computes the valuef (0)⊕ f (1), which determines
whether the function is constant or balanced. Implementations of theU f for all four possible single-input functionsf
are shown in Figure 2.

4 Problem formulation

The circuit optimization algorithms discussed in the previous section are efficient, however, there is evidence that they
will not be able to discover all possible circuit simplifications. In particular, it is generally believed that the addition
of a number of auxiliary bits may be instrumental in constructing a simpler circuit.

A classical example is the implementation of then-bit multiple control Toffoli gate [2]. Without any additional
qubits, this gate may be implemented by a circuit requiringΘ(n2) two-qubit gates. With the addition of a single qubit
(andn≥ 6), then-bit multiple control Toffoli gate may be simulated by a circuit requiring a linear number of Toffoli
gates, 8n+Const, and as such, a linear number of two-qubit gates. With the addition of (n−3) auxiliary bits (and
n≥ 4), a more efficient implementation requiring 4n+ConstToffoli gates is known. Finally, if these(n−3) auxiliary
bits are set to value|00. . .0〉, an even more efficient simulation requiring only 2n+Const Toffoli gates becomes
available. This is a clear indication that the addition of auxiliary bits may be helpful in designing more efficient
circuits. However, at this point, no efficient methodology for automatic reversible circuit simplification employing
auxiliary bits has been suggested. This paper presents suchan algorithm.

When a Boolean function needs to be implemented in the circuit form, such a circuit may be composed solely of
reversible gates or it may be such a quantum circuit that, vialeaving the Boolean domain, is capable of computing
the desired function faster than any known classical reversible circuit. It is fair to say that a major goal of quantum
computing as an area is to find as many problem-solution pairssuch that leaving the Boolean domain results in
shorter computation. An example of such a situation has beenillustrated in the previous section by the Deutch-
Jozsa algorithm. This is a clear indication that significantspeedups are possible via computing outside the Boolean
domain. In this paper, we discuss an algorithm that rewritesa reversible circuit into a quantum circuit with a lower
implementation cost; for some circuits, it appears essential to have the ability to leave the Boolean domain to achieve
simplification. We illustrate performance by testing our algorithm on a set of benchmark functions.

In the remainder of the paper we assume a reversible circuit and a linear number of auxiliary bits prepared in
the state|00. . .0〉 are given as the input. In other words, we are given a transformation|x〉 |00...0〉 7→ RC|x〉 |00...0〉,
where it is guaranteed thatRC is a reversible circuit and|00...0〉 is not used in the computation. Our goal is to
rewrite this circuit into a quantum circuit that computes the same transformation with lower implementation cost.
We do not assign a separate cost to the auxiliary qubits we use, but strictly limit their quantity by the number of
primary inputs in the reversible transformation, since reversible circuits will most likely be used as subroutines in a

4

|x〉 • • •

|y1y2...yk〉 RC ≡
SWAP SWAP

|0〉⊗k H⊗k RC H⊗k

Figure 3: Circuit equivalence. Note that it also holds if thecontrol|x〉 is negative, when|x〉 is both a single qubit or a
quantum register, and a combination of these two (consistent positive and negative controls in a register).

larger quantum algorithm, whose implementation may require extra ancillae to be available for error correction and
to optimize implementation of different parts of the quantum algorithm. In other words, those auxiliary qubits may
already be available. If those ancillary qubits are unavailable, or the additional cost associated with introducing them
is too high, our proposed algorithm and its implementation need to be updated.

5 Algorithm

The idea behind our algorithm is best illustrated by the circuit equivalence shown in Figure 3.
We first show correctness of this circuit equivalence. The circuit on the left computes transformation|1〉 |y1y2...yk〉

|00...0〉 7→ |1〉RC(|y1y2...yk〉) |00...0〉 if the value of the control variablex is 1 and otherwise,|0〉 |y1y2...yk〉 |00...0〉 7→
|0〉 |y1y2...yk〉 |00...0〉, the identity function. The circuit on the right is composedof five stages/gates. The aggregate
transformation it computes forx= 1 is (subject to normalization)

|1〉 |y1y2...yk〉 |00...0〉 7→ |1〉 |y1y2...yk〉
2k−1

∑
i=0

|i〉 7→

|1〉
2k−1

∑
i=0

|i〉 |y1y2...yk〉 7→ |1〉
2k−1

∑
i=0

|i〉RC(|y1y2...yk〉) 7→

|1〉RC(|y1y2...yk〉)
2k−1

∑
i=0

|i〉 7→ |1〉RC(|y1y2...yk〉) |00...0〉 ,

i.e., it matches the computation performed on the left hand side.For valuex = 0 the transformation computed is
(subject to normalization)

