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Augmentation of nucleon-nucleus scattering by information entropy.
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Quantum information entropy is calculated from the nucleon nucleus forward scattering ampli-
tudes. Using a representative set of nuclei, from 4He to 208Pb, and energies, Tlab < 1 [GeV], we
establish a linear dependence of quantum information entropy as functions of logarithm nuclear
mass A and logarithm projectile energy Tlab.
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I. INTRODUCTION

Studies of many body systems, like the sophisticated
fields of atomic, nuclear and particle physics, have seen
new and versatile enrichment under the auspices of quan-
tum information theory. On one side we are aware of
the implications of a first principle treatment of com-
plex quantum mechanical systems and on the other side
we are aware of less sophisticated phenomenological solu-
tions that simplify the many body systems significantly.
Phenomenology requires only a few degrees of freedom
and introduces effective intensive and extensive matter
properties.

The growing awareness and hope to exploit entangle-
ment of quantum mechanical systems, as a new resource,
has fostered many fields to investigate their realm also
within the terminology of information theory. This is
undoubtedly the case for a wide range of molecular and
atomic systems and less for nuclear and particle physics.
At least currently, the latter systems are not guided by
practical applications but rather epistemological virtues.

Nuclear geometries are realized with nuclear structure
calculations or measurements in conjunction with direct
nuclear reactions [1]. Their values are now available in
comprehensive tables and the data-groups continue their
program as new facilities advent. In terms of information
theory, nuclear physics is still in its infancy.

Shannon information entropy, together with quantum
information theory, has been the subject of many theo-
retical studies [2, 3]. For its realization we know many
cases with a fundamental microscopic approach as well
as approaches which prefer a phenomenological access to
information theory [4]. In any case, the Shannon infor-
mation entropy and quantum information entropy (IE)
are closely related. The first uses a normalized set of
probabilities, the other uses the density matrix formal-
ism and a normalized trace. The density matrix is diag-
onalized and the eigenvalues are taken as probabilities to
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calculate IE

S = −
n
∑

i=1

pi ln pi, with

n
∑

i=1

pi = 1. (1)

The eigenvectors are generally not used to define a
probability distribution, but investigations along such
line have been done and produced interesting results and
conclusions. To distinguish their input approach, from
the full density matrix IE, it is said, Shannon informa-
tion entropy is calculated, with entities in r- and k-space,
for atoms [5], and more recently for nuclei, atomic clus-
ters and boson traps [6] in particular.
In subnano physics IE is everywhere present. It re-

duces radically any genuine and detailed information of
a many particle system and the normalization condition
eliminates any aspect of relative scales which are existing
within physical quantities and are the key for prevalence
and subordinate. Within the set pi, the succession is ir-
relevant. As such, the pure mathematical aspect of IE is
impossible to escape and any set of positive definite nor-
malized physical data are used as a potential set {pi}.
Thus, the resulting information entropy does not auto-
matically have a physical interpretation since an abstract
scheme of order or disorder is now in vogue.
With this outline in mind, we do not hesitate to aug-

ment nucleon-nucleus (NA) cross sections with the ex-
pression of information entropy. In this way we concate-
nate geometry, kinematics and dynamics of nuclear re-
actions. We expect that these entities are separable and
thus imply a linear relation for measures of IE.
This conjecture is based upon a uniform probability

distribution, to simplify the IE relation, for all par-
tial wave scattering amplitudes, which form our input
data pi = 1

n and i = 1, . . . , n, where n − 1 = lmax =

kR = kx0A
1/3 is the grazing (largest relevant) angular

momentum. This is determined from the grazing ra-
dius R = x0A

1/3, for which a nuclear Fermi distribu-
tion implies x0 = r0 + 3a/A1/3 with r0 = 1.15 [fm] and
a = 0.55 [fm]. The masses (projectile, target) m1, m2

and T = Tlab determine the wave number

(h̄c)2k2 =
m2

2(T
2 + 2m1T )

(m1 +m2)2 + 2m2T
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=
2m1m

2
2

(m1 +m2)2
T +

(m1 −m2)
2m2

2

(m1 +m2)4
T 2 + · · ·

≈ 2m1m
2
2

(m1 +m2)2
T. (2)

