
ar
X

iv
:1

10
3.

05
54

v1
  [

qu
an

t-
ph

] 
 2

 M
ar

 2
01

1

A quantum model of almost perfect energy transfer

Robert Alicki

Institute of Theoretical Physics and Astrophysics, University of Gdańsk, Wita
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Abstract. The Wigner-Weisskopf-type model describing the energy transfer between

two centers mediated by a continuum of energy levels is studied. This work is motivated

by the recent interest in transport phenomena at nanoscale in biology and quantum

engineering. The analytical estimation for the energy transfer efficiency is derived
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discussed. The embedding of the standard tight-binding model into Wigner-Weisskopf

one which includes the environmental noise is presented.
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1. Introduction

The almost perfect energy transfer (APET) in biologically relevant molecular systems

attracts attention of physicists in the recent years [1]. Similar phenomena should

be observed also in the engineered systems relevant for information processing like

arrays of quantum dots or Josephson junctions [2]. Most of the theoretical analysis

is performed using tight-binding Hamiltonian for an interacting N-body system in

the single excitation regime. The influence of environment is usually modeled by

Markovian master equations with phenomenological decay parameters. The numerical

computations show the interplay between quantum propagation, quantum localization,

decoherence and dissipation [4, 3, 5]. The aim of this paper is to present a simple,

essentially exactly solvable model which describes a generic class of such phenomena and

allows to derive analytical bounds on the efficiency of energy transfer processes. The

motivation for the applied formalism comes from the particular model of two identical

atoms placed in the focuses of two parabolic mirrors separated by a distance ℓ, see Fig.1.

We assume that the dipole moments of both atoms are parallel to the symmetry axis of

the system. If initially the first atom is excited and the second is in the ground state

Figure 1. The APET for two atoms places in the focuses of two parabolic mirrors.

Radiating dipoles are parallel to the axis.

we expect that roughly after time t ≃ ℓ/c + O(τ), where τ is a mean life-time of the

excited state, the energy quantum carried by a photon is almost perfectly transfered

to the second atom. The simple description of such a system can be given in terms of

the Wigner-Weisskopf (W-W) Hamiltonian (compare the case of a single mirror and a

single atom [7]). The conditions which allows for APET are encoded entirely in the

spectrum of the Hamiltonian which is determined by the details of the model. Treating

W-W model as a generic one of a large class of energy transfer phenomena between two

localized centers one can try to find a general bound for the efficiency of such process

and determine the sufficient conditions for APET.

2. Wigner-Weisskopf model

In order to introduce a 2-state W-W model we consider a quantum system of two 2-level

atoms interacting with an electromagnetic field which can be described by the standard
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Hamiltonian in the rotating wave approximation

H =
ω1

2
σz
1 +

ω2

2
σz
2 +

∫

d3kω(k) a†(k)a(k)

+ σ+
1 a(g1) + σ−

1 a
†(g1) + σ+

2 a(g2) + σ−
2 a

†(g2). (1)

The operators a(g) and a†(g) are smeared annihilation and creation operators for the

electromagnetic field given by a†(g) =
∫

d3k g(k)a†(k), gj(k), j = 1, 2 are suitable

formfactors, and the quantum fields satisfy [a(k), a†(k′)] = δ(k − k′) (we omit for

simplicity the polarization degrees of freedom). The standard 2× 2 Pauli matrices σ±,z
1,2

refer to 2-level atoms. In the case of identical atoms with relative position described by

the vector r the formfactors differ by the relative phase L(k) = k · r

g2(k) = e−iL(k)g1(k). (2)

The crucial property of the Hamiltonian (1) is the commutation with the excitation

number operator defined as

Nex =

∫

d3k a†(k)a(k) + (σz
1 + 1/2) + (σz

2 + 1/2). (3)