|0〉 |y1y2...yk〉 |00...0〉 7→

|0〉 |y1y2...yk〉
2k−1

∑
i=0

|i〉 7→ |0〉 |y1y2...yk〉
2k−1

∑
i=0

|i〉 7→

|0〉 |y1y2...yk〉
2k−1

∑
i=0

RC(|i〉) = |0〉 |y1y2...yk〉
2k−1

∑
i=0

|i〉 7→

|0〉 |y1y2...yk〉
2k−1

∑
i=0

|i〉 7→ |0〉 |y1y2...yk〉 |00...0〉 ,

i.e., the identity, and thus matches the result of the computation in the circuit on the left. In the above, the equality
holds because the domain of any reversible transformation is the same set as its codomain. As such, an equal weight
superposition of all elements of the domain remains invariant under any reversible Boolean transformation. In other
words, sinceH⊗k |00...0〉 is an eigenvector of any 0−1 unitary matrixRCwith eigenvalue 1, application ofRCto this
eigenvector does nothing. As a result,RC may be applied uncontrollably as long as we can controlwhat it is being
applied to—the desired vector or a dummy eigenvector, as opposed tohow(i.e., in this case, controlled). Furthermore,
this identity is inspired by the generic construction of Kitaev [5].

What makes this circuit identity practical for circuit simplification is a combination of: the relative hardness of
implementing many multiple control gates, frequent use of large controlled blocks in circuit designs, the ease of the

preparation of the eigenvector∑2k−1
i=0 |i〉 (one layer of Hadamard gates), and reusability of ancillae in the sense that

5

Hadamards do not need to be uncomputed if the circuit identity is to be applied once more to a different part of the
circuit being simplified.

A layer of Hadamard gates is an eigenvector of any transformation computed by a reversible circuit, and as such it
is universally applicable in the above construction. However, if RChas a fixed pointi such thatRC(i) = i, rather than
using Hadamards, one could “hard code” the valuei by applying NOT gates at positions where binary expansion ofi
is 1. The upside is that the number of NOT gates that need to be applied does not exceedk, and generally their number
is less thank. Thus, the number of NOTs that need to be applied is expected to be less than the number of Hadamards
in the generic construction. This is, however, only a minor improvement due to the relative ease of implementing
NOT and Hadamard gates, and a small (at most, 2k) number of those required. The downside is that in sequential
application of the circuit equivalence in Figure 3, the fixedpoint needs to be recoded for every newRC.

For reversible functions ofk bits, the number of those with no fixed points is approximately k!
e ≈ .368k!, where

e:= limn→∞ (1+ 1
n)

n ≈ 2.71828... [17]. To use the circuit equivalence in this case requires the use of Hadamard gates.
The number of Hadamard gates may be reduced tos≤ k if the reversible circuitRC is such that it fixes a Boolean
cube (meaningRC(i) ∈C for everyi ∈C, whereC is the Boolean cube) of sizes. For example, if the fixed cube is of
the form−−01−0, auxiliary qubits must be prepared as follows:H ⊗H ⊗ I ⊗NOT⊗H ⊗ I |000000〉 for the circuit
identity to work. In other words, for every variable changing its value, it requires application of the Hadamard gate,
for every variable taking the value 1, application of the NOTgate is required, and for every variable taking the value 0,
no gate is required. An example of a reversible function requiring all k Hadamards is the cycle shift(1,2, ...,2k−1,0),
or any cycle of maximal length. For all other permutations—those with at least one fixed point, of which there are
approximatelyk!(1− 1

e) ≈ .632k!, we can find a proper set of NOT gates to use the circuit equivalence without any
Hadamard gates.

Based on the above identity, the proposed reversible circuit optimization algorithm works as follows.

1. Prepare ancillae via applying a layer of Hadamard gates (k−1 bits suffices for anyk-bit circuit to be simplified).

2. Find sets of all possible adjacent gates sharing at least one common control.

3. Evaluate all sets of adjacent gates to find the one set that reduces the total cost more. When such a set is found,
apply the circuit identity shown in Figure 3:

(a) If we are dealing with the single shared control, apply the identity.

