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We study quantum learning algorithms for quantum measurements. The optimal learning algo-
rithm is derived for arbitrary von Neumann measurements in the case of training with one or two
examples. The analysis of the case of three examples reveals that, differently from the learning of
unitary gates, the optimal algorithm for learning of quantum measurements cannot be parallelized,
and requires quantum memories for the storage of information.
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I. INTRODUCTION

The rapid development of an information technology
in the last decades made the optimization of information
processing tasks an important field of computer science.
For example one needs to optimize database search, as
well as tasks that emerged due to internet e.g. algorithms
for anti-spam filters and internet search engines. The last
two tasks are instances of the so called machine learning
[1], which can be defined as follows. Suppose we have a
black box evaluating an unknown function f and we have
access to N uses of it. However, after we lose the access to
the black box we need to evaluate f on an input that was
not previously available. Naturally any machine learning
has two phases – training and retrieving. The knowledge
on f acquired in the training phase of the strategy is en-
coded into a bit string that is later used as a program
governing the retrieval phase. Obviously, if N is greater
or equal to the number of possible inputs of f then the
training part of the strategy can acquire complete knowl-
edge of f . The same task, termed quantum learning, can
be generalized to quantum theory. In this case the black
box performs an unknown quantum transformation T .
The result of the training phase is a quantum state ψT .
This state has to be kept in the quantum memory until
the retrieving phase, where it enters together with the
unknown state ρ into the retrieving channel that mimics
the action of T on ρ. We can immediately observe sub-
stantial difference to machine learning. Even for finite
dimensional quantum systems there does not exist a fi-
nite N for which the quantum learning works perfectly.
Indeed, even if the training part of the strategy would
encode full information about T into the finite dimen-
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sional state ψT , the no programming theorem of Nielsen
[2] prevents us to retrieve the transformation perfectly.

A closely related problem to quantum learning was
studied as a quantum version of pattern recognition algo-
rithms [3, 4]. For the case of quantum learning of chan-
nels, the first analysis was published in Ref. [5], where
very simple processing techniques were studied for learn-
ing of particular gates like the Grover oracle [6] or the
discrete Fourier transform. Learning of unitary black
boxes was analyzed in Ref. [7]. Surprisingly, it turns
out that the task of quantum learning of unitaries can be
fully parallelized, which means that the optimal training
phase is achieved by applying the N uses of the black
box on the fixed entangled state. Another surprising fea-
ture of the aforementioned training phase is that it is
an optimal estimation procedure and hence the quantum
memory can be replaced by a classical storage of the es-
timated unitary black box. The simulation then consists
in the conditional application of the gate corresponding
to the estimated parameters.

In the present paper we will consider the case in which
the black box to be learnt is a device performing a
Von Neumann measurement, namely a projective non-
degenerate Positive Operator Valued Measure (POVM)
E := {Ei}. We will show that for measuring black boxes
the surprising features of optimal learning of unitary
black boxes disappear. In particular, we will show that
the optimal algorithm cannot be parallelized, leading to
a training phase that lasts an increasing time versus the
number of examples. Moreover, the optimal training does
not consist of optimal estimation, thus requiring a coher-
ent quantum memory for the storage of the learnt mea-
surement.

The paper is organized as follows. In Sec II we review
some notation and preliminary concepts used in the anal-
ysis. In Sec. III we expose the mathematical formulation
of the general problem of optimal learning in mathemati-
cal terms. In Sec. IV the problem is simplified exploiting
all the symmetries that can be useful. The problem is
then solved in Sec. V for the cases N = 1, N = 2 and
N = 3. Finally, the paper is closed by concluding re-
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marks in Sec. VI.

II. PRELIMINARY CONCEPTS

In this section we review some notions of the theory
of quantum networks [8–10]. The main feature of this
approach is the representation of quantum networks in
terms of suitably normalized positive operators.

The nodes of a quantum network R are elementary
boxes linked by wires. Elementary boxes represent state
preparations, channels, quantum operations, or effects.
The most general pictorial representation of a quantum
network is a directed acyclic graph, where the vertices
represent elementary boxes and the arrows represent the
quantum systems traveling within the network in the di-
rection induced by the input-output relation.

By stretching the connections in the graph we can give
the quantum network the shape of a comb, i.e. any
quantum network R is equivalent to a sequence of N
quantum operations {Ti}Ni=1 with some unconnected in-
put and output subsystems, as follows

0

T1

1 2

T2

3 2N − 2

TN

2N − 1

· · ·
(1)

If all the N quantum operations are trace preserving (i.e.
they are quantum channels) R is a deterministic quan-
tum network, otherwise R is a probabilistic quantum net-
work. The ordering of the teeth is induced by the causal
order defined by the flow of quantum information inside
the quantum network. Referring to the scheme in Eq. (1)
we label each wire with an integer number j: accordingly,
the Hilbert space of the system represented by wire j is
denoted as Hj .

Since a quantum network R is a concatenation of quan-
tum operations it can be considered as a quantum oper-
ation itself R : L(Heven) → L(Hodd) where we defined

Heven =
⊗N

i=0 H2i and Hodd =
⊗N

i=0 H2i+1. That be-
ing so, it is possible to define the Choi-Jamio lkowsky op-
erator of a quantum network as

R := R⊗ I(|ω〉〈ω|) (2)

R ∈ L(Heven ⊗ Hodd), R ≤ 0

where I is the identity map and |ω〉 ∈ H ⊗2
even, |ω〉 =∑

n |n〉 |n〉 ({|n〉} is an orthonormal basis of Heven). The
Choi-Jamio lkowsky operator of a quantum network is
called quantum comb of the network. If R is a deter-
ministic quantum network it is possible to prove that its
Choi-Jamio lkowsky operator R must satisfy the recursive
normalization constraint

Tr2k−1[R(k)] = I2k−2 ⊗R(k−1) k = 1, . . . , N (3)

where R(N) = R, R(0) = 1, R(k) ∈ L(Hoddk
⊗ Hevenk

)

with Hevenk
=
⊗k−1

j=0 H2j and Hoddk
=
⊗k−1

j=0 H2j+1,

is the comb of the reduced circuit R(k) obtained by dis-
carding the last N − k teeth. It is relevant to stress that
each positive operator that satisfies Eq. (3) corresponds
to a valid deterministic quantum network. This gives us
a correspondence between the set of positive operators
satisfying Eq. (3) and the set of deterministic quantum
networks.

On the other hand, the Choi-Jamio lkowsky operator
of a probabilistic quantum network R, must satisfy

0 ≤ R ≤ S (4)

where S is a Choi-Jamio lkowsky operator of a determin-
istic quantum network. An important theorem proves
[8] that any positive operator, upon suitable rescaling,
represents a probabilistic quantum network.

