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In Ref. [1], we proved a duality between two optimizations problems. The primary one is, given
two quantum channels M and N , to find a quantum channel R such that R◦N is optimally close to
M as measured by the worst-case entanglement fidelity. The dual problem involves the information

obtained by the environment through the so-called complementary channels M̂ and N̂ , and consists

in finding a quantum channel R′ such that R′ ◦M̂ is optimally close to N̂ . It turns out to be easier
to find an approximate solution to the dual problem in certain important situations, notably when
M is the identity channel—the problem of quantum error correction—yielding a good near-optimal
worst-case entanglement fidelity as well as the corresponding near-optimal correcting channel. Here
we provide more detailed proofs of these results. In addition, we generalize the main theorem to
the case where there are certain constraints on the implementation of R, namely on the number of
Kraus operators. We also offer a simple algebraic form for the near-optimal correction channel in
the case M = id. For approximate error correction, we show that any ε-correctable channel is, up
to appending an ancilla, ε-close to an exactly correctable one. We also demonstrate an application
of our theorem to the problem of minimax state discrimination.

Shannon theory and error correction, be their classical
or quantum version, are based on the problem of trans-
mitting information through a given noisy channel N by
choosing an encoding channel E and a decoding channel
R such that when composed, they simulate a noiseless
channel id: RNE ≈ id. For instance, the capacity of a
channel N is the largest ratio n/m such that N⊗m can
perfectly simulate id⊗n in the limit n→ ∞ [2].

Classically, the problem of simulating a noiseless chan-
nel has been found to provide the benchmark for most of
a channel’s information carrying capabilities. In quan-
tum information theory, however, the situation is more
complex. For instance, the capacity of a quantum chan-
nel defined in this way—the quantum capacity—does not
suffice to determine the capacity of channels used in con-
junction with each other [3].

More generally, one can consider the simulation of an
arbitrary channel M: RNE ≈ M. For example, if N
is quantum, choosing the target M = id⊗n yields the
quantum capacity, while using copies of a fully decoher-
ent (i.e., classical) channel

M(ρ) =
∑

i

〈i|ρ|i〉|i〉〈i| (1)

yields the classical capacity. A slightly more general case
is that where M is a noiseless channel on any C∗-algebra,
which yields subsystem quantum error correction (QEC)
and hybrid quantum-classical error correction [4], or hy-
brid capacities in the asymptotic case [5].

A fundamental result in the case of standard QEC,
namely, simulation of the identity quantum channel, is
the Knill-Laflamme conditions [6], which, given an en-
coding E , provide a criterion for the existence of a corre-
sponding decoding channel R. Specifically, it says that
R exists, i.e., the channel and code are correctable, if
and only if the environment gains no information about

the encoded state. This condition, in its approximate
form [7] is also the main starting point for the “de-
coupling” approach to channel capacities [8], namely,
the corresponding result applied to states via the Choi-
Jamio lkowski isomorphism.

Here we detail and extend work presented in Ref. [1]
which generalizes these results to a generic target M. In
Section II, we prove two slightly more general versions
of the main theorem of Ref. [1], which says that the op-
timal distance (optimized over the decoding operations
R) between RN and M is equal to the optimal distance

between N̂ and RM̂, where the hat denotes respective
complementary channels. This yields an efficient way of
estimating the optimal distance for a large class of tar-
get channels M (Section III A). We also show how to
explicitly construct a channel R achieving the estimated
distance (Section III B). In Section III C, we show that
any ε-correctable channel is, up to appending an ancilla,
ε-close to an exactly correctable one. We also give an ap-
plication of our main theorem to the problem of minimax
state discrimination in Section III D.

We note that our approach also yields new results in
the important special case M = id. In order to measure
the quality of a simulation, we use a fidelity-based dis-
tance as in Refs. [9, 10]. In contrast to these works, how-
ever, our approach yields an approximate reversal chan-
nel for the worst-case entanglement fidelity which is a
state-independent measure. See Section IV for a com-
parison with these works in the case M = id.