(b) If we dealing with a shared multicontrol, dedicate one ofancillary qubits as collecting the product defined
by the shared multicontrol, and use this qubit to control theapplication of Fredkin gates. One has to be
careful to make sure the chosen qubit has a correct combination of Hadamard gates on it,i.e., an even
number of Hadamards to achieve a Boolean value and store value of the control product, and an odd
number if this bit is used for implementation of an uncontrolled transformation.

4. Update the remaining sets of adjacent gates to exclude allsets that intersect with the sets already processed at
step 3. If no sets remain, continue to the next step; otherwise, go to 3.

5. Calculate the number of auxiliary qubits we actually needin this process. Upper bound isk− 1 for a k-bit
circuit, but we can often do better than that due to the use of multicontrol and tracking how many qubits the
selected gates sharing a control operate on. Also, since there is a chance that all largest controlled gates in the
circuit before simplification are factored, we may need fewer extra qubits for an efficient implementation of the
multiple controlled gates.

We have implemented this algorithm in C++, and report benchmark results in Section 6.
The above algorithm is very naive, and may be improved with the following modifications.

• Find more efficient ways to identify and process sets of gatessharing common controls. Since our basic algo-
rithm is greedy, there likely are better approaches than finding all and picking the best found.

• Find the simplest combination of NOT and Hadamard gates, as opposed to using a layer of allk Hadamard
gates. If Hadamard gates need to be avoided at all cost,RC may be complemented by a minimal circuitM,
followed byM−1 such thatRC◦M has a fixed point. Then, controlled-RC◦M may be implemented with the
circuit identity, andM−1 is not used in it. It is not clear if leaving the Boolean domainis so unwelcome as to for
this procedure to become efficient. However, this gives birth to a new reversible circuit simplification approach
based solely within the Boolean domain.

6

b

c

d

a

RC =
RC

Figure 4: MovingTOF(a,b,c,d) to the left pastCNOT(c,b) via introducingTOF(a,c,d).

b

c

d

a

H

H

H

0

0

0

H

H

H

b

c

d

a

b

c

d

a

0

0

0

H H

(a)

(b)

(c)

Figure 5: Simplifying an example circuit (a): (b) using the algorithms introduced; (c) minimizing the number of
Hadamard gates used.

• Find better algorithms for collecting gates sharing commoncontrols,e.g., by finding more efficient algorithms
to move gates, as some non-commuting gates may be commuted through a block of gates.

More interestingly, consider the left circuit in Figure 4. It may be rewritten in an equivalent form, as illustrated
on the right in Figure 4. At first glance, it may seem that the circuit on the right is more complex, since it
contains an extra gate,TOF(a,c,d). However, as indicated by the dashed line,TOF(a,c,d) andTOF(a,b,c,d)
may now be merged intoRCand implemented using the identity in Figure 3. This was not possible before the
transformation, since gateCNOT(c,b) was blockingTOF(a,b,c,d) from joining theRC. The result of this
transformation is the effective ability to implement a multiple control Toffoli gate with three controls for the
cost of a Toffoli gate (with two controls) and a CNOT. The latter is most likely more efficient.

• Iterate our basic algorithm,i.e., look for subcircuits sharing a common control within subcircuits whose shared
controls have been factored out.

• Find other instances where the introduction of quantum gates helps optimize an implementation.

Efficiency of any such modification is highly dependent on therelation between costs of NOT, Hadamard, CNOT,
SWAP, Toffoli, Fredkin gates,etc., as well as their multiple control versions including thosewith negative controls,
and the minimization criteria (e.g., gate countvs.circuit depthvs.number of qubitsvs.certain desirable fault tolerance
properties,etc.). In Section 6 we consider the performance of a basic implementation of our algorithm, and count the
number of two-qubit gates used before and after simplification. This illustrates the efficiency of our algorithm in the
most generic scenario. We conclude this section by illustrating how this algorithm works with two examples.

Example 1. Illustrated in Figure 5(a) is a circuit that we simplify using the suggested approach. The initial circuit
contains 4 two-qubit gates, 4 3-qubit gates and 8 4-qubit gates. Using a single number cost estimation introduced in

7

(a)

b

c

d

a

f

g

h

e

j

k

l

i

(b)

b

c

d

a

f

g

h

e

j

k

l

i

H

H

H

H

H

H

0

0

0

0

0

0

0

H

H

H

H

H

H

Figure 6: Simplifying the cycle102 circuit [6], (a) the original circuit with cost 727, (b) theimproved circuit with
cost 469.

the next section, this circuit requires 144 two-qubit gates. The algorithm, as described, finds two subcircuits sharing
control variable b in the first and control variable d in the second. Those subcircuits are implemented on a separate
3-qubit register and copied in when required, as shown in Figure 5(b). The new circuit contains 10 single-qubit
gates, 4 two-qubit gates, and 20 3-qubits gates. In other words, its implementation requires 104 two-qubit gates. To
construct the bottom circuit illustrated in Figure 5, one needs to notice that{a= 1,c= 0,d = 0} is a fixed point of
the function computed by the first subcircuit (after controlb is factored out), and the second subcircuit (once control
d is cut) fixes the Boolean cube{a= variable,b= 1,c= 0}.