The total Hilbert space of the system possesses a tensor product structure

Htot = C
2 ⊗Fph ⊗ C

2 (4)

with the bosonic Fock space Fph describing an electromagnetic field. As a consequence

of the commutation [H,Nex] = 0 the subspace corresponding to the eigenvalue 1 of Nex,

which can be called single exciton Hilbert space is invariant under the evolution. It

possesses a direct orthogonal sum structure, i.e. is spanned by the following vectors

|1〉 ≡ | ↑; 1〉 ⊗ |vac〉 ⊗ | ↓; 2〉,

|2〉 ≡ | ↓; 1〉 ⊗ |vac〉 ⊗ | ↑; 2〉,

|f〉 ≡ | ↓; 1〉 ⊗ a†(f)|vac〉 ⊗ | ↓; 2〉 for any wave − packet f. (5)

Here, | ↑; j〉 and | ↓; j〉 denote excited and ground state of the j-th atom, respectively,

and |vac〉 is the vacuum state of an electromagnetic field. This mathematical

construction, which has been used frequently in quantum optics [6], will be called the

2-state W-W model.

The 2-state W-W model is suitable for the following generic physical situation.

We restrict ourselves to physical systems which can be described in terms of the single-

exciton Hilbert spaceHex. In this Hilbert space we choose two orthogonal vectors |1〉, |2〉

which are determined by the initial state preparation and the measurement procedures.

Namely, the initial state (”donor”) of the system at time t0 = 0 is denoted by |1〉, while

the measurement at time t > 0 after preparation is a von Neumann projection on the

state |2〉 (”acceptor”).

The Hilbert space of the model system is decomposed into a direct sum (compare

with (5))

Hex = C⊕ L2(Ω)⊕ C (6)
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where the one-dimensional subspaces C are generated by the states |1〉, |2〉 and the

Hilbert space L2(Ω) is their orthogonal supplement. For the convenience we represent

this Hilbert space as the space of wave packets f(k), g(k), k ∈ Ω denoted by |f〉, |g〉 with

the scalar product

〈f |g〉 =

∫

Ω

f(k)g(k) dk . (7)

One should stress that the notation of above is used for convenience only. One can

always replace the continuous variable k by a joint set of continuous variables ω and

discrete quantum numbers m such that |k〉 is replaced by |ω,m〉 and

〈ω,m|ω′, m′〉 = δ(ω − ω′)δmm′ , and

∫

Ω

dk 7→
∑

m

∫

dω. (8)

The 2-state W-W Hamiltonian, which can be seen as the restriction of (1) to the single-

exciton space, reads

H = H0 + V,

H0 = ω1|1〉〈1|+ ω2|2〉〈2|+

∫

Ω

dk ω(k)|k〉〈k|,

V = (|1〉〈g1|+ |g1〉〈1|) + (|2〉〈g2|+ |g2〉〈2|) (9)

where g1,2 ∈ L2(Ω). All details of the model are hidden in the form of formfactors g1,2 and

the spectral resolution of the part of the Hamiltonian denoted here by
∫

Ω
dk ω(k)|k〉〈k|.

The only assumptions used in the following calculations are the continuity of the

spectrum {ω(k)} and the orthogonality 〈g1|g2〉 = 0. The later condition means that

there is no direct cross-talking between the preparation and measurement procedures

and simplifies the calculations.

3. Efficiency of energy transfer

The system begins its evolution in the excited state |1〉 and after time t can be found

in the state |2〉 with the probability

P12(t) = |A12(t)|
2 , A12 = 〈2|e−iHt|1〉. (10)

The APET holds if ω1 ≃ ω2 and for a certain time t0 the transfer probability P12(t0) ≃ 1.

To find the sufficient conditions for APET in terms of the Hamiltonian (9) notice that

the (complex) probability amplitude A12(t) is a scalar product of two states, e−iHt/2|1〉

and eiHt/2|2〉 which evolve forward and backward in time, respectively. For t ≫ τ where

τ is the life-time of the excited states one expects that the following approximation

holds

e−iHt/2|1〉 ≃ e−iH0t/2|f1〉 , eiHt/2|2〉 ≃ eiH0t/2|f2〉 (11)

where f1(k), f2(k) are certain wave packets from the Hilbert space component L2(Ω)

describing intermediate excitonic states. The estimation (11) is equivalent to the

existence of wave operators defined as

W+ = lim
t→+∞

eiH0te−iHt , W− = lim
t→+∞

e−iH0teiHt (12)
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which holds under mild conditions on the formfactors g1,2 and exciton’s dispersion

relation ω(k), at least in the weak sense of convergence of matrix elements. Combining