Two quantum networks R1 and R2 can be connected
by linking input wires of one network with output wires of
the other network thus forming the network R1∗R2. The
Choi-Jamio lkowsky operator of the composite network
R1 ∗ R2 is the link product of the operators R1 and R2

which is defined as follows:

R1 ∗R2 = TrK[R1R
θK
2 ] (5)

where θK denotes the partial transposition (with respect
to a fixed orthonormal basis) over the Hilbert space K
of the connected wires and TrK denotes the partial trace
over K.

A. Generalized Instrument

The aim of this paper is to study quantum networks
that replicate quantum measurements. A generalized
quantum instrument is set of probabilistic quantum net-
works R := {Ri} such that the set R = {Ri} of the
Choi-Jamio lkowsky operators of its components satisfies
the following condition:

∑

i

Ri := RΩ (6)

where RΩ corresponds to a deterministic quantum net-
work. Every probabilistic quantum network belongs to
some generalized quantum instrument, and viceversa ev-
ery generalized quantum instrument represents some set
of probabilistic quantum networks.

III. THE OPTIMIZATION PROBLEM

The learning scenario can be formulated as a quantum
network that accepts N measurements into the open slots
and works as a POVM on the remaining system. Here is
a diagram representing the N = 2 scenario,
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where the double wires carry the classical outcomes of
the measurements.

Since we consider the case where the unknown mea-
surement is a projective non degenerate POVM E :=
{E1, . . . , Ed}, we can write its element Ei in the follow-
ing form

Ei = |φi〉〈φi| (7)

where {|φi〉}di=1 is an orthonormal basis of the Hilbert
space H. All the POVM’s of this kind can be generated
by rotating a reference POVM E := {|i〉〈i|}di=1 by ele-
ments of the group of unitary transformations SU(d) as
follows

E(U) := UEU † U ∈ SU(d), (8)

where {|i〉} is a fixed orthonormal basis and UEU † de-

notes the POVM with elements E
(U)
i := UEiU

†. Notice

the slight abuse in the definition of E(U), due to the fact
that there exists a stability subgroup S ⊆ SU(d) such
that for V ∈ S one has V |i〉 = |i〉 for all i. The POVM
E(U) is then labeled by the equivalence class [U ] defined
by the relation

U ∼ U ′ ⇔ U = U ′V, V ∈ S, (9)

rather than by U .
It is formally convenient to encode the classical out-

come i of the POVM into a quantum system by prepar-
ing the state |i〉 from a fixed orthonormal basis, which is
the same for each POVM [11]. Within this framework the
measurement device is actually described by the following
measure-and-prepare quantum channel E(U) : L(H ) →
L(H )

E(U)(ρ) =

d∑

i=1

Tr[E
(U)
i ρ]|i〉〈i|, (10)

which measures the POVM E(U) on the input state and
in the case of outcome i prepares the state |i〉 from a fixed
orthonormal basis on the output of the channel. The
Choi-Jamio lkowski representation of the channel E(U) is
the following

E(U) =

d∑

i=1

|i〉〈i| ⊗ E
(U)
i

T
=

d∑

i=1

|i〉〈i| ⊗ U∗|i〉〈i|UT ,

(11)

where XT denotes the transpose of X in the basis
{|i〉}di=1. The N uses of the measurement device are then

represented by the tensor product E
(U)
2N−1 2N−2 ⊗ · · · ⊗

E
(U)
10 where the input and the output space of the k-th

use of the measurement device are denoted by 2k−2 and
2k− 1, respectively. We introduce the following notation

Hin :=

N⊗

k=1

H2k−2, Hcl :=

N⊗

k=1

H2k−1. (12)

Since we want the learning network R to behave as the
POVM E(U) upon insertion of theN uses of E(U), we have
that R is a generalized instrument where the element Ri

describes the behaviour of the network when the output
of the replicated measurement is i. The replicated POVM
is then equal to

G(U) = [R ∗ (E
(U)
2N−1 2N−2 ∗ · · · ∗ E

(U)
10 )]

T
(13)

Ri = L(Hout ⊗ Hcl ⊗ Hin), Hout = H2N

where H2N denotes the input space of the replicated
measurement. In this notation the normalization of the
generalized instrument R becomes

Tr2k−2[R(k)] = I2k−3 ⊗R(k−1), k = 1, . . . , N

RΩ = I2N,2N−1 ⊗R(N), R(0) = 1. (14)

Our task is to find the learning network R such that
G(U) is as close as possible to E(U). In order to quantify
the performances of the replicating network, we intro-
duce the following quantity that measures the closeness
between two POVM’s P and Q

D(P,Q) :=

∫
dψ

d∑

i=1

| 〈ψ|Pi −Qi |ψ〉 |2 (15)

The interpretation of D(P,Q) as a measure of ”distance”
between P and Q is provided by the following Lemma.

Lemma 1 (Distance criterion for two POVMs)
Let Σ := {1, . . . , d} be a finite set of events and
P ⊆ L(H ) and Q ⊆ L(H ) be two POVM’s. Consider
now the quantity D(P,Q) from equation (15) Then the
following properties hold:
i) D(P,Q) ≥ 0,
ii) D(P,Q) = 0 ⇔ Pi = Qi ∀i,
iii) D(P,Q) is convex with respect to POVMs.
iv) D(UPU †, UQU †) = D(P,Q) for any unitary
operator U .

Proof. The non negativity of function f(x) = x2 guar-
antees the same property also for D , which is a sum and
an integral of the squares. For Pi = Qi ∀i it is obvious
that D(P,Q) = 0. To prove the converse, it suffices to
realize that D(P,Q) = 0 implies 〈ψ|Pi −Qi |ψ〉 = 0 ∀ψ,
which by polarization identity requires Pi = Qi ∀i. In
order to prove convexity, we need to show that

D(P, λQ + (1 − λ)Q′) ≤ (16)

≤ λD(P,Q) + (1 − λ)D(P,Q′)

holds for any POVM Q′ and 0 ≤ λ ≤ 1. If we denote
ai = 〈ψ|Pi − Qi |ψ〉, bi = 〈ψ|Pi − Q′

i |ψ〉 and utilize
convexity of f(x) = x2, i.e.