Example 2. As an example with shared multicontrols consider the circuit cycle102 [6] shown in Figure 6(a). As
can be seen, the circuit has several gates with shared commoncontrols. According to the proposed algorithm, in
this case, one of the auxiliary qubits should be used to collect the product defined by the shared multicontrol and
to control the application of Fredkin gates. To find the appropriate set of common controls, the cost of the circuit
before and after the optimization should be examined. Usingthe single number cost estimation introduced in the
next section, if the first 6 gates in Figure 6(a) are considered as a subcircuit with three shared common controls,
the resulting implementation cost will be maximally improved. Similarly, another subcircuit with 6 gates sharing 4
common controls can be recognized and optimized. The resulting improved circuit is shown in Figure 6(b). Altogether,
the cost of the original circuit is improved by about 35% (727vs. 469).

6 Performance and Results

Before we can test the performance of the introduced approach, it is important to establish a metric to define the
implementation cost of a circuit before and after simplification.

6.1 Circuit Cost

With our approach, we allow auxiliary qubits, which directly affects the cost of multiple control gates. Further, we
allow those qubits to carry value|00...0〉, which also affects how efficiently one is able to implement multiple control

8

gates. Due to these changes from convention, most common circuit cost metrics used,e.g., [6, 8, 12], cannot be
applied. As a result, it is necessary to revisit the circuit cost metric.

Particulars of the definition of the cost metric largely affect practical efficiency. We thus consider a very generic
definition of the circuit cost, and suggest that it is re-evaluated in the scenario when circuit costs may be calculated
with a better accuracy, and our algorithm/implementation is updated correspondingly.

We will evaluate circuit implementation cost via estimating the number of two-qubit gates required to implement
it.

We ignore single-qubit gates partially because they may be merged into two-qubit gates (for instance, in an Ising
Hamiltonian2 [11] CNOT(a,b)NOT(b) may be implemented as efficiently as CNOT(a,b), andRb

y(π/2)CNOT(a,b)
is more efficient than CNOT(a,b) on it own), and partially because they are relatively easy toimplement as compared
to the two-qubit gates.

Efficiency of the implementation of the two-qubit gates depends on the Hamiltonian describing the physical system
being used. For instance, in an Ising Hamiltonian, and up to single-qubit gates, CNOT is equivalent to a single use
of the two-qubit interaction term,ZZ. With Ising Hamiltionian, SWAP requires three uses of the interaction term,
which is a maximum for the number of times an interaction termneeds to be used to implement any two-qubit gate
in any Hamiltonian [20]. However, if the underlying Hamiltonian is Heisenberg/exchange type [11, 19], SWAP is
implemented with a single use of the two-qubit interaction,XX+YY+ZZ, and CNOT is notably more complex than
SWAP. For the sake of simplicity, we count all two-qubit gates as having the same cost, and assign this cost a value
of 1.

Efficient decomposition of the Toffoli and Fredkin gates into a sequence of two-qubit gates largely depends on
what physical system is being used. A Toffoli gate may be implemented up to a global phase using at most 3 two-
qubit gates (all CNOTs, plus some single-qubit gates) or exactly using 5 two-qubit gates [11]. Other more efficient
implementations are possible in very specific cases,e.g., 3 two-qubit gates suffice when the output is computed onto
a qutrit (as opposed to a qubit) [14]. The best known implementation of the Fredkin gate requires 3 pulses, each of
which is a two-qubit gate [4]. Finally, since when conjugated from left and right by a proper CNOT gate, a Toffoli
gate becomes a Fredkin gate, and a Fredkin gate becomes a Toffoli gate, their two-qubit gate implementation costs
are within±2 of each other. For the purpose of this paper, we will assign acost of 5 to both Toffoli and Fredkin gates
(minimal two-qubit implementation cost reported in the literature plus 2). Any other number between 3 and 7 would
have been reasonable too.