Other works focused on the worst-case trace dis-
tance [7, 11]. The advantage of the fidelity over these is
that the optimal fidelity in the dual problem is precisely
equal to the optimal fidelity in the original problem. Al-
though the dual problem may not be solved easily, it can
be precisely estimated. This yields better bounds on the
original optimization which are useful not only for an-
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alyzing asymptotic scenarios, but may be advantageous
also in one-shot scenarios, e.g., to estimate the error in an
approximate quantum error correction scheme [12–17].

In addition, since our results concern only the prob-
lem of finding R such that RN ′ ≈ M , they are not re-
stricted to the case where N ′ = NE but apply also to the
case where resources are shared between the sender and
the recipient. For instance, for an entanglement-assisted
scheme [18, 19] one would consider a channel of the form

N ′(ρ) =
1

d

∑

i

(NE)(ρ ⊗ |i〉〈j|) ⊗ |i〉〈j|. (2)

I. PRELIMINARIES

In this paper, we restrict our considerations to finite-
dimensional systems. We begin by introducing the main
concepts that we will be using to express our results.

A. Complementary channels

A channel N is a completely positive trace-preserving
map. It can always be written as

N (ρ) =
∑

i

EiρE
†
i , (3)

where the Kraus operators Ei satisfy
∑

iE
†
iEi = 1. Con-

versely, any function of this form is completely positive
and trace-preserving. The dual N † is defined by the re-
lation

Tr(N (ρ)A) = Tr(ρN †(A)) (4)

for any state ρ and any operator A. This implies that

N †(A) =
∑

i

E†
i ρEi. (5)

Physically, N is interpreted as evolving states, while N †

evolves observables. Hence, N † represents the Heisen-
berg picture for the evolution defined by the channel. To
avoid confusion, we only call N a channel, while N † is
its dual.

Note that the dimension of the input and output quan-
tum systems may differ. In this case the operators Ei
are not square matrices. For instance, there is only one
channel whose output Hilbert space has dimension one:
the trace. Channels with a one-dimensional input are in
one-to-one correspondence with quantum states. Since
the input is just a complex number z, the output can
only be of the form zρ for some fixed quantum state ρ.

We let the reader check that the dual of the trace chan-
nel takes as an input a complex number α (an operator
on the one-dimensional Hilbert space), and outputs the
identity operator times α:

Tr†(α) = α1. (6)

Note that the partial trace can be written as id ⊗ Tr,
where id is the identity channel on the subsystem that is
not traced over. Hence, for instance,

(id ⊗ Tr)†(A) = A⊗ 1. (7)

Stinespring’s dilation theorem [20] guarantees that for
any channel N we can find a (nonunique) isometry V
which maps the input space of N into its output space
extended by an extra system E, the “environment”, such
that

N †(A) = V †(A⊗ 1E)V, (8)

or equivalently,

N (ρ) = (id ⊗ TrE)(V ρV †), (9)

where id⊗TrE denotes the partial trace over E. We say
that V defines a dilation of N .

An isometry V is any operator satisfying the property
V †V = 1. It describes how the input Hilbert space is
isometrically embedded in the target space. It can be
seen as a unitary operator but with the input restricted
to a subspace. For instance, if the target space dimension
is divisible by the input space dimension, it amounts to
adding an auxiliary system with a fixed pure initial state
|φ0〉 and letting it interact unitarily with the system, i.e.,

V |ψ〉 := U(|ψ〉 ⊗ |φ0〉) (10)

for some unitary operator U .
It is easy to see that this isometry V is not unique.

Indeed we can always use another isometry W from E to
a larger environment E′ to obtain also

N (ρ) = (id ⊗ TrE′)(V ′ρ(V ′)†), (11)

where V ′ is the new isometry

V ′ = (1⊗W )V. (12)

Definition 1. Let V define a dilation of the channel N
as above. We say that the channel N̂ , defined by

N̂ †(B) = V †(1⊗B)V (13)

for all B, is complementary to N .

Equivalently, we have

N̂ (ρ) = (Tr ⊗ id)(V ρV †). (14)

The channel N̂ maps the initial state of the system to
the final state of the environment.

