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Abstract. Are there physical, probabilistic or information-theoretic principles
which characterize the quantum probabilities and distinguish them from the
classical case as well as from other probability theories, or which reveal why
quantum mechanics requires its very special mathematical formalism? The
paper identifies the fundamental absence of third-order interference as such a
principle of ‘quantumness’. Considering three-slit experiments, the concept of
third-order interference was originally introduced by Sorkin in 1994.

1 Introduction

Are there physical, probabilistic or information-theoretic principles which spec-
ify the quantum probabilities and distinguish them from the classical case as
well as from other probability theories, or which reveal why quantum mechan-
ics requires its very special mathematical formalism? The relativity principle
from which Einstein derived his theory is here considered a prototype by many
physicists. The more it is tried to exploit the quantum peculiarities in modern
quantum information theory, quantum computing and quantum cryptography,
the more vital becomes the search for such principles of ‘quantumness’. A non-
exhaustive selection of recent research papers with varying approaches are Refs.
[1], [2], [4], [5], [7], and [12]; references to further work in this direction can be
found particularly in Ref. [4]. The present paper introduces a new approach
based on Sorkin’s concept [10] of higher-order interference.

Of course, the formalism of quantum theory is well-defined by a large system
of mathematical axioms. It perfecty describes all the quantum peculiarities.
However, it does not reveal their origin because these axioms have only a math-
ematical meaning, but no obvious physical or probabistic interpretation. The
statistical interpretation is a later add-on motivated empirically, but not evident
from the mathematical structure of the theory.
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A most typical quantum phenomenon is the wave-like interference exhibited
in two-slit experiments with small physical particles. Considering experiments
with three slits, Sorkin [10] introduced the concept of third-order interference
and detected that standard quantum mechanics rules out third-order interfer-
ence. In a recent paper [8], the author could show that a probability theory
where third-order interference does not occur must necessarily be very close to
standard quantum mechanics.

This results in the following classification. A probability theory, where there is
no interference at all, is classical. A theory including second-order interference,
but ruling out third-order interference is quantum mechanics. The principle of
‘quantumness’ thus becomes the presence of second-order interference combined
with the absence of third-order interference. A theory where third-order inter-
ference is possible would go beyond quantum mechanics.

The mathematics behind these findings has been elaborated in detail in Ref.
[8]. The present paper paper shall outline the major result in a less mathe-
matical way and focus on its role in a principle of ‘quantumness’. After a brief
overview of classical probabilities, quantum theory and a more general proba-
bilistic framework in the next section, second- and third-order interference will
be considered in the third section, before their role in a principle of ‘quantum-
ness’ will be studied in the fourth one.

2 Probability theories

In quantum mechanics, the measurable quantities of a physical system are re-
presented by observables. Most simple are those observables where only the
two discrete values 0 and 1 are possible as measurement result; they are called
events. Mathematical probability theory usually starts with the identification
of a structure for the events. Classically, this is a Boolean algebra. However, it
is well-known that quantum mechanics requires a more general, not necessarily
Boolean structure called quantum logic. This was pointed out by von Neumann
and Birkhoff [3] already in the early days of quantum mechanics.

An orthogonality relation and a partial sum operation + defined only for or-
thogonal events are available on a quantum logic. Orthogonality means that the
events exclude each other and, in the classical case, it is the same as disjoint-
ness. Standard quantum mechanics uses a very special type of quantum logic;
it consists of the self-adjoint projections on a Hilbert space or, more generally,
of the self-adjoint projections in a von Neumann algebra.

The states on a quantum logic are the analogue of the probability measures in
classical probability theory, and conditional probabilities can be defined similar
to their classical prototype [8]. However, there are many quantum logics where
no states or no conditional probabilities exist, or where the conditional proba-
bilities are ambiguous. Therefore, only those quantum logics where sufficiently
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many states and unique conditional probabilities exist can be considered a sat-
isfying framework for general probabilistic theories.

A state µ allocates a probability µ(e) to each event e in such a way that
µ(e1 + e2) = µ(e1) + µ(e2) holds for any two orthogonal events e1 and e2.
The conditional probability of an event f under another event e in the state µ
is denoted by µ(f | e); this is the updated probability of the event f after the
event e has been the outcome of a first measurement.

With two successive measurements, the probability that the first one provides
the result e and the second one then the result f is the product µ(f | e)µ(e).
In the classical case, the system of events forms a Boolean algebra and this
probability becomes µ(f | e)µ(e) = µ(f ∩ e), which is additive in f as well as
in e. In the general case, it remains additive only in f , but not in e. This is
the origin of quantum interference which shall be considered in the following
section.