=
0

0

=0

0

Figure 7: Implementation of multiple control Toffoli and Fredkin gates [11].

Multiple control Toffoli and multiple control Fredkin gates may be simulated such as shown in Figure 7. As such,
bothn-qubit Toffoli andn-qubit Fredkin gates (n≥ 3) require 2n−5 3-qubit Toffoli and Fredkin gates each, which
translates into 10n− 25 two-qubit gates. Since we ignore single-qubit gates, multiple control Toffoli and Fredkin
gates with negated controls have the same cost as their alternatives with positive controls.

6.2 Benchmarks

We have experimented with those MCNC benchmarks we were ableto find, and those circuits available at [6]. Re-
versible circuits for some MCNC benchmarks were reported in[10] (top third of Table 1), and for the most popular
that were not explicitly reported in [10] (middle third of Table 1), we used EXORCISM-4 [9] to synthesize them.
Finally, we included circuits from [6] (bottom third of Table 1). To save space, we report simplification of only those
circuits that were the best reported in the literature at thetime of this writing;e.g., [10] reports a circuit for function
rd73, however, a better circuit exploiting the fact that this function is symmetric is known [6]. Similarly, we found
a number of simplifications in thehwb type circuits, however, we do not report those since efficient circuits for this

2For the purpose of this paper, it suffices to state that an Ising Hamiltonian is such that the two-qubit interaction terms are described by the
formula∑i< j Ji j σi

zσ
j
z, whereσi

z is the Pauli-Z matrix acting on qubiti, and eachJi j is a constant.

9

Table 1: Benchmark results. The actual circuit designs are available at
http://www.iqc.ca/˜ dmaslov/rev2quant/, and may be viewed with RCViewer+ available at
http://ceit.aut.ac.ir/QDA/RCV.htm.

Function Best Known Implementation After Optimization %
ckt# name I/O # qubits # rev. gates cost source # qubits # quant. gates cost improvement
1 5xp1 7/10 22 61 1177 [10] 32 141 927 21.24%
2 add6 12/7 24 188 6120 [10] 40 330 3551 41.98%
3 b12 15/9 30 43 1199 [10] 41 113 831 30.17%
4 clip 9/5 21 120 5412 [10] 31 296 2924 45.97%
5 in7 26/10 51 70 4228 [10] 65 190 2287 45.91%
6 life 9/1 17 50 2480 [10] 24 152 1870 24.6%
7 ryy6 16/1 30 40 2686 [10] 40 134 1737 35.33%
8 sao2 10/4 22 58 3972 [10] 30 164 1806 54.53%
9 seq 41/35 94 1917 188827 [10] 113 2239 84284 55.36%
10 t481 16/1 19 13 220 [10] 19 13 220 0%
11 vg2 25/8 51 207 16525 [10] 76 543 11709 29.14%
12 z4 7/4 14 36 512 [10] 20 78 484 5.47%
13 apex4 9/19 35 5131 228015 [9] 61 5409 170541 25.21%
14 apla 10/12 29 70 3390 [9] 40 244 1709 49.59%
15 bbm 4/4 10 16 224 [9] 17 42 164 26.79%
16 co14 14/1 26 14 1610 [9] 32 60 1070 33.54%
17 cordic 23/2 40 1546 188715 [9] 57 1686 127615 32.38%
18 cu 14/11 33 27 1110 [9] 39 93 631 43.15%
19 decod 16/5 24 83 1931 [9] 41 193 847 56.14%
20 f51m 14/8 34 369 25155 [9] 52 523 21953 12.73%
21 root 8/5 19 67 2605 [9] 27 185 1786 31.44%
22 sqr6 6/12 22 59 955 [9] 30 109 655 31.41%
23 sqrt8 8/4 17 27 495 [9] 21 67 405 18.18%
24 table3 14/14 40 802 74530 [9] 63 1578 30320 59.32%
25 cycle102 12/12 20 19 727 [6] 22 59 469 35.49%
26 cycle173 20/20 35 48 3388 [6] 38 164 1824 46.16%
27 mod1024adder 20/20 28 55 1435 [6] 30 139 1011 29.55%
28 mod1048576adder 40/40 58 210 12090 [6] 59 588 6485 46.36%
29 nth prime6 inc 6/6 9 55 592 [6] 14 75 583 1.52%

family of functions have been found [6]. Our approach is mostefficient when applied to the circuits with a large
proportion of multiple controlled gates. Consequently, wedid not find simplifications in the circuits dominated by
small gates.