It is clear from the definition that N is also comple-

mentary to N̂ .
Since the isometry V associated with N is not unique

as observed above, there are correspondingly many chan-

nels complementary to N . For instance, if N̂ maps the
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input system to the environment E, and W is an isome-
try from E to E′, then the channel N ′ defined by

(N̂ ′)†(B) = (V ′)†(1⊗B)V ′, (15)

where V ′ = (1⊗W )V, is also complementary to N .
The connection between the isometry V and the chan-

nels’ Kraus operators can be found by introducing an
orthonormal basis |i〉 of the environment as follows:

N †(A) = V †(A⊗ 1)V =
∑

i

V †(A⊗ |i〉〈i|)V

=
∑

i

V †(1⊗ |i〉)A(1⊗ 〈i|)V.
(16)

Hence, we can use

Ei = (1⊗ 〈i|)V, (17)

which is defined by

〈ψ|Ei = (〈ψ| ⊗ 〈i|)V. (18)

This implies that the complementary channel associated
with the isometry V can be written in a dual form as

N̂ †(B) =
∑

ij

〈i|B|j〉E†
iEj . (19)

B. Minimal dimension of the environment

Definition 2. Given a channel N , we write |N | for the
minimal number of Kraus operators with which it can be
represented. This corresponds to the minimal dimension
of the environment for which it has an isometric imple-
mentation (Eq. (8)).

If the channel N maps states over the Hilbert space
HA to states over HB , then [21]

1 ≤ |N | ≤ dim(HA) dim(HB). (20)

In addition, |N | = 1 if and only if

N (ρ) = V ρV † (21)

for some isometry V .

C. Postprocessing order and equivalence relation

Definition 3. Given two channels N and M, we write

N � M (22)

if there exists a channel R such that RN = M (i.e.,
R(N (ρ)) = M(ρ) for all states ρ). We also write

N ∼ M (23)

when we have both N � M and M � N .

Note that this relation � can equivalently be defined
dropping the requirement that R be trace-preserving. In-
deed, R can always be completed to the trace-preserving
channel

R′(ρ) = R(ρ) + Tr[(1−R†(1))ρ]σ, (24)

where σ is an arbitrary state, such that R′N = M.
It is easy to see that the relation � is a preorder on all

channels, and that ∼ is an equivalence relation.
The relation N ∼ M can be seen as a precise way

of saying that the two channels carry the same informa-
tion about the initial system, independently of further
processing. For this reason, we will mostly focus on the
equivalence classes rather than on individual channels.

Note that N ∼ M does not imply that N and M
are related by a unitary map. For instance, consider the
family of channels Sτ (ρ) := Tr(ρ)τ . These channels are
all equivalent since Sτ = SτSτ ′ . But they can be related
by a unitary map if and only if τ and τ ′ have the same
spectrum.

Let us state a few elementary facts in order to build
up some intuition about this relation. All channels are
bounded from above by the unitary channels (in partic-
ular), which are all equivalent to the identity channel
id, and from below by the channels Sτ mentioned above,
which are all equivalent to the trace Tr (which is the only
channel with a target space of dimension 1):

id � N � Tr. (25)

Note that for any channels N , M, N ′, and M′,

N ⊗N ′ � M⊗M′ ⇐⇒ N � M and N ′ � M′. (26)

In particular,

N � M ⇐⇒ N ⊗ id � M⊗ id. (27)

Since channels are trace-preserving, we always have

TrN = Tr. (28)

Let us show that all the channels complementary to a
given one belong to the same equivalence class.

Lemma 1. If N̂ and N̂ ′ are both complementary to N ,

then N̂ ∼ N̂ ′.

Proof. Suppose without loss of generality that the dimen-

sion of the output of N̂ ′ is larger or equal to that of N̂ .
Then there is an isometry W such that

N̂ ′(ρ) = W N̂ (ρ)W † (29)

for all ρ. Hence, clearly, N̂ ′ � N̂ . In order to show that

also N̂ � N̂ ′, we need to build a channel R such that

N̂ = RN̂ ′. Since V †V = 1, we would like to use the
completely positive map ρ 7→ V †ρV . Unfortunately, this



4

map is not trace-preserving. Instead, letting P := V V †,
we use

R(ρ) = V †ρV + Tr((1− P )ρ). (30)

It is easy to check that this map is trace-preserving. Fur-
thermore, since (1 − P )V = 0, the extra term does not

affect the ability of R to invert N̂ ′.