(λai + (1 − λ)bi)
2 ≤ λa2i + (1 − λ)b2i

then the claim follows directly from the definition in Eq.
(15). Similarly, property iv) is obvious from the definition
in Eq. (15). �
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Assuming that the unknown POVM E(U) is randomly
drawn according to the Haar distribution, we choose the
quantity:

D :=

∫
dUD(E(U),G(U)) (17)

as a figure of merit for the learning network. The quan-
tity D clearly depends on the network R, and will be
denoted by D[R]. Our task is to find the optimal gener-
alized instrument R, that minimizes D[R].

IV. SYMMETRIES OF THE LEARNING

NETWORK

In this section we utilize the symmetries of the figure
of merit (17) to simplify the optimization problem. The
first simplification relies on the fact that some wires of
the network carry only classical information, representing
the outcome of the measurement.

Lemma 2 (Restriction to diagonal network)
The optimal generalized instrument R,

∑
iRi = RΩ

minimizing Eq. (17) can be chosen to satisfy:

Ri =
∑

j

R′
i,j ⊗ |j〉〈j|, (18)

where j = (j1, . . . , jN ), |j〉 := |j1〉1 ⊗ · · · ⊗ |jN 〉2N−1 ∈
Hcl, 0 ≤ R′

i,j ∈ L(Hout ⊗ Hin), and
∑

j is a shorthand

for
∑d

j1,...,jN=1.

Proof. Let S be a generalized instrument correspond-
ing to a quantum network S. Let us define set of opera-
tors R as

Ri :=
∑

j

R′
i,j ⊗ |j〉〈j|, (19)

with R′
i,j := 〈j|Si |j〉. We can easily prove that R is a

generalized instrument. Indeed, reminding Eq. (11), we
have

∑

i

Ri =
∑

i

∑

j

〈j|Si |j〉 ⊗ |j〉〈j| =

∑

j

〈j|SΩ |j〉 ⊗ |j〉〈j| =

SΩ ∗ E(I) ∗ · · · ∗ E(I), (20)

where the link is performed only on the space Hcl. The
operator in Eq. (20) is the Choi-Jamio lkowski operator
of a deterministic quantum network satisfying the same
normalization conditions as SΩ. Finally we show that S

and R produce the same replicated POVM G(U) when

linked with the N uses of E(U), as follows

(G
(U)
i )T = Si ∗ E(U)

2N−1 2N−2 ∗ · · · ∗ E
(U)
10 =

∑

j

(〈j|
cl
〈j|

in
U †⊗N

)Si(|j〉cl U⊗N |j〉
in

) =

∑

j

(〈j|
in
U †⊗N

)R′
i,j(U⊗N |j〉

in
) =

Ri ∗ E(U)
2N−1 2N−2 ∗ · · · ∗ E

(U)
10 . (21)

�

It is clear from Eq. (21) that also for non diagonal
networks R, the only relevant terms of the generalized
instrument both for its normalization and for the figure
of merit D[R] are

R′
i,j := 〈j|clRi|j〉cl. (22)

In the following we will use the above notation also for
general networks. As a next step, we introduce a unitary
symmetry of the learning network and we study its con-
sequences on the form of the replicated POVM. We will
show that restriction to covariant learning networks can
be made without loss of generality. For this purpose we
introduce the following lemma.

Lemma 3 (Covariant networks) The optimal gener-
alized instrument R,

∑
iRi = RΩ minimizing Eq. (17)

can be chosen to satisfy

[Ri, U
∗
out ⊗ U⊗N

in
⊗ Icl] = 0. (23)

Then the replicated POVM for R enjoys the following
property

G(U) = U G(I) U †. (24)

Proof. From an arbitrary learning network S by sym-
metrization, we can define a covariant learning network
R as follows

Ri :=

∫
dU(U∗⊗U⊗N ⊗ Icl)Si(U

T ⊗U †⊗N ⊗ Icl). (25)

It is easy to verify that the set R defines a generalized
instrument. Moreover, By the invariance of the Haar
measure dU , the elements of R obey Eq. (23). First
we show that the replicated POVM for the symmetrized
instrument R enjoys the property (24). Indeed, eq. (21)
provides the following formula for the replicated POVM

(G
(U)
i )T =

∑

j

〈j|
in
U †⊗N

R′
i,jU

⊗N |j〉
in
, (26)

and exploiting the expression in Eq. (25) for R′
i,j , we

obtain

G(U) =

∫
dW WQ(W †U)W †, (27)
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where Q(U) denotes the replicated POVM for the original
learning network S. Eq. (24) is a direct consequence of
Eq. (27), which can be seen via suitable shift of the
invariant Haar integration measure. We can now show
that D[R] ≤ D[S] as follows

D[R] =

∫
dUD(E(U),

∫
dW WQ(W †U)W †)

≤
∫

dW dUD(UEU †,WQ(W †U)W †)

≤
∫

dUdWD(WE(U)W †,WQ(U)W †)

= D[S],

where we used properties iii), iv) of D and shifted the
Haar invariant integration measure dU to d(W †U). �

Another symmetry we introduce is related to the pos-
sibility of relabeling the outcomes of a POVM. We shall
denote by σ the element of Sd, the group of permuta-
tions of d elements, and by Tσ the linear operator that
permutes the elements of basis {|i〉} according to this
permutation, in formula Tσ |i〉 = |σ(i)〉. Let us note that
the complex conjugation and transposition are defined
with respect to the basis {|i〉}, so Tσ = T ∗

σ .

Lemma 4 (Relabeling symmetry) The optimal co-
variant generalized instrument R,

∑
iRi = RΩ minimiz-

ing Eq. (17) can be chosen to satisfy Eq. (23) and the
following condition

Ri = (Iout ⊗ Iin ⊗ T T
σ

⊗N
)Rσ(i)(Iout ⊗ Iin ⊗ Tσ

⊗N ), (28)

where σ(j) := (σ(j1), . . . , σ(jM )). Then the seed of repli-
cated POVM satisfies

G(I)
σ = TσG

(I)T †
σ ∀σ ∈ Sd. (29)

where Xσ denotes the ordered set with elements (Xσ)i :=
Xσ(i).

Proof. For a given covariant learning network S satis-
fying Eq. (23), let us define

Ri :=
1

d!

∑

σ∈Sd

(Tσ ⊗ T⊗N
σ ⊗ T⊗N

σ )TSσ(i)(Tσ ⊗ Tσ
⊗N ⊗ Tσ

⊗N ),

=
1

d!

∑

σ∈Sd

(Iout ⊗ Iin ⊗ T T
σ

⊗N
)Sσ(i)(Iout ⊗ Iin ⊗ Tσ

⊗N ),

(30)

where the last identity follows from the commutation re-
lation (23) with U = T T

σ . The generalized instrument R
corresponds to a covariant quantum network R, because
it represents a convex combination of well-normalized co-
variant networks. The quantum network R operationally
corresponds to a random simultaneous relabeling of the
outcomes of the inserted and replicated measurements by
permutation σ. Let us now prove Eq. (29).