Table 1 reports the results. The first column lists a circuit index number that is introduced to be used in Table 2
as a reference. The next two columns describe the original benchmark function, including its name (name), and the
number of inputs and outputs (I/O). The next four columns describe the best known reversible circuit implementations.
The first column,# qubits, lists the number of actual qubits used, assuming every multiple control Toffoli gate
is implemented most efficiently using a number of auxiliary qubits (Figure 7). This is why this number is higher
than the sum of inputs and outputs for irreversible specifications, and the number of inputs/outputs for reversible
specifications. The next column,# rev. gates, lists the number of multiple control reversible gates used, cost shows
the cost, as defined in Subsection 6.1,i.e., the number of two-qubit gates required, andsource shows where or how
this circuit may be obtained. The following four columns summarize our simplification results, including the number
of actual qubits required in the simplified circuits, the number of gates in the new designs (# quant. gates - # rev.
gates = number of Hadamard and Fredkin gates our algorithm introduces), and cost of the simplified circuits. Finally,
the last column,% improvement, shows the percentage of the reduction in cost as a result of the application of our
algorithm.

Table 2 presents the distribution of the number of gates in the circuitsbefore andafter simplification. Each circuit
is marked withix, wherei is the circuit index number taken from Table 1, andx takes valuesb anda, to distinguish
circuitsbefore andafter the simplification. Columns report the gate counts usedin the corresponding circuit designs.
The columns are marked to represent the gate types used: NOT (T1), CNOT (T2), Toffoli (T3), ..., Toffoli-21 (T21),
Fredkin (F3), and Hadamard (H).

Most circuits were analyzed and simplified almost instantly. The runtime depends primarily on the number of
gates, and the complexity of combinations of shared controlconfigurations. The longest computation took 323 sec-
onds (user time) to analyze circuit forapex4 function with 5131 gates. It took 25 seconds for the second largest circuit
with 1917 gates, implementing the benchmark functionseq. We did not attempt to optimize our implementation.

10

|x〉 • • ����	
� ����	
� • ����	
�

|data〉 AB−1 B B B−1A BA−1 A A A−1B A B

|x〉 • • ����	
� ����	
�

|data〉
SWAP SWAP SWAP SWAP

≡

|0〉 H A H H B H

|x〉 • • ����	
� ����	
�

≡ |data〉
SWAP SWAP SWAP SWAP

≡

|0〉 H A B H

|x〉 • ����	
�

≡ |data〉
SWAP

B
SWAP SWAP

≡

|0〉 H A H

|x〉 • •
≡ |data〉

SWAP
B

SWAP
|0〉 H A H

Figure 8: Implementation of theif x then A else B statement. Top: five basic ways to implement this statement.
Circuit equivalence from Figure 3 may be applied to simplifyeach of these five implementations. Middle to bottom:
an illustration of how the circuit equivalence from Figure 3helps to simplify the top right implementation.

7 Advantages and Limitations

The control reduction algorithm we introduced in this paperhas the following practical advantages and limitations.

1. Advantages:

• Due to the structure of the circuits generated, this algorithm usually finds simplifications in the circuits
generated by EXORCISM-4 [10] or other ESOP synthesizers since every two gates commute, and MMD
[7] since it tends to use one control for a large number of sequential gates.

• This algorithm is particularly useful in compiling the Booleanif-then-else type statement in a quan-
tum programming language (previously mentioned in [16]). Indeed, the statementif x then A else B
can be implemented such as shown in Figure 8. The bottom circuit allows execution of statementsA and
B in parallel, which may be particularly helpful in the scenario whenA, B, AB−1 andB−1A have relatively
high implementation costs, and a faster implementation is preferred.

2. Limitations:

• This algorithm is unlikely to find simplification in circuitsdominated by small gates,e.g., single- and
two-qubit gates, such as those generated by [8, 15, 16].

• A sufficient number of auxiliary qubits set to value|0〉 needs to be made available for the algorithm to
work efficiently. However, the performance improves as the number of auxiliary qubits carrying value
|0〉 grows (for example, we did not test nested application of ouralgorithm, but expect the results may
improve compared to those reported in this paper).