Note that the equivalence class associated with N̂ is in
general larger than the set of channels complementary to
N . We will regard the channels belonging to this class
as generalized complementary channels and will typically

denote them by a tilde, i.e., as Ñ .

Definition 4. The channel Ñ is a generalized comple-

mentary channel of N if Ñ ∼ N̂ , where N̂ is comple-
mentary to N .

The generalized complementary channels satisfy the
following important property:

Theorem 2. If Ñ and M̃ are generalized complemen-

tary channels of N and M, respectively, then

N � M ⇐⇒ M̃ � Ñ . (31)

Proof. It is sufficient to show that N � M =⇒ M̃ � Ñ .
For any channel N , we will write

VN (ρ) = VN ρV
†
N (32)

for an isometric map characterizing a dilation of N , i.e.,

such that N = (id ⊗ Tr)VN . Note that if R̃ is a general-

ized complementary channel of R, then (R̃ ⊗ id)VN is a
generalized complementary channel of RN .

If N � M, then there is a channel R such that RN =
M. It follows that

M̃ ∼ (R̃ ⊗ id)VN . (33)

But then

Ñ ∼ (Tr ⊗ id)VN = (TrR̃ ⊗ id)VN ∼ (Tr ⊗ id)M̃, (34)

which implies that M̃ � Ñ .

D. Exact error correction

Theorem 2 directly yields the Knill-Laflamme condi-
tions for exact quantum error correction on standard
(subspace) codes. Suppose that the “noise” on the phys-
ical Hilbert space H is modeled by a channel with Kraus
operators Ei. A standard code can be seen as a sub-
space of H, or, equivalently, as an isometric encoding
map V : HC →֒ H from the logical space HC to the
physical space H. The projector V V † = P projects on a
subspace of H isomorphic to HC , which is usually called
itself the “code”. The channel to consider then is

N (ρ) =
∑

i

EiV ρV
†E†

i (35)

from HC to H. It implements the encoding followed by
the noise. Given the code P (or equivalently the isometric
encoding V ), the problem of quantum error correction is
to find a correction channel R mapping H back to HC

such that

RN = idC , (36)

where idC is the identity map on the logical space HC .
Hence, we can directly apply Theorem 2 with M =

idC . It is easy to see that all channels complementary to
idC are of the form

ρ 7→ |ψ〉〈ψ|Tr(ρ) (37)

for an arbitrary pure state |ψ〉 living in a space of ar-
bitrary dimension. In addition, one can show that all
channels similar to such complementary channels are of
the form

ρ 7→ τ Tr(ρ) (38)

for some mixed state τ , i.e., Eq. (38) describes the gen-
eralized complementary channels to idC . Picking any of
these channels, Theorem 2 states that the existence of a
channel R satisfying Eq. (36) is equivalent to the exis-
tence of a channel R′ such that

N̂ (ρ) = R′(τ) Tr(ρ). (39)

But since τ is fixed, this is equivalent to the existence of
a state σ such that

N̂ (ρ) = σTr(ρ) (40)

for any state ρ. This is the Knill-Laflamme condition.
This is most easily seen from its dual (Heisenberg picture)
form, which reads

N̂ †(A) = Tr(Aσ)1 (41)

for all operators A. It is enough to check this condition
for a basis |i〉〈j| of the space of operators, which yields

N̂ †(|i〉〈j|) = V †E†
iEjV = 〈j|σ|i〉1. (42)

Multiplying on the left and on the right by V and V †,
respectively, we obtain

PE†
iEjP = λijP, (43)

where λij = 〈j|σ|i〉, which is the Knill-Laflamme condi-
tion in its most familiar form.