A uniform distribution, {pi = 1/n}, implies IE to be
S = −∑n

i=1
1
n ln 1

n = lnn. Together with the approxi-
mated k and R values, this gives a desirable linear de-
pendence

S = a+
1

2
lnT +

1

3
lnA (3)

with

a = ln
x0

√
2m1

h̄c
+ ln

m2

(m1 +m2)
. (4)

Eq. (3) is interesting in itself, as it recalls the well
known physiological sensitivity of biological sense-organs
which often show a logarithmic dependence on magni-
tudes, i.e. sound pressure or light intensity. As one
knows, animals alike humans are very able to notice and
detect small structural differences, even within a chaotic
environment, thus we anticipate propitious support also
from information entropy for the physics of many body
systems and in particular for quantum scattering. It is
not difficult to improve Eq. (3) and foresee departures
from simplicity with nonlinear dependencies between the
variables (m1,m2, T,N + Z,N − Z). To this end, we
performed accurate numerical studies with realistic in-
put data and compiled results for many nuclei and pro-
jectile energies, ranging from low to medium energies,
Tlab < 1 [GeV].
The following sections contain the relevant scattering

theory, related input data, numerical results and the final
summary and conclusions.

II. LINK OF NA SCATTERING WITH IE

The NA scattering amplitudes for zero spin targets

f(θ) =
i

2k

lmax
∑

l=0

[

(l + 1)(1− η+l ) + l(1− η−l )
]

eiσlPl(cos θ)

− 1

2k

lmax
∑

l=0

(η+l − η−l )eiσl
d

dθ
Pl(cos θ) + fc(θ), (5)

are readily available for any type of cross section and
spin observable [8, 9]. In this application we suppress the
Coulomb amplitude fc(θ) and use only the sum of partial
wave amplitudes. The associated angle integrated cross
sections, (e) for elastic, (r) for reaction and (t) for total,
are

σ(t) = σ(e) + σ(r) =

lmax
∑

l=0

σ
(e)
l +

lmax
∑

l=0

σ
(r)
l , (6)

where partial wave cross sections are

σ
(e)
l =

π

k2
[

(l + 1)|1− η+l |2 + l|1− η−l |2
]

, (7)

σ
(r)
l =

π

k2
[

(l + 1)(1− |η+l |2) + l(1− |η−l |2)
]

. (8)

After normalization, by σ(t), the partial wave cross sec-
tion probabilities distinguish contributions from elastic
and reaction channels

1 =

lmax
∑

l=0

[

p
(e)
l + p

(r)
l

]

, (9)

and

p
(e)
l =

σ
(e)
l

σ(t)
, and p

(r)
l =

σ
(r)
l

σ(t)
. (10)

The l−dependent probabilities p
(e)
l and p

(r)
l include no

interference between different l−values, the density ma-
trix is diagonal and off-diagonal elements are zero. Thus
the information entropy for proton and neutron nucleus
scattering integrated cross sections are a straight forward
sum of contributing angular momenta 0 ≤ l ≤ lmax

S = −
lmax
∑

l=0

[

p
(e)
l ln p

(e)
l + p

(r)
l ln p

(r)
l

]

. (11)

An ample remark. In case of angle and complex spin
dependent scattering and reactions it is necessary to use
the full power of the density matrix formalism with diag-
onalization. This formalism is well developed and general
scattering programs, for low and medium energy scatter-
ing, are available. A range of such programs has been
developed by J. Raynal, CEN-Saclay, with older as well
as more current versions of DWBA, with a sophisticated
microscopic approach suited for NA scattering, and ver-
sions of the coupled channels code ECIS [7].
For introductory studies, we suggest to use the scat-

tering amplitude given by Eq. (5). These amplitudes can
easily be arranged in a matrix

ρ(l1, j1, l2, j2|T, θ) =
|l1, j1, T, θ〉〈l2, j2, T, θ|

Tr ρ(l, j, l, j|T, θ) (12)

and diagonalized.

III. APPLICATION

There exist many theoretical and experimental stud-
ies of NA scattering amplitudes. Most of them are cal-
culated with a Schrödinger equation and optical model
potential fitted to data. Today, the potentials are mi-
croscopic optical potentials. These optical potentials are
based upon a high quality NN potential. Such a micro-
scopic approach is our choice for this study and we are
using the Argonne AV18 NN potential [10]. Hereby, we
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TABLE I. Eqs. (3) and (13), linear relation best fit parame-
ters.