8 Conclusions

In this paper, we presented an approach for systematic optimization of reversible circuits that trades in qubits to
achieve a lower implementation cost. This may be of particular interest in practice when a multistage quantum

11

Table 2: The distribution of the number of gates for the circuits reported in Table 1.
ckt# T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 F3 H

1b 0 17 7 12 10 4 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1a 0 27 20 10 4 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52 20
2b 6 0 23 18 29 35 45 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2a 19 16 47 37 45 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 34
3b 5 0 6 4 9 4 9 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3a 8 1 13 11 11 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 24
4b 0 2 10 2 7 14 33 28 16 8 0 0 0 0 0 0 0 0 0 0 0 0 0
4a 0 9 39 38 31 12 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 140 22
5b 4 3 5 4 3 0 3 5 13 10 9 2 2 4 1 0 0 2 0 0 0 0 0
5a 9 7 8 11 15 13 3 2 5 1 0 0 2 0 0 0 0 0 0 0 0 78 36
6b 0 0 0 0 3 9 15 10 11 2 0 0 0 0 0 0 0 0 0 0 0 0 0
6a 0 0 10 17 11 9 12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 76 16
7b 0 1 0 3 0 6 0 9 0 9 0 7 0 4 0 1 0 0 0 0 0 0 0
7a 3 2 7 7 7 10 1 6 0 4 0 1 0 0 0 0 0 0 0 0 0 60 26
8b 0 2 1 0 0 0 0 3 17 28 7 0 0 0 0 0 0 0 0 0 0 0 0
8a 0 6 6 30 9 10 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 78 18
9b 0 2 14 1 0 8 2 33 128 187 115 126 189 151 209 245 198 141 76 52 40 0 0
9a 19 69 204 194 237 213 168 283 184 171 100 53 40 0 0 0 0 0 0 0 0 252 52
10b 1 0 4 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10a 1 0 4 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11b 0 0 4 7 16 12 10 16 8 24 30 26 16 16 4 4 0 4 6 0 4 0 0
11a 0 14 33 28 12 20 10 28 26 18 18 4 4 0 0 6 0 4 0 0 0 264 54
12b 0 2 14 10 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12a 0 4 26 10 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 10

13b 0 0 0 171 537 1188 1460 1167 504 104 0 0 0 0 0 0 0 0 0 0 0 0 0
13a 8 1 165 651 1265 1520 1072 367 86 0 0 0 0 0 0 0 0 0 0 0 0 222 52
14b 0 0 0 6 5 7 16 18 13 5 0 0 0 0 0 0 0 0 0 0 0 0 0
14a 3 24 25 11 12 3 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 136 24
15b 0 4 4 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15a 2 4 10 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 12
16b 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0
16a 0 0 0 12 0 0 0 0 0 0 6 0 0 2 0 0 0 0 0 0 0 30 10
17b 1 0 0 0 0 5 0 0 0 0 0 388 0 0 768 0 384 0 0 0 0 0 0
17a 1 0 3 2 4 2 0 388 0 0 768 0 384 0 0 0 0 0 0 0 0 92 42
18b 1 0 2 0 7 4 5 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
18a 8 6 6 0 9 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 18
19b 0 1 8 12 46 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19a 8 17 50 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70 34
20b 0 0 9 16 22 27 26 23 47 46 60 59 23 6 5 0 0 0 0 0 0 0 0
20a 4 8 29 25 21 27 21 47 46 60 59 23 6 5 0 0 0 0 0 0 0 106 36
21b 0 5 6 2 11 6 11 13 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21a 1 6 22 20 13 16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88 18
22b 0 5 24 12 1 14 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22a 2 5 37 17 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 16
23b 0 5 7 4 4 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23a 0 5 13 11 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 12
24b 0 0 0 0 6 10 0 10 61 89 154 169 154 110 39 0 0 0 0 0 0 0 0
24a 6 55 73 120 189 143 105 73 24 36 16 4 2 0 0 0 0 0 0 0 0 684 48

25b 0 2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0
25a 2 4 4 4 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 12
26b 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 0 0 0 0 0
26a 6 9 9 12 5 3 3 5 7 1 0 0 0 0 0 0 0 0 0 0 0 84 20
27b 0 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0
27a 6 16 16 15 10 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 12
28b 0 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0
28a 25 45 47 47 35 20 15 8 10 6 2 0 0 0 0 0 0 0 0 0 0 308 20
29b 5 12 14 11 11 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29a 6 13 15 9 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10

12

algorithm (including computations in the Boolean domain) needs to be executed on a quantum processor, and there
are a number of scrap qubits available to be used to optimize intermediate computations. The proposed approach may
be extended to optimize quantum controlled transformations.