Moreover, we also obtain the generalized Knill-
Laflamme conditions for the correctability of subsystem
codes [22–24], or in fact any algebra, of which subsystem
codes are a special case [4]. A †-algebra (or algebra for
short) is a set of operators closed under multiplication
and which also contains the adjoint of all its elements.
For instance, suppose that our Hilbert space H is divided
into two subsystems: H = HA ⊗HB. Then consider the
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set A of operators of the form A ⊗ 1, where A is an op-
erator on HA and 1 the identity on HB. It is trivial to
show that A is an algebra. It represents all the local
observables acting on H1. In fact this is close to being
the most general form of a †-algebra. For any †-algebra
A we can find a decomposition of the Hilbert space into
orthogonal subspaces Hi which are left invariant by all
elements of the algebra. Furthermore, when restricted
to any of these invariant subspaces, the algebra has pre-
cisely the form described in the above example. Hence,
the algebra defines a set of subsystems living in a family
of orthogonal subspaces. This means that any element
A ∈ A is of the form

A =
∑

i

Ai ⊗ 1i, (44)

where Ai ⊗ 1i is an operator supported on Hi. Said
differently, if Pi is the projector on Hi, then PiAPi =
Ai ⊗ 1i.

A handy tool is the projector PA on this algebra, which
we take to be orthogonal in terms of the Hilbert-Schmidt
inner product between operators. This is a quantum

channel satisfying P2
A = PA = P†

A, whose range is pre-
cisely A. It has the following explicit form:

PA(ρ) =
∑

i

Tr2(PiρPi) ⊗
1i

mi

, (45)

where Tr2 is the partial trace over the second subsys-
tem of the ith subspace, and mi is the dimension of that
subsystem.

We say that an algebra A is correctable for the channel
N if there exists a “correction” channel R such that for
all A ∈ A,

(R ◦N )†(A) = A. (46)

Note that A contains the spectral projectors of any
observable A ∈ A. Hence, this definition implies that
measuring A before the action of the channel N or after
the correction will yield the same probabilities, no matter
what the initial state was.

Clearly, Eq. (46) implies that PA◦R◦N = PA. Hence,
an equivalent formulation is to require the existence of a
(possibly different) channel R such that

R ◦N = PA. (47)

This puts the problem in a form suitable for the appli-
cation of Theorem 2, since it says that N � PA. If A′

denotes the algebra formed by all operators commuting
with all elements of A (i.e., the commutant of A), one
can show that the channel PA′ is a generalized comple-
mentary channel of PA. Elements of the commutant have
the form B =

∑
i 1i⊗Bi for the same decomposition into

orthogonal subspaces. Explicitly,

PA′(ρ) =
∑

i

1i

ni
⊗ Tr1(PiρPi), (48)

where Tr1 is the partial trace over the first subsystem of
the ith subspace, and ni is the dimension of that subsys-
tem.

Hence, Theorem 2 states that the existence of R that
satisfies Eq. (47) is equivalent to the existence of R′ such
that

N̂ = R′PA′ . (49)

But since PA′ is a projector, this is equivalent to requir-
ing that

N̂ = N̂PA′ , (50)

or, in the Heisenberg picture,

N̂ † = PA′N̂ †. (51)

The latter is equivalent to requiring that for all operators
A,

N̂ †(A) ∈ A′, (52)

or, for all i, j, assuming N has the form previously used,

N̂ †(|i〉〈j|) = V †E†
iEjV ∈ A′. (53)

This is the form of the conditions derived, using a differ-
ent method, in Ref. [4].

II. MAIN THEOREM

Let f(ρ, σ) = Tr
√√

ρ σ
√
ρ be the fidelity [25] between

states ρ and σ. For reasons that will become clear, we
extend the definition of this function to all positive op-
erators ρ or σ of trace smaller than or equal to one (note
that for operators of trace smaller than one, f(ρ, σ) does
not have the meaning of fidelity). Even for this more
general concept, Uhlmann’s theorem [25] holds, i.e, we
have the alternative expression

f(ρ, σ) = max
V

|〈ψρ|(1⊗ V )|ψσ〉|, (54)