Since generalized instrument R inherits commutation
property (23) from S (see definition (30)) it is obvious
that the introduced permutation symmetry will not spoil
the existing covariance from Eq. (24). Thus, it suf-
fice to investigate how the seed of the replicated POVM
changes, when we introduce permutation symmetry.

Inserting definition (30) into Eq. (21) we find

(G
(I)
i )T =

1

d!

∑

σ∈Sd

T T
σ

∑

j

〈σ(j)|
in
S′
σ(i),σ(j) |σ(j)〉

in
T ∗
σ

=
1

d!

∑

σ∈Sd

T T
σ

∑

j

〈j|
in
S′
σ(i),j |j〉in T ∗

σ

=
1

d!

∑

σ∈Sd

T T
σ (Q

(I)
σ(i))

TT ∗
σ , (31)

where we defined S′
i,j := 〈j|Si|j〉, and we denoted by

Q(U) the POVM replicated by the original learning net-
work S. Transposing the last equation one can easily
derive Eq. (29) by analyzing the conjugation with T T

τ

τ ∈ Sd.
As a next step, we show that D[R] ≤ D[S]. Indeed,

D[R] =

∫
dUD(E(U),

1

d!

∑

σ∈Sd

UT †
σQ

(I)
σ TσU

†)

≤ 1

d!

∑

σ∈Sd

∫
dUD(E

(UT †
σ
)

σ ,Q
(UT †

σ
)

σ )

≤ 1

d!

∑

σ∈Sd

∫
dWD(E(W )

σ ,Q(W )
σ )

≤ D[S],

where we utilized Eq. (24), convexity of D(E(U),G(U)),

and the fact that D(E
(U)
σ ,Q

(U)
σ ) = D(E(U),Q(U)) ∀σ ∈

Sd. Finally, it is easy to prove that under the condition
Eq. (30), Ri satisfy Eq. (28). �

The advantage of using the relabeling symmetry is the
reduction of the number of independent parameters of the
generalized quantum instrument. Combining Eq. (22)
with Eq. (28) we have that

R′
i,j = R′

σ(i),σ(j). (32)

Let us now define the equivalence relation between
strings i, j and i′, j′ as

i, j ∼ i′, j′ ⇔ i = σ(i′) ∧ j = σ(j ′), (33)

for some permutation σ. Thanks to Eq. (32) there are
only as many independent R′

i,j as there are equivalence
classes among sequences i, j. In the simplest case of
N = 1 and arbitrary dimension d ≥ 2, there are only
two classes, which we denote by xx and xy. The rea-
son is that for any couple i, j there is either a permu-
tation σ such that σ(i), σ(j) = 1, 1 or σ(i), σ(j) = 1, 2,
thus the classes are defined by the conditions i = j or
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i 6= j, respectively. For the case N = 2 the vector i, j
has three components. Then there are four or five equiva-
lence classes depending on the dimension d being d = 2 or
d > 2, respectively. We denote these equivalence classes
by xxx, xxy, xyx, xyy, xyz and the set of these elements
by C3

d . In the general case, it is clear that the number of
classes is given by the number of disjoint partitions of a
set with cardinality N + 1, with number p of parts p ≤ d
[12].

It is useful to introduce the notation

Rx,y := R′
i,j = R′

σ(i),σ(j), (34)

where (x,y) is a string of indices that represents one
equivalence class. We will denote by L the set of equiv-
alence classes L := {(x,y)} and we will use letters from
the beginning of the alphabet to name arbitrary element
in L in situations, when N is fixed. For example when
N = 1 (a, b) ∈ L ≡ {(x, x), (x, y)}.

As a consequence of lemma 3 the Eq. (23) can be writ-
ten as

[Rx,y, U
∗
out ⊗ U⊗N

in
] = 0. (35)

By Schur’s lemmas this implies the following structure
for the operators Rx,y

Rx,y =
⊕

ν

P ν ⊗ rνx,y, (36)

where ν labels the irreducible representations in the
Clebsch-Gordan series of U∗

out ⊗ U⊗N
in

, and P ν acts as
the identity on the invariant subspaces Hν of the rep-
resentations ν, while rνx,y acts on the multiplicity space
C

mν of the same representation.
In the simplest case N = 1 we have

Ra,b = P prpa,b + P qrqa,b, (37)

where

P p :=
1

d
|ω〉〈ω|, P q := (I − P p) (38)

and rpa,b and rqa,b are non-negative numbers due to Ra,b ≥
0. In the case N = 2 we have two different decomposi-
tions, depending on whether d = 2 or d > 2. In the
former case, we have

Rx,y = Pα ⊗ rαx,y + P βrβx,y, (39)

where rαx,y is a positive 2 × 2 matrix, while rβx,y is a

non-negative real number. The projections P ξ on the
invariant spaces of the representation U∗⊗U ⊗U are the
following

Pα ⊗ |i〉〈j| =
d∑

m=1

|Ψi
m〉〈Ψj

m|, i, j ∈ {+,−}

P β = I ⊗ P+ − Pα ⊗ |+〉〈+|, (40)

where |Ψ±
m〉 = (|ω〉〉|m〉 ± |m〉|ω〉〉)/[2(d ± 1)]

1

2 , and P+,
P−, are the projections onto the symmetric and antisym-
metric subspace, respectively. When d > 2, on the other
hand, we have

Rx,y = Pα ⊗ rαx,y + P βrβx,y + P γrγx,y, (41)

where rαx,y is a positive 2×2 matrix, while rβx,y and rγx,y
are non-negative real numbers. The projections P ξ on
the invariant spaces of the representation U∗⊗U ⊗U are
the following

Pα ⊗ |a〉〈b| =
d∑

m=1

|Ψa
m〉〈Ψb

m|, a, b ∈ {+,−}

P β = I ⊗ P+ − Pα ⊗ |+〉〈+|,
P γ = I ⊗ P− − Pα ⊗ |−〉〈−|. (42)

The introduced symmetries have a deep influence on the
structure of the replicated POVM as we show in the fol-
lowing lemma.

Lemma 5 The properties (18), (23) and (28) induce the
following structure of the replicated POVM’s:

G
(U)
i = λU |i〉〈i|U † +

1 − λ

d
I, (43)

which can be seen as a random mixture of a perfect replica
with a trivial measurement (i.e. a measurement produc-
ing equiprobably any of the outcomes) with mixing coeffi-
cient λ, which is a function of R.