9 Acknowledgments

This article was based on work partially supported by the National Science Foundation, during D. Maslov’s assign-
ment at the Foundation.

References

[1] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Physical Review A, 70(052328),
2004,http://arxiv.org/abs/quant-ph/0406196.

[2] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVinchenzo, N.Margolus, P. Shor, T. Sleator, J. A. Smolin,
and H. Weinfurter. Elementary gates for quantum computation. Physical Review A, 52:3457–3467, 1995,
http://arxiv.org/abs/quant-ph/9503016.

[3] D. Deutsch and R. Jozsa. Rapid solutions of problems by quantum computation.Proceedings of the Royal
Society of London A, 439(553), 1992.

[4] X. Fei, D. Jiangfeng, S. Mingjun, Z. Xianyi, H. Rongdian,and W. Jihui. Realization of the Fredkin gate by
three transition pulses in a nuclear magnetic resonance quantum information processor.Chinese Phys. Lett.,
19(8):1048-1050, 2002,http://arxiv.org/abs/quant-ph/0202014.

[5] A. Kitaev. “Quantum measurements and the Abelian Stabilizer Problem”, 1995,
http://arxiv.org/abs/quant-ph/9511026.

[6] D. Maslov. Reversible Logic Synthesis Benchmarks Page.http://webhome.cs.uvic.ca/˜dmaslov/,
last accessed June 2010.

[7] D. Maslov, D. M. Miller, and G. W. Dueck. Toffoli network synthesis with templates.IEEE Transactions on
CAD, 24(6):807–817, 2005.

[8] D. Maslov, D. M. Miller, and G. W. Dueck. Techniques for the synthesis of reversible Toffoli net-
works. ACM Transactions on Design Automation of Electronic Systems, 12(4), article 42, 2007,
http://arxiv.org/abs/quant-ph/0607166.

[9] A. Mishchenko. EXORCISM-4.http://web.cecs.pdx.edu/˜al anmi/research/min/minEsop.htm,
last accessed June 2010.

[10] A. Mishchenko and M. Perkowski. “Logic synthesis of reversible wave cascades”. In Proc.International
Workshop on Logic Synthesis, pages 197-202, June 2002.

[11] M. Nielsen and I. Chuang.Quantum Computation and Quantum Information. Cambridge University Press,
2000.

[12] A. K. Prasad, V. V. Shende, K. N. Patel, I. L. Markov, and J. P. Hayes. Algorithms and data structures for
simplifying reversible circuits.ACM Journal of Emerging Technologies in Computing Systems, 2(4):277-293,
2006.

[13] J. Proos and C. Zalka. Shor’s discrete logarithm quantum algorithm for elliptic curves.Quantum Information
and Computation, 3(4):317–344, 2003,http://arxiv.org/abs/quant-ph/0301141.

[14] T. C. Ralph, K. J. Resch, and A. Gilchrist. Efficient Toffoli gates using qudits.Physical Review A, 75(022313),
2007,http://arxiv.org/abs/0806.0654.

[15] M. Saeedi, M. S. Zamani, M. Sedighi, and Z. Sasanian. Reversible circuit synthesis using a cycle-
based approach.ACM Journal of Emerging Technologies in Computing Systems, 6(4), article 13, 2010,
http://arxiv.org/abs/1004.4320.

13

[16] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. Synthesis of Reversible Logic Circuits.IEEE
Transactions on CAD, 22(6):710–722, 2003.

[17] http://en.wikipedia.org/wiki/Cyclesandfixed points, last accessed June 2010.

[18] R. Wille and R. Drechsler. BDD-based synthesis of reversible logic for large functions. In Proc.Design Au-
tomation Conference, pages 270–275, 2009.

[19] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelka-
nova, and D. M. Treger. Spintronics: A Spin-Based Electronics Vision for the Future.Science294(5546):1488–
1495, November 2001.

[20] J. Zhang, J. Vala, S. Sastry, and K. B. Whaley. Geometrictheory of nonlocal two-qubit operations.Physical
Review A, 67(042313), April 2003,http://arxiv.org/abs/quant-ph/0209120.

14

http://en.wikipedia.org/wiki/Cycles_and_fixed_points

	1 Introduction
	2 Related work
	3 Preliminaries
	4 Problem formulation
	5 Algorithm
	6 Performance and Results
	6.1 Circuit Cost
	6.2 Benchmarks

	7 Advantages and Limitations
	8 Conclusions
	9 Acknowledgments