(11) with (12) one obtains

f1(k) = 〈k|W+|1〉 , f2(k) = 〈k|W−|2〉 (13)

and finally

A12(t) =

∫

k∈Ω

dk e−iω(k)t〈k|W+|1〉〈k|W−|2〉. (14)

The advantage of the Wigner-Weisskopf model is the fact that the matrix elements

〈1|W−|k〉 and 〈2|W+|k〉 can be exactly computed using Laplace transforms (see the

next Section).

4. The computation of matrix elements

The basic tools used for the computation of the probability amplitude (14) are:

the identity

e−iHt = e−iH0t − i

∫ t

0

ds [e−iω1(t−s)|1〉〈g1|+ |g1(t− s)〉〈1|

+ e−iω2(t−s)|2〉〈g2|+ |g2(t− s)〉〈2|]e−iHs (15)

where |gj(t)〉 ≡ e−iH0t|gj〉, and the Laplace transform

f̃(z) =

∫ ∞

0

e−ztf(t) dt. (16)

Introducing the notation (j, j′ = 1, 2):

Sjj′(t) = 〈j|e−iHt|j′〉

Fjj′(t) = 〈gj|e
−iHt|j′〉

Gjj′(t) = 〈gj|e
−iH0t|gj′〉. (17)

and using the identity (15), the definition of the wave operators (12), the notation (17)

and the Laplace transform we have

f1(k) = 〈k|W+|1〉 = − i
[

g1(k)S̃11 (−iω(k)) + g2(k)S̃21 (−iω(k))
]

f2(k) = 〈k|W−|2〉 = i
[

g1(k)S̃21 (−iω(k)) + g2(k)S̃22 (−iω(k))
]

. (18)

Combining the identity (15) with the definitions (17) we obtain a series of equations

S11(t) = e−iω1t − i

∫ t

0

e−iω1(t−s)F11(s) ds,

S22(t) = e−iω2t − i

∫ t

0

e−iω2(t−s)F22(s) ds,

S12(t) = − i

∫ t

0

e−iω1(t−s)F12(s) ds,

F11(t) = − i

∫ t

0

G11(t− s)S11(s) ds,
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F22(t) = − i

∫ t

0

G22(t− s)S22(s) ds,

F12(t) = − i

∫ t

0

[G11(t− s)S12(s) +G12(t− s)S22(s)] ds, (19)

which can be converted into equations for Laplace transforms

S̃11(z) =
1

z + iω1
[1− iF̃11(z)],

S̃22(z) =
1

z + iω2
[1− iF̃22(z)],

S̃12(z) =
−i

z + iω1
F̃12(z),

F̃11(z) = − iG̃11(z)S̃11(z),

F̃22(z) = − iG̃22(z)S̃22(z),

F̃12(z) = − i[G̃11(z)S̃12(z)G̃12(z)S̃22(z)]. (20)

The system of equations (20) can be solved yielding the following basic formulas

S̃11(z) = [z + iω1 + G̃11(z)]
−1,

S̃22(z) = [z + iω2 + G̃11(z)]
−1,

S̃12(z) = − G̃12(z)[z + iω1 + G̃11(z)]
−1[z + iω2 + G̃11(z)]

−1. (21)

Combining (21 ) with (18) and (14) one can obtain the final formula for the transition

amplitude which can be used for numerical calculations.

5. Markovian approximation

In order to continue analytical analysis of the problem we consider the case of weak

coupling or Markovian approximation. Treating V given by (9) as a small perturbation

one can omit in (18) the terms proportional to S̃21. The further approximation concerns

Laplace transforms G̃jj(z). The real part of G̃jj(−ωj) is a standard Fermi Golden Rule

approximation for the decay rate of the state |j〉 (j = 1, 2) given by

γj = γj(ωj) , γj(ω) = π

∫

Ω

dk |gj(k)|
2δ(ω(k)− ω), (22)

while the imaginary part is a radiative correction to the bare frequencies ωj . In the

following we denote by the same symbol ωj the physical, renormalized frequencies.