Proof. Because of the property (24) it is sufficient

to prove the statement for U = I. Since (G
(I)
i )T =∑

j 〈j|Ri,j |j〉 (see Eq. (26)) we have:

〈k|G(I)
i |l〉 = 〈l|

∑

j

〈j|Ri,j |j〉 |k〉 = (44)

= Tr



∑

j

Ri,j

∫
dU U⊗N ⊗ U∗ |jk〉 〈jl| (U⊗N ⊗ U∗)†




= Tr




∑

j

Rθ2N
i,j

(∫
dU U⊗N+1 |jl〉 〈jk|U †⊗N+1

)θ2N



 ,

where we used the property (23) in the equality (44) and
θ2N denotes the partial transpose on H2N . Thanks to
the Schur’s lemmas we have

∫
dU U⊗N+1 |jl〉 〈jk|U †⊗N+1 =

∑

ν

P ν ⊗Oν
j,l,k,

where

Oν
j,l,k = TrHν

[(P ν ⊗ Imν ) |jl〉 〈jk|] .

We now notice that for k 6= l {j, k} and {j, l} are two
different sets of indices and then there exists no permu-
tation S such that 〈j, k| S |j, l〉 6= 0. Since any operator
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of the form P ν ⊗A , A ∈ Cmν can be written as a linear
combination of permutations P ν⊗A =

∑
n anSn we have

Tr [(P ν ⊗A) |jl〉 〈jk|] = 〈jk|
∑

n

anSn |jl〉 = 0 (45)

for k 6= l. From Eq. (45) it follows for ∀k 6= l that
Oν

j,l,k = 0 and hence also

〈k|G(I)
i |l〉 = 0 ∀k 6= l ⇒ G

(I)
i =

∑

n

gin|n〉〈n| (46)

Reminding Eq. (29) we have

G
(I)
i = TσG

(I)
i T †

σ ∀σ ∈ Sd s.t. σ(i) = i.

This implies

〈k|G(I)
i |k〉 = 〈l|G(I)

i |l〉 ∀k, l 6= i. (47)

Eq. (47) combined with Eq. (46) and (29) finally leads
to

G
(I)
i = λ|i〉〈i| +

1 − λ

d
I 0 ≤ λ ≤ 1. (48)

where λ is a function of R. Rewriting Eq. (48) one has

λ = (d 〈i|G(I)
i |i〉 − 1)/(d− 1). (49)

Let us note that 〈i|G(I)
i |i〉 has the same value inde-

pendently of i. �

We have shown that the optimization can be restricted
without lost of generality to learning networks obeying
Eqs. (18), (23) and (28). Further in the paper we al-
ways assume that all the considered networks have the
aforementioned properties. This allows us to express the
figure of merit D[R] in a different form that will be more
useful for calculations. The expression (43) for the repli-
cated POVM allows us to write

D[R] =

∫
dUD(E(U),G(U)) =

= (1 − λ)2
∑

i

∫
dU dψ

∣∣∣∣〈ψ|
(
U |i〉〈i|U † − 1

d
I

)
|ψ〉
∣∣∣∣
2

=

= (1 − λ)2
∑

i

∫
dU | 〈0|U |i〉 |4 − 2

d
| 〈0|U |i〉 |2 +

1

d2
=

=
d− 1

d(d+ 1)
(1 − λ)2

It is now clear that minimization of the figure of merit
D[R] is equivalent to the maximization of parameter
λ = λ[R], which is by Eq. (49) directly related to the
maximization of the following quantity:

F [R] :=
1

d

d∑

i=1

〈i|G(I)
i |i〉 ≡ 〈j|G(I)

j |j〉 ∀j (50)

The relation of D[R] and F [R] is given by the following
equation

D[R] =
d

d2 − 1
(1 − F [R])2. (51)

The quantity F [R], which we actually need to maxi-
mize can be finally written using Eqs. (50),(34),(26) as

F [R] =
1

d

∑

i

∑

j

〈i|
out

〈j|
in
R′

i,j |j〉in |i〉out

=
1

d

∑

(x,y)∈L

n(x,y)〈Rx,y〉, (52)

where n(x,y) is the cardinality of the equivalence
class denoted by the couple (x,y), and 〈Rx,y〉 =
〈i| 〈j|R′

i,j |i〉 |j〉 for any string i, j in the equivalence class

denoted by (x,y).

V. OPTIMIZATION

In this section we derive optimal quantum learning of
a von Neumann measurement for the scenarios analyzed
in the following subsections.

A. 1 → 1 Learning

Suppose that today we are provided with a single use of
a measurement device, and we need its replica to measure
a state that will be prepared only tomorrow. Such a
scenario is described by the following scheme.

2

?>
89

0 *-+,E(U)
1

(53)

Using the labeling from Eq. (53) and the results of Sec-
tion IV for N = 1, we have

L = {(x, x), (x, y)},
Ri210 = |i〉 〈i|1 ⊗Rx,x

20
+ (I − |i〉 〈i|)1 ⊗Rx,y

20

Ra,b = P prpa,b + P qrqa,b, (a, b) ∈ L (54)

We use the identity 〈i| 〈j|P p |i〉 |j〉 = δij1/d, n(x, x) = d
and n(x, y) = d(d − 1), to rewrite the figure of merit in
Eq. (52) as

F = 〈Rx,x〉 + (d− 1)〈Rx,y〉
=

∑

ν∈{p,q}

(
rνx,x∆ν

x,x + (d− 1)rνx,y∆ν
x,y

)
, (55)

where ∆p
x,x = 1

d
, ∆p

x,y = 0, and ∆q
a,b = 1 − ∆p

a,b. Let
us now write the normalization conditions for the gen-
eralized instrument in terms of operators R′

i,j . We have
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that that RΩ :=
∑

iRi has to be the Choi-Jamio lkowski
operator of a deterministic quantum network and must
satisfy Eq. (14), that is

RΩ = I2 ⊗ I1 ⊗ ρ Tr[ρ] = 1, ρ ≥ 0. (56)

The commutation relation (23) implies [ρ, U ] = 0 and
consequently the Schur’s lemma requires ρ = 1

d
I. We

take this into account in Eq. (56) and with the help of
Eq. (54) we get

I1 ⊗Rx,x + (d− 1)I1 ⊗Rx,y =
I

d
, (57)

which can be equivalently written as (see Eq.(54))

rpx,x + (d− 1)rpx,y = rqx,x + (d− 1)rqx,y =
1

d
. (58)