3 Interference

For a pair of orthogonal events e1 and e2, a further event f and a state µ, the
following mathematical term I2 shall be studied:

I2 := µ(f | e1 + e2)µ(e1 + e2)− µ(f | e1)µ(e1)− µ(f | e2)µ(e2)

For classical probabilities, the identity I2 = 0 holds, but not for quantum me-
chanics. Many quantum peculiarities can directly be traced back to the fact
that I2 = 0 is not valid. This is the essence of quantum interference which
is exhibited e.g., in the two-slit experiments with small physical particle like
electrons, photons and others, or in experiments measuring the spin of electrons
and photons twice along differently oriented spatial axes.

Sorkin [10] introduced the concept of third-order interference. For a triple of
orthogonal events e1, e2 and e3, a further event f and a state µ, he defined the
following mathematical term I3:

I3 := µ(f | e1 + e2 + e3)µ(e1 + e2 + e3)

−µ(f | e1 + e2)µ(e1 + e2)

−µ(f | e1 + e3)µ(e1 + e3)

−µ(f | e2 + e3)µ(e2 + e3)

+µ(f | e1)µ(e1) + µ(f | e2)µ(e2) + µ(f | e3)µ(e3)
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Sorkin’s original definition refers to probability measures on ‘sets of histories’.
With the use of conditional probabilities, it gets the above shape, which was
seen by Ududec, Barnum and Emerson [11] who adapted it into an operational
probabilistic framework.

Classical probabilities satisfy the identity I3 = 0; this follows from I2 = 0.
Sorkin detected that I3 = 0 also holds in quantum mechanics. The identity
I3 = 0 can be rewritten in the following form:

µ(f | e1+e2+e3)µ(e1+e2+e3)−µ(f | e1)µ(e1)−µ(f | e2)µ(e2)−µ(f | e3)µ(e3)

= µ(f | e1 + e2)µ(e1 + e2)− µ(f | e1)µ(e1) + µ(f | e2)µ(e2)

+µ(f | e1 + e3)µ(e1 + e3)− µ(f | e1)µ(e1) + µ(f | e3)µ(e3)

+µ(f | e2 + e3)µ(e2 + e3)− µ(f | e2)µ(e2) + µ(f | e3)µ(e3)

The left-hand side of this equation is a measure for the interference involved
in the case with three mutually exclusive events e1, e2, and e3. It is identical
with the sum of the measures for the pair interferences when the three different
pairs are considered which can be built from the three events. Therefore, I3 = 0
means that interference with three mutually exclusive events does not provide
anything new compared to the cases with only two exclusive events. However,
I3 6= 0 would mean that a fundamentally new form of interference exists in
addition to the pair interferences.

While the familiar two slit-experiment involves only two possible paths, three
different paths are available for the particle in a three-slit configuration. In this
case, the identity I3 = 0 means that quantum interference is limited to pairs of
paths and that quantum mechanics does not exhibit a new form of interference
involving path triples. The interference pattern observed with three open slits
is a simple combination of the patterns observed in the six different cases with
only one or two among the three available slits open, which could be confirmed
in a recent experimental test with photons [9].

As well as I2, the term I3 defines a very general concept and is not restricted
to multiple-slit experiments. The new type of interference which is present
whenever I3 6= 0 holds is called third-order interference, and the one present
whenever I2 6= 0 holds is called second-order interference.
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4 A principle of ‘quantumness’

The absence of second-order interference (I2 = 0) characterizes the classical
probabilities. The presence of second-order interference (I2 6= 0) is typical of the
quantum probabilities, but third order-interference is not possible in quantum
theory. To what extent does now the absence of third-order interference (I3 = 0)
characterize the quantum probabilities? Can there be other probability theories
with I3 = 0, or is quantum mechanics the only one?

In Ref. [8], it could be shown that that a probability theory where third-order
interference does not occur must necessarily be very close to standard quantum
mechanics. The events must then be projections in a Jordan algebra. This is the
major result (Theorem 11.1) of Ref. [8]. Only the exceptional Jordan algebras
provide examples with I3 = 0 which are not covered by standard quantum
mechanics (i.e., do not have a representation as operators on a Hilbert space).
This results in the classification of the different probability theories which is
depicted in Figure 1.

The combination of the presence of second-order interference (I2 6= 0) with the
absence of third-order interference (I3 = 0) can therefore be identified as an
essential principle of ‘quantumness’. The presence of second-order interference
(I2 6= 0) distinguishes quantum theory from the classical case. It is the reason
why classical probability theory cannot cover the quantum probabilities. The
fundamental absence of third-order interference (I3 = 0) entails the very special
mathematical formalism of quantum mechanics. It defines what quantum theory
is, leaving only little room beyond standard quantum mechanics. A further
still unknown principle might do the rest and rule out the exceptional Jordan
algebras.