Summarizing, the Markovian approximation means that

S̃21(−iω(k)) ≃ 0 , S̃jj(−iω(k)) ≃ [i(ωj − ω(k)) + γj]
−1 , γj ≪ ωj . (23)

Therefore using Eqs. 18) and (23) one obtains

f1(k) =
g1(k)

ω(k)− ω1 + iγ1
, f2(k) =

g2(k)

ω(k)− ω2 − iγ2
(24)

and

A12(t) =

∫

k∈Ω

dk e−iω(k)t g1(k)g2(k)

(ω(k)− ω1 + iγ1)(ω(k)− ω2 + iγ2)
(25)
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One can estimate the upper bound for P12(t) using (25) to get

P12(t) = |A12(t)|
2 ≤ ‖f2‖

2‖f1‖
2. (26)

The equality
∫∞

−∞
γ[x2 + γ2]−1dx = π implies for example

‖f1‖
2 =

∫

Ω

|f1(k)|
2 dk =

∫

Ω

dk
|g1(k)|2

(ω1 − ω(k))2 + γ2
1

≃
1

π

∫ ∞

0

γ1
(ω1 − ω)2 + γ2

1

≃ 1−
γ1
πω1

(27)

what finally gives the bound (compare with [8])

P12(t) ≤
(

1−
γ1
πω1

)(

1−
γ2
πω2

)

< 1. (28)

In the weak coupling regime the upper bound is close to one.

6. Conditions for APET

In order to approach the bound (28) and achieve APET certain matching conditions

implied directly by the formula (25) must be satisfied. To present them in a transparent

form we introduce certain additional assumptions in a convenient parametrization.

There are satisfied by the two-mirror system discussed in the Introduction.

Assume that the intermediate Hilbert space L2(Ω) is spanned by the basis |ω,m〉

and the corresponding part of the Hamiltonian reads

H1 =
∑

m

∫

dω ω |ω,m〉〈ω,m|. (29)

The formfactors possess the following structure

|g1〉 =

∫

dω g(ω)|ω,m0〉 , |g2〉 =

∫

dω e−iL(ω)g(ω)|ω,m0〉. (30)

where g(ω) is a ”flat” slowly varying function and L(ω) accounts for the spatial

separation of donor and acceptor similarly to (2). They satisfy approximative

orthogonality condition
∫

dω eiL(ω)|g(ω)|2 ≃ 0. (31)

Now the mechanism leading to APET can be illustrated. We have to put the resonance

condition

ω1 = ω2 ≡ ω0, (32)

which by (22) implies also the equality of decay rates

γ1 = γ2 ≡ γ. (33)

Then we have the approximative expression

A12(t) ≃
1

π

∫

dω
γ

(ω − ω0)2 + γ2

(ω − ω0 − iγ

ω − ω0 + iγ

)

ei(L(ω)−ωt). (34)
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Further approximations valid for |ω − ω0| ≤ γ
(ω − ω0 − iγ

ω − ω0 + iγ

)

≃ −ei2(ω−ω0)/γ , L(ω) ≃ L(ω0) + L′(ω0)(ω − ω0) (35)

lead to

|A12(t)| ≃
1

π
|

∫

dω
γ

(ω − ω0)2 + γ2
exp{i[L′(ω0) + 2τ − t](ω − ω0)}| (36)

where τ = 1/γ. The transition probability is maximal and close to one if the oscillating

factor in the integral of above vanishes what happens for the time

t0 = L′(ω0) + 2τ (37)

which can be called optimal transfer time.

7. Transport in quantum networks

The standard tight-binding model of energy transport in quantum networks which is

applicable both to molecular systems and engineered ones consist of N 2-level ”atoms”

described by the Hilbert space C2N and the Hamiltonian written in terms of Pauli

matrices

HN =
N
∑

k=1

ωk σ
z
k +

N
∑

k<l=2

(hkl σ
+
k σ

−
l + h.c.) (38)

where {ωk} are energies of the sites and {hkl; k < l} are hopping amplitudes. Similarly

to the example in the Section 2 the exciton number operator

Nex =

N
∑

k=1

(σz
k + 1/2) (39)

commutes with HN .