The above constraint implies the following bound

F =
∑

ν

(
rνx,x∆ν

x,x + (d− 1)rνx,y∆ν
x,y

)
≤

∑

ν∈{p,q}
∆

ν (
rνx,x + (d− 1)rνx,y

)
=
d+ 1

d2
, (59)

where ∆
ν

:= max(a,b)∈L ∆ν
a,b. This bound is achieved by

rqx,x = rpx,y = 0, rpx,x =
1

d
, rqx,y =

1

d(d− 1)
,

which corresponds to a generalized instrument

Ri = |i〉〈i|1 ⊗
1

d
P p + (I − |i〉〈i|)1 ⊗

1

d(d− 1)
P q, (60)

that replicates the original Von Neuman measurement as

G
(U)
i = (Ri ∗ E(U)

10 )T =

1

d(d− 1)
U |i〉〈i|1U † +

d2 − d− 1

d2(d− 1)
I. (61)

Based on Eq. (51) we conclude that the optimal value of
D[R] achieved by the aforementioned network is

Dopt =
d

d2 − 1
(1 − d+ 1

d2
)2. (62)

The optimal learning strategy can be realized by the
following network

2

1
d
|ω〉〈ω|

?>
89

A1 P
=<
:;

f0 *-+,E(U)
1

(63)

that operates as follows. The storing part of the strategy
consists of preparing maximally entangled state 1

d
|ω〉〈ω|

and measuring one part of it by the unknown measure-
ment that we want to learn. Application of the learned

POVM on some system H2 is achieved by measuring two
outcome POVM P := {P p, P q} on the system H2 and
on the unmeasured part of the state 1

d
|ω〉〈ω|. The last

step of the optimal learming strategy consists in a clas-
sical processing f of the outcome k of E(U) and of the
outcome n of P. The function f that produces the ac-
tual outcome of the replicated measurement is defined as
follows

f(k, n) =

{
k if n = p
j 6= k if n = q

(64)

where the outcome j in the second case is randomly gen-
erated with flat distribution.

When the outcome n = p of the measurement P oc-
curs, we achieved a teleportation, of input state of H2 to
the past, that is to the system H2. In this sense the op-
timal 1 7→ 1 Learning is achieved using the probabilistic
teleportation [ref!!!].We stress that the optimal scheme
differs from the one in which one optimally estimates
E(U) and then reproduces the estimated POVM. In con-
trast to the optimal learning of unitaries, it is possible to
prove that the optimal estimate & prepare strategy for
measurements achieves strictly lower performance than
the strategy derived in this section.

B. 2 → 1 Learning

We now consider the case in which we have two uses of
the unknown Von Neumann measurement at our disposal

4

?>
89

0 *-+,E(U)
1 2 *-+,E(U)

3
(65)

As a consequence of the symmetries introduced in Section
IV we have

L = {(x, xx), (x, xy), (x, yx), (x, yy), (x, yz)}
Ri =

∑

j,k

|j〉〈j|3 ⊗ |k〉〈k|1 ⊗R′
i,jk (66)

[Ri,jk, U
∗
4 ⊗ U2 ⊗ U0] = 0 (67)

R′
i,jk =






Rx,xx if i = j = k
Rx,xy if i = j 6= k
Rx,yx if i = k 6= j
Rx,yy if j = k 6= i
Rx,yz if i 6= j 6= k 6= i.

(68)

The figure of merit (52) becomes

F =
1

d

∑

(a,bc)∈L

n(a, bc)〈Ra,bc〉. (69)

Let us now consider the normalization condition of the
optimal generalized instrument

∑

i

Ri = I4 ⊗ I3 ⊗ S210 Tr2[S] = I1 ⊗ ρ0. (70)
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Thank to Eq. (66) we have

∑

i

Ri =
∑

i,j,k

|j〉〈j|3 ⊗ |k〉〈k|1 ⊗ R′
i,jk = I4 ⊗ I3 ⊗ S210

∑

i,k

|k〉〈k|1 ⊗R′
i,jk = I4 ⊗ S210, ∀j

∑

i

R′
i,jk = I4 ⊗ 〈k|S210 |k〉1 , ∀j, k (71)

Using the property (32) we obtain

I4 ⊗ 〈k|S210 |k〉1 =
∑

i

R′
i,jk =

∑

i

R′
σ(i),σ(j)σ(k) =

= I4 ⊗ (〈k|T †
σ)S210(Tσ |k〉1) ∀j, k , (72)

which implies

∑

i

R′
i,jk = I4 ⊗ T20 ∀j, k Tr20[T ] = 1. (73)

The commutation relation (23) implies [I4 ⊗ T20, U
∗
4 ⊗

U2 ⊗ U0] = 0 and by taking the trace on H4 we get

[T20, U0 ⊗ U2] = 0, (74)

which due to Schur’s Lemmas requires T20 = t+P
+ +

t−P−. The normalization Tr20[T ] = 1 becomes

d+t+ + d−t− = 1, (75)

where d± ≡ Tr[P±] and Eq. (73) now reads for all j, k

∑

i

R′
i,jk = I4 ⊗ (t+P

+ + t−P
−) =

t+(Pα ⊗ |+〉〈+| + P β) + t−(Pα ⊗ |−〉〈−| + P γ). (76)

As a consequence of Eq. (73) the optimal strategy can
be parallelized.

4

?>

89

0 *-+,E(U)
1

2 *-+,E(U)
3 (77)

Eq. (77) provides a further symmetry of the problem:

Lemma 6 The operator R′
i,jk in Eq. (66) can be chosen

to satisfy:

R′
i,jk = SR′

i,kjS ∀k, j (78)

where S is the swap operator S |k〉2 |j〉0 = |j〉2 |k〉0.

Proof. The proof consists in the standard averaging
argument. let us define Ri,jk := 1

2 (R′
i,jk + SR′

i,kjS). It

is easy to prove that {Ri,jk} satisfies the normalization
(73) and that gives the same value of F [R] as R′

i,kj .�

Eq. (78) together with the decomposition (41) gives
for ∀(a, bc) ∈ L

σzr
α
a,bcσz = rαa,cb rβa,bc = rβa,cb rγa,bc = rγa,cb (79)

where σz =

(
1 0
0 −1

)
.

Considering that n(x, xx) = d, n(x, xy) = n(x, yx) =
n(x, yy) = d(d − 1), and n(x, yz) = d(d − 1)(d − 2), and
that SRx,xyS = Rx,yx, the figure of merit in Eq. (52) can
be written as

F =〈Rx,xx〉 + (d− 1)〈Rx,yy〉 + 2(d− 1)〈Rx,xy〉+
(d− 1)(d− 2)〈Rx,yz〉 =

=
∑

ν

Tr[∆ν
x,xxr

ν
x,xx + (d− 1)∆ν

x,yyr
ν
x,yy+

2(d− 1)∆ν
x,xyr

ν
x,xy + (d− 1)(d− 2)∆ν

x,yzr
ν
x,yz]

(80)

where

∆ν
a,bc := TrHν

[|ijk〉〈ijk|], (81)

and i, jk is any triple of indices in the class denoted by
a, bc. Notice that in the case d = 2 the last term in the
sum of Eq. (80) is 0.