Figure 1: Classification of probability theories
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5 Remarks

The above results and their mathematical proofs have been elaborated in de-
tail in Ref. [8]. Without going too far into the mathematical details, some
assumptions which they are based upon shall be presented here. The general
probabilistic framework is given by those quantum logics where sufficiently many
states and unique conditional probabilities exist. Beyond that, three further as-
sumptions are needed.

The first assumption is that real-valued (i.e., not necessarily positive) general-
ized states satisfy a Hahn-Jordan decomposition property similar to the classical
real-valued measures.

A quantum logic with sufficiently many states can always be embedded in an
ordered linear space. In Ref. [8], it was shown that the absence of third-order
interference (I3 = 0) is equivalent to the existence of a product in this ordered
linear space. Generally, this product is neither commutative nor associative,
and the second assumption is that each element of the ordered linear space gen-
erates an associative subalgebra. The third one is that the square of an element
is positive.

The elements of the ordered linear space are candidates for observables, for
which the last two assumptions are quite natural postulates. The first assump-
tion is a mathematical technical requirement.

Only the exceptional Jordan algebras satisfy these assumptions and the identity
I3 = 0 without being included in standard quantum mechanics. There are not
too many of them and, in a certain sense, there is only one; it is formed by the
self-adjoint 3× 3-matrices the entries of which are octonions (see Ref. [6]).

6 Conclusions

The concept of third-order interference is a quite natural extension of the second-
order interference which is so typical of quantum mechanics, but surprisingly
third-order interference is ruled out by quantum theory. Quantum interference
involves only pairs, but no triples of mutually exclusive alternatives.

In the present paper, the absence of third-order interference (i.e., I3 = 0) has
been identified as a fundamental principle of ‘quantumness’ which entails the
very special structure of quantum theory. It defines the theory, leaving only
little room beyond standard quantum mechanics.
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A violation of the identity I3 = 0 has never been detected, and a recent ex-
perimental test [9] has confirmed it. One can therefore still assume that quan-
tum mechanics is universally valid in nature. However, its universal validity
is sometimes questioned because a successful unification with relativity theory
and a satisfying quantum gravity theory are still missing. This might require a
new theory going beyond standard quantum mechanics and possibly exhibiting
third-order interference.

References

[1] Barnum, H., Gaebler, C. P., and Wilce, A., Ensemble steering, weak self-
duality, and the structure of probabilistic theories, arXiv:0912.5532v2 (2009)

[2] Barrett, J., Information processing in generalized probabilistic theories,
Phys. Rev. A 75 (2007) 032304

[3] Birkhoff, G., and von Neumann, J., The logic of quantum mechanics, Ann.
of Math. 37 (1936) 823-843

[4] Brukner, C., and Zeilinger, A., Information invariance and quantum prob-
abilities, Found. Phys. 39 (2009) 677-689

[5] D’Ariano, G. M., and Tosini, T., Testing axioms for quantum theory on
probabilistic toy-theories, Quantum Inf. Process. 9 (2010) 95-141

[6] Hanche-Olsen, H., and Størmer, E., Jordan Operator Algebras, Pitmann,
Boston (1984)

[7] Hardy, L., Quantum theory from five reasonable axioms, arXiv:quant-
ph/0101012v4 (2001)

[8] Niestegge, G., Sorkin’s third-order interference term in quantum logics with
unique conditional probabilities, arXiv:0912.0203v2 (2009)

[9] Sinha, U., Couteau, C., Jennewein, T., Laflamme, R., and Weihs, G., Rul-
ing out multi-order interference in quantum mechanics, Science 329 no.
5990 (2010) 418-421

[10] Sorkin, R. D., Quantum mechanics as quantum measure theory, Mod. Phys.
Lett. A 9 (1994) 3119-3127

[11] Ududec, C., Barnum, H., and Emerson, J., Three slit experiments and the
structure of quantum theory, Found. Phys. 41 (2011) 396-405

[12] Wilce, A., Four and a half axioms for finite dimensional quantum mechan-
ics, arXiv:0912.5530v1 (2009)

7

http://arxiv.org/abs/0912.5532
http://arxiv.org/abs/quant-ph/0101012
http://arxiv.org/abs/quant-ph/0101012
http://arxiv.org/abs/0912.0203
http://arxiv.org/abs/0912.5530

	1 Introduction
	2 Probability theories
	3 Interference
	4 A principle of `quantumness'
	5 Remarks
	6 Conclusions