Reaction Type a b c Remarks

nA and pA -1.25±0.25 1/2 1/3 uniform model

nA -1.0796 0.7168 0.3787 20-1000 MeV

pA -1.1866 0.7412 0.3634 20-1000 MeV

nA -1.1267 0.7348 0.3598 50-500 MeV

pA -1.2638 0.7638 0.3485 50-500 MeV

generalized AV18 above pion production threshold to be-
come a complex NN optical potential [9]. Globally, these
IE studies are insensitive to the use of a t- or g-matrix
microscopic optical model potential [8, 11]. Undoubtedly,
phenomenological optical model potentials are bound to
yield results which confirm ours.

The herein used scattering amplitudes contain data for
(n,A) and (p,A) scattering on a dense grid of energies,
20 < T (n, p) < 1000 [MeV], and targets, 4He, 12C, 16O,
40Ca, 58Ni, 90Zr and 208Pb. The Coulomb amplitude fc
is suppressed in case of (p,A). The results are shown
in Fig. 1, with the calculated IE values (circles), for our
selection of nuclei and energies. We verified, with the
numerical IE results, a linear dependence, as given in
Eq. (3), and determined, with a χ2 fit, the expansion
coefficients

χ2 = Min(a,b,c)‖S− (a + b lnT + c lnA)‖. (13)

The parameters a, b and c are given, for two energy
fit ranges, in Table I and Fig. 1 shows lines of the linear
approximation together with the numerical results for the
representative set of nuclei and Tlab energies.
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FIG. 1. Verification of a linear dependence, using parameters associated with the range 20− 1000 [MeV] in Table I, versus lnT
and lnA, of numerically calculated information entropy (red dots).
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It is possible to see some data scattering around the
lines. This is caused by the not smooth but realistic
dependence of microscopic optical model potentials on
A and N − Z and the spectroscopy of the target states.
These particularities generate deviations from the lines
of a few percent. Demanding a better agreement would
be unrealistic in the first place.
In summary, the analysis confirms a linear dependence

of IE in NA scattering from two entities, first the loga-
rithm of target A and second the logarithm of projectile

kinetic energy T. In particular, we suggest to use the re-
lation for IE

S(A, T ) = a+ b lnT + c lnA (14)

with best fit parameters (a, b, c) from Table I.

Finally, we present a numerical study and comparison
of IE for various isotopes, S(A,N − Z, T ). Such study
is bound to reflect the spectroscopy of a range of tar-
gets. The numerical results are shown in Fig. 2. Notice,
in comparison with Fig. 1, we have increased our resolu-
tion in Fig. 2 by an order of magnitude and differentiate
between scattering of neutrons and protons with full cir-
cles and squares, respectively, all having T = 400 [MeV].
The results are smooth and reflect shell closures for cases
when the neutron number equals a magic number, i.e. O
at N=8, Ca at N=20 and 28, Ni at N=28 and 50, Zr at
N=50, Sn at N=50 and 82, and for Pb at N=126.
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FIG. 2. Dependence of information entropy S(A,N − Z) for O, Ca, Ni, Zr, Sn and Pb isotopes. Shown are numerical results
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IV. SUMMARY AND CONCLUSIONS

Information entropy traces its roots to the work of
Shannon in the first place, as a fundamental result of
classical telecommunication theory, since that time it has
received much attention in experiment and theory, for
classical as well as quantum systems [2, 4]. IE, as a
mean to quantify entanglement of quantum mechanical
states, of bound or scattering states, encouraged also our
study with the aim to find smooth and simple structures
to emerge in the least structured quantity of nucleon-
nucleus scattering, elastic and reaction cross sections at
low to medium energies 20-1000 [MeV].

The results of this study predict a smooth qualitative

dependence of IE on lnTlab and lnA. The observed nu-
merical scattering, around this smooth and averaged re-
sults, are first due to shell effects of the target and second
due to target mass and charge dependencies, i.e. func-
tions of (N + Z) and (N − Z) [11]. The mathematical
nature of IE implies uncountable many applications in
theoretical studies with powerful options for intuitions
and conjectures beyond the known scattering analysis.
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