where |ψρ〉 and |ψσ〉 are any purifications of ρ and σ, re-
spectively, and the maximization runs over all isometric
operators V between the extra reference systems. (Note
that here either V †V = 1 or V V † = 1 depending on
which of the two purifications is of larger dimension).
Since the quantity f(ρ, σ) is real, we can optimize the
real part rather then the absolute value of the expression
〈ψρ|(1⊗V )|ψσ〉. In addition, one can show that the opti-
mization can be done over all operators of norm smaller
than one rather than just the isometric operators, i.e.,

f(ρ, σ) = max
‖A‖≤1

Re 〈ψρ|(1⊗A)|ψσ〉

= max
‖A‖≤1

Re ψσ
A

//

ψρ .
(55)
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The diagram can be thought of as a circuit where the
boxes are operators which are not necessarily unitary,
nor even square matrices. The left half circles repre-
sent input states, while the right half circles represent
states which are scalar-multiplied with the correspond-
ing ouputs. The above diagram thus represents the scalar
product between the output of the circuit, (1 ⊗ A)|ψσ〉,
and the state |ψρ〉.

For a given state ρ, we introduce the “entanglement
fidelity” between channels N and M,

Fρ(N ,M) = f((N ⊗ id)(|ψ〉〈ψ|), (M⊗ id)(|ψ〉〈ψ|))

= max
‖A‖≤1

Re
ψ

VN
A

//

V †
M

//

ψ ,

where |ψ〉 is a purification of ρ. When M = id, this
quantity reduces to the square root of Schumacher’s en-
tanglement fidelity of N [26]. We will compare channels
using the worst-case entanglement fidelity,

F (N ,M) = min
ρ
Fρ(N ,M), (56)

which was studied in Ref. [27].

Theorem 3. If N̂ and M̂ are complementary to N and

M, respectively, then for any d > 1,

max
|R|≤d

F (RN ,M) = max
|R′|≤d

F (N̂ ,R′M̂), (57)

where the maxima are over all trace-nonincreasing com-

pletely positive maps with the appropriate source and tar-

get spaces, and |R| stands for the minimal number of

Kraus operators for R.

Proof. The proof closely follows arguments used in
Ref. [7]. Let VN be the isometry for which N (ρ) =

TrE(VN ρV
†
N ) and N̂ (ρ) = TrB(VN ρV

†
N ), and VM be the

isometry yielding both M and M̂ in the same way. Note
that any trace-nonincreasing channel R can be written
as R(ρ) = Tr

Ẽ
(AρA†) for some operator A satisfying

‖A‖ ≤ 1 from the input Hilbert space of R to its output

space tensored with an “environment” Ẽ. Using this fact
and writing the fidelity using Eq. (55), we obtain

max
|R|≤d

F (RN ,M) = max
‖A‖≤1

min
ρ

max
‖A′‖≤1

Re gρ(A,A
′), (58)

where gρ can be expressed in terms of a circuit:

gρ(A,A
′) =

ψ

VN

B

A d

//

E
A′†

E′

//
B′

V †
M

//

ψ

(59)
The small d indicates that the wire below it represents

a Hilbert space of dimension d, namely, the system Ẽ
mentioned above. The wires labeled B and B′ represent

the target systems for N and M, respectively, and E and
E′ are the respective “environments”. The state |ψρ〉 can
be any purification of ρ. If we reflect the picture with
respect to a vertical axis through the middle, Hermitian
conjugating each operator [this amounts to a complex
conjugation of gρ(A,A

′)], and exchange the wire labels
E′ and B, and E and B′, we see that we also have

max
|R′|≤d

F (N̂ ,R′M̂) = max
‖A′‖≤1

min
ρ

max
‖A‖≤1

Re gρ(A,A
′),

(60)
where now A′ is the operator defining R′ while A comes
from Eq. (55) for the fidelity. Hence, we just have to show
that we can exchange the maximizations over A and A′

in Eq. (58). This can be done by applying Shiffman’s
minimax theorem [28] which says that we can exchange
the rightmost min and max provided that the function
is convex-concave in the two arguments (in this case it
is bilinear), and that the variables are optimized over
convex sets, which is the case here. Hence, we obtain
maxR F (RN ,M) = maxA′ maxA minρ Re gρ(A,A

′) =

maxR′ F (N̂ ,R′M̂), where ‖A′‖, ‖A‖ ≤ 1.