Again a single exciton N -dimensional Hilbert space CN is invariant with respect

to the dynamics and the corresponding restriction of the Hamiltonian HN is given by

the N × N hermitian matrix H = [hkl] with the diagonal elements hkk = ωk. We

attribute to the donor site an index ”1” and to the acceptor site index ”2”. We assume

that the direct hopping 1 ↔ 2 is negligible, i.e. h12 = h21 = 0 and the two vectors

|g1〉 = [0, 0, h31, h41, ..., hN1] and |g2〉 = [0, 0, h32, h42, ..., hN2] are orthogonal. Under

these conditions the Hamiltonian can be recast into the discrete version of the W-W

Hamiltonian

H = ω1|e1〉〈e1|+ ω2|e2〉〈e2|+ (|e1〉〈g1|+ |e2〉〈g2|+ h.c.) +H1. (40)

Here |e1〉 = [1, 0, ..., 0], |e2〉 = [0, 1, ..., 0] and H1 is a submatrix of H with indices

k, l = 3, 4, ..., N . H1 can be written in its spectral decomposition form

H1 =

N
∑

α=3

ǫα|α〉〈α| (41)
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to get a full analogy with the continuous W-W Hamiltonian (9). In the next step one

should embed the discrete model into a continuous one. Physically, it means that the

interaction with other (environmental) degrees of freedom is taken into account. This

interaction transforms the eigenstates |α〉 into resonances with finite spectral widths.

The Hilbert space spanned by {|α〉} is replaced by L2(R) and the Hamiltonian (41) by

the multiplication operator by ω which can be formally written as
∫

dω ω |ω〉〈ω|. As a

consequence the vectors {|gj〉; j = 1, 2} are replaced by the wave functions gj(ω) which

provide continuous envelopes for the discrete values {gj(ǫα) = Nj〈α|gj〉, α = 3, 4, ..., N}.

The constants Nj are chosen to satisfy normalization condition

〈gj|gj〉 =

∫

|gj(ω)|
2dω , j = 1, 2. (42)

The construction of a continuous envelope for absolute values |〈α|gj〉| is simple as one

can use e.g. Lorentz profiles to smear the eigenvalues {ǫα}. However, the envelope of

the relative phases denoted by L(ω) is more tricky and depends on the geometry of the

system (compare with (2)).

Using the results of the Section 6 we can discuss the conditions which should be

satisfied to achieve APET, at least in the weak coupling regime. There are two types of

such conditions, fine-tuning and generic ones.

The fine-tuning conditions are :

a) the resonance condition (32),

b) the equality (33) which means that the formfactor functions gj(ω), j = 1, 2 must cross

at the resonance energy ω0.

The generic conditions are the following:

c) the optimal transfer time (37) should be short enough what implies that the relative

phase function L(ω) must be smooth enough around the value ω0,

d) the widths of the resonances should be larger than the nearest neighbor energy spacing

for {ǫα} in order to produce flat envelopes gj(ω) what means that the interaction with

an environment should be strong enough.

In the case of engineered networks the fine-tuning conditions imply a careful design while

for biologically relevant systems one can imagine that the natural selection mechanism

plays a crucial role.

8. Concluding remarks

The 2-state Wigner-Weisskopf model provides a versatile mathematical tool to study,

within the single exciton approach, the transport properties in complex molecular

systems or engineered networks relevant for quantum information processing, both in

the weak coupling (Markovian) and strong coupling (non-Markovian) regimes. The

presented version of this model can be modified to include exciton decay and presence

of a sink by adding imaginary decay rates iΓ(k) , iΓ2 to energies ω(k) and ω2,

respectively. The W-W Hamiltonian (9) possesses also entirely classical interpretation

as a Hamiltonian of a certain quadratic system (two harmonic oscillators coupled to a
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continuum of harmonic ones). Therefore, the physical mechanisms leading to APET are

coherent wave-like ones and not specifically quantum which could be attributed to any

nontrivial manifestation of entanglement.
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