The optimization of F [R] can be carried out in two
steps: first we maximize F [R] for any fixed value of t+
that satisfies Eq. (75); finally we optimize the value of
t+. The optimization of F [R] for fixed t+ is carried out
in Appendix A. According to Eq. (A14) we can write the
figure of merit as

F [R] =
d2 + 3d

2(d+ 1)
t+ +

√
(d− 1)t+t−√

d+ 1
+
d

2
t− (82)

The last step of the optimization can be easily done by
making the substitution t− = d−1

− (1 − d+t+) in Eq. (82)
and then maximizing F = F (t+). We will omit the de-
tails of the derivation and we rather show a plot (Fig. 1)
representing the values of D,F depending on the dimen-
sion.

Due to Lemma 5 the replicated POVM has the follow-
ing form:

G
(U)
i = λE

(U)
i + (1 − λ)

1

d
I

=
dF − 1

d− 1
U |i〉〈i|U † +

1 − F

d− 1
I,

where the values of the coefficient λ describing the ran-
dom mixing of a perfect replica with a trivial measure-
ment are depicted on Figure 2.

C. 3 → 1 learning

In this section we consider a learning network, which
exploits 3 uses of the measurement device and produces
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FIG. 1: Optimal learning of a measurement device: we
present the values of D,F for different values of the dimen-
sion d. The squared dots represent the optimal learning from
a single use (1 → 1 learning) while the round dots and tri-
angles represent the optimal learning from two uses (2 → 1
learning).
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FIG. 2: Optimal learning of a measurement device: we
present the values of λ, the admixture of perfect replica to
white noise in the produced measurement for different values
of the dimension d. The squared dots represent the optimal
learning from a single use (1 → 1 learning) while the dia-
monds represent the optimal learning from two uses (2 → 1
learning).

a single replica:
6

?>
89

0 *-+,E(U)
1 2 *-+,E(U)

3 4 *-+,E(U)
5

.

(83)

In order to simplify the problem we restrict ourselves to
the qubit case, that is we set d = 2. The derivation of the
optimal learning network turns out to be very involved
although it follows the same lines as for the 2 → 1 case.
We made the calculations analytically with the help of a
symbolic mathematical program.

The 3 → 1 scenario deserves interest because the opti-
mal solution does not allow a strategy having the 3 uses

of the measurement device in parallel. In other words the
optimal strategy needs to be adaptive.

Let us consider the normalization condition for the
generalized instrument {Ri}:

∑

ijkl

|jkl〉〈jkl|531 ⊗Ri,jkl = I65 ⊗ S43210

Tr4[S] = I3 ⊗ T210 (84)

This implies
∑

i

Ri,jkl = I6 ⊗ 〈kl|S43210 |kl〉31 ∀j,

〈kl|Tr4[S] |kl〉 = 〈l|T |l〉1 ∀k. (85)

From the relabeling symmetry Ri,jkl = Rσ(i),σ(j)σ(k)σ(l)

we have 〈kl|S |kl〉 = 〈σ(k)σ(l)|S |σ(k)σ(l)〉, and conse-
quently

〈kl|Tr4[S] |kl〉31 =
1

d2
Tr431[S] =: T̃20, ∀k, l. (86)

This fact along with Eq. (84) allows us to conclude that

Tr4[S] =Tr4

[
∑

kl

|kl〉〈kl|31 ⊗ 〈kl|S43210 |kl〉
]

=

∑

kl

|kl〉〈kl|31 ⊗ T̃20 = I31 ⊗ T̃20 (87)

which means that the first two uses can be in parallel. We
notice that in general 〈kl|S |kl〉 = 〈σ(k)σ(l)|S |σ(k)σ(l)〉
does not imply that 〈kl|S |kl〉 = S̃ is independent of k, l,

but only that 〈kl|S |kl〉 = S̃ab, where a, b denotes the
equivalence class of the couple (k, l). Consequently, we
cannot in general assume that all the examples can be
used in parallel. In fact, the optimal learning network
has the following causal structure

?>

89

0 *-+,E(U)
1 6

2 *-+,E(U)
3 4 *-+,E(U)

5
. (88)

where the state of system 4 depends on the classical out-
come in system 3 and 1. The optimal value of F [R] is
approximately 0, 87 (we remind that for the 1 → 1 learn-
ing we had F = 0, 75, while for the 2 → 1 case we had
F = 0, 81). The corresponding value of coefficient λ (see
Eqs.(49),(50)) are depicted on Fig. (2).

Remark 1 One can wonder whether without assuming
any symmetry it is possible to find a non-symmetric par-
allel strategy {Ri} that achieves the optimal value of
F [R]. However we remind that for any strategy {Ri}
we can build a symmetric one with the same normaliza-
tion, that is without spoiling the parallelism, and giving
the same fidelity. Since the optimal symmetric network
cannot be parallel, we have that any other optimal net-
work has to be sequential as well.
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VI. CONCLUSIONS

We analyzed optimal learning of a measurement de-
vice. Our approach to the problem is based on the for-
malism of quantum combs and generalized quantum in-
struments, introduced in Refs. [8–10]. The original prob-
lem can be significantly simplified by utilizing the sym-
metries provided by the figure of merit. In particular,
covariance and relabeling symmetry allow us to signifi-
cantly decrease the number of parameters, without affect-
ing the figure of merit. As a consequence of the symme-
try of the learning network the replicated measurement
can be seen as a random mixture of a perfect replica
of the measurement device to be learnt with weight λ
and of a trivial measurement producing all possible out-
comes with the same probability independently of the
input state with weight 1 − λ. For 2 → 1 and 3 → 1
learning the first two uses of the unknown measurement
device can be parallelized, and and this result can be
generalized to N → 1 learning. However, the optimal
learning algorithm cannot be further parallelized, namely
the examples exceeding the second one must be used se-
quentially. This feature is very unusual, and it occurs
in few cases of quantum algorithms [13, 14]. For exam-
ple, while the quantum part of Shor’s algorithm can be
parallelized, Grover’s algorithm cannot, as was proved in
Ref. [15]. Our results prove that quantum learning of
a von Neumann measurement shares with Grover’s algo-
rithm the impossibility of parallelizing without affecting
optimality. The parallelization of the first two examples
from this point of view is a curious exception.