Proposition 4. If N ′ ∼ N and M′ ∼ M, then

max
R

F (RN ,M) = max
R

F (RN ′,M′), (61)

where the maxima are over all quantum channels with the

appropriate source and target spaces.

Proof. We have N ′ = SN , N = S ′N ′, N ′ = T N , N =
T ′N ′ for some channels S,S ′, T , T ′. Hence,

max
R

F (N ,RM) = F (N ,R0M)

≤ F (SN ,SR0M)

= F (N ′,SR0T ′M′)

≤ max
R

F (N ′,RM′).

(62)

The converse inequality follows in the same way.

Proof. Suppose that N maps operators over HA to oper-
ators over HB, and M maps operators over HA to oper-
ators over HC . Then, using Proposition 4 together with
the main theorem for d maximal, i.e.,

d = dim(HA)2 dim(HB) dim(HC), (63)

we obtain a variation of Theorem 3 which we will find
most useful, and which is the direct generalization of
Theorem 2:

Corollary 5. If Ñ and M̃ are generalized complemen-

tary channels of N and M, respectively, then

max
R

F (RN ,M) = max
R′

F (Ñ ,R′M̃), (64)

where the maxima are over quantum channels with the

appropriate source and target spaces.
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Proof. The only thing we have to show is that the max-
ima taken without constraint on the number of Kraus
operators are always attained by trace-preserving maps,
i.e. quantum channels. We use the fact that for any
states ρ,τ , and σ, and 0 ≤ p ≤ 1, we have from the
strong concavity of the fidelity [29] that

f(pρ+ (1 − p)τ, σ) ≥ √
p f(ρ, σ) = f(pρ, σ). (65)

Suppose that R is a trace-nonincreasing completely pos-
itive map. We can always “complete” it to a trace-
preserving channel R = R + S, where S is another
completely positive map. For example, one can take
S(ρ) = Tr(ρ − R(ρ))τ for some state τ . We then have,
using the shorthands N e ≡ N ⊗ id and ψ ≡ |ψ〉〈ψ|,

F (RN ,M) = min
ψ
f [(RN )e(ψ),Me(ψ)]

= f [(RN )e(ψ0),Me(ψ0)]

= f [(RN )e(ψ0) + (SN )e(ψ0),Me(ψ0)]

≥ f [(RN )e(ψ0),Me(ψ0)]

≥ min
ψ
f [(RN )e(ψ),Me(ψ)]

= F (RN ,M).

(66)

The same argument works for the right-hand side of
Eq. (64).

III. SPECIAL CASE M̃2 = M̃

Theorem 3 and Corollary 5 might not seem directly
useful since they express one optimization in terms of a
different but seemingly equally hard one. However, we
will show that there are interesting problems, in partic-
ular error correction and minimax state discrimination,
where one of the optimizations can be given a general
and straightforward near-optimal solution. More gener-
ally, we will consider the case where

M̃2 = M̃. (67)

One can readily check that this can indeed be satisfied
in the special case where M = 1, i.e., quantum error
correction.

A. Near-optimal bounds

We will concentrate here on the form of our theorem
given in Corollary 5, however, it is straightforward to
apply the same reasoning to Theorem 3.

In this section, we will replace the worst-case entan-
glement fidelity F (N ,M) by a distance d(N ,M). From
the Bures distance [30], we can define dρ(N ,M) =√

1 − Fρ(N ,M), which can be used to define

d(N ,M) := max
ρ

dρ(N ,M) =
√

1 − F (N ,M) (68)

which satisfies the triangle inequality:

d(N ,M) = max
ρ
dρ(N ,M)

≤ max
ρ

[dρ(N ,R) + dρ(R,M)]

≤ d(N ,R) + d(R,M).

(69)

The equation in Corollary 5 in terms of this distance
becomes

min
R

d(RN ,M) = min
R′

d(Ñ ,R′M̃). (70)

Corollary 6. If Ñ and M̃ are generalized complemen-

tary channels of N and M, respectively, and M̃2 = M̃,

then

1

2
d(Ñ , ÑM̃) ≤ min