An obvious extension of the work would be to study the
scaling of the performance of the optimal learning strat-
egy with respect to N . However, our results show that
optimal learning networks with different N do not share
the same the initial steps. This means that the optimiza-
tion of N → 1 learning can not be done inductively build-
ing on the results from N − 1 → 1 case. The complexity
of the optimization in general case rises mainly due to
the causal influence of steps of the learning strategy on
the remaining part of the network, which is reflected in
the recursive structure of the normalization constraints.
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Appendix A: Calculations for 2 → 1 Learning

The explicit expression of ∆ν
a,bc in Eq. (81) is given by

∆α
x,xx =

(
2

d+1 0
0 0

)
, ∆α

x,xy =
1

2

(
1

d+1
1√

d2−1
1√

d2−1
1

d−1

)
,

∆α
x,yy = ∆α

x,yz = 0, ∆α
x,yx = σz∆α

x,xyσz

∆β
x,xx =

d− 1

d+ 1
, ∆β

x,xy = ∆β
x,yx =

d

2(d+ 1)
,

∆β
x,yy = 1, ∆β

x,yz =
1

2
,

∆γ
x,xx = ∆γ

x,yy = 0, ∆γ
x,xy = ∆γ

x,xy =
d− 2

2(d− 1)
,

∆γ
x,yz =

1

2
. (A1)

Introducing the notation

sνx,xx := rνx,xx sνx,xy := (d− 1)rνx,xy

sνx,yx := (d− 1)rνx,yx sνx,yy := (d− 1)rνx,yy

sνx,yz := (d− 2)(d− 1)rνx,yz, (A2)

the figure of merit (80) becomes

F = Fα + Fβ + Fγ

Fν ≡
∑

(a,bc)∈L

Tr[∆ν
a,bcs

ν
a,bc], ν ∈ {α, βγ} (A3)

We express R′
i,jk through Ra,bc (a, bc) ∈ L and Equation

(39). Depending on j = k or j 6= k Eq. (76) is equivalent
to the following relations

j = k ⇒

sαx,xx + sαx,yy =

(
t+ 0
0 t−

)

sβx,xx + sβx,yy = t+

sγx,xx + sγx,yy = t−

j 6= k ⇒

sαx,xy + σzs
α
x,xyσz + sαx,yz =

(
(d− 1)t+ 0

0 (d− 1)t−

)

2sβx,xy + sβx,yz = (d− 1)t+ (A4)

2sγx,xy + sγx,yz = (d− 1)t−, (A5)

where we utilized Equation (79) implied by Lemma 6.
We now derive the optimal learning network for a fixed
value of t+ (remember that t− = (1 − d+t+)/d−).

First we maximize Fβ and Fγ for the case d ≥ 3. Using
the expressions for the ∆ν

i,jk from Eq. (A1) we have:

Fβ =
∑

(a,bc)∈L

Tr[∆β
a,bcs

β
a,bc] ≤ max(∆β

x,xx,∆
β
x,yy)t++

+ max(∆β
x,xy,∆

β
x,yz)(d− 1)t+ =

= ∆β
x,yyt+ + ∆β

x,yz(d− 1)t+ =

= t+ +
(d− 1)t+

2
=

(d+ 1)t+
2

(A6)
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and

Fγ =
∑

(a,bc)∈L

Tr[∆γ
a,bcs

γ
a,bc] ≤ max(∆γ

x,xx,∆
γ
x,yy)t−+

+ max(∆γ
x,xy,∆

γ
x,yz)(d− 1)t− =

= ∆γ
x,yz(d− 1)t− =

(d− 1)t−
2

. (A7)

where we used the normalizations constraints (A4). The
upper bounds (A6) and (A7) can be achieved by taking

sβx,xx = sβx,xy = sβx,yx = sγx,xx = sγx,xy = sγx,yx = 0,

sβx,yy = t+, sβx,yz = (d− 1)t+,

sγx,yy = t−, sγx,yz = (d− 1)t−.

For d = 2 the irreducible representation denoted by γ and
the x, yz class do not exist and the optimization yields
sβx,xy = t+(d− 1).

Let us now consider Fα (in this case there is no differ-
ence between d ≥ 3 and d = 2). Based on the expression
of ∆α

i,jk we have:

Fα =
∑

(a,bc)∈L

Tr[∆α
a,bcs

α
a,bc] =

Tr[∆α
x,xxs

α
x,xx] + Tr[∆α

x,xys
α
x,xy] + Tr[∆α

x,yxs
α
x,yx] =

Tr

[(
2

d+1 0
0 0

)
sαx,xx +

(
1

d+1
1√

d2−1
1√

d2−1
1

d−1

)
sαx,xy

]
≤

2

d+ 1
t+ + Tr

[(
1

d+1
1√

d2−1
1√

d2−1
1

d−1

)
sαx,xy

]
, (A8)

and the bound can be achieved by taking

sαx,xx =

(
t+ 0
0 t−

)
. (A9)

Let us now focus on the expression Tr[∆α
x,xys

α
x,xy]. The

normalization constraint (A4) for the operator sαx,xy can
be rewritten as:

sα,+,−
x,yz = sα,−,+

x,yz = 0

sα,+,+
x,yz + 2sα,+,+

x,xy = (d− 1)t+

sα,−,−
x,yz + 2sα,−,−

x,xy = (d− 1)t−, (A10)

where we denoted sα,±,±
a,bc := 〈±| sαa,bc |±〉. Then we have

Tr[∆α
x,xys

α
x,xy] =

sα,+,+
x,xy

d+ 1
+

sα,+,−
x,xy√
d2 − 1

+

sα,−,+
x,xy√
d2 − 1

+
sα,−,−
x,xy

d− 1
≤

sα,+,+
x,xy

d+ 1
+ 2

√
sα,+,+
x,xy sα,−,−

x,xy
√
d2 − 1

+
sα,−,−
x,xy

d− 1
≤

(A11)

(d− 1)t+
2(d+ 1)

+

√
(d− 1)t+t−√

d+ 1
+
t−
2

(A12)

where we used the positivity of the operator sαx,xy for
the inequality (A11) and the normalization (A10) for the
second inequality (A12). The upper bound in Eq. (A12)
can be achieved by taking

sαx,xy =
(d− 1)

2

(
t+

√
t+t−√

t+t− t−

)
(A13)

Finally, combining the optimal values of Fα, Fβ , and Fγ

we have

F [R] =
d2 + 3d

2(d+ 1)
t+ +

√
(d− 1)t+t−√

d+ 1
+
d

2
t− (A14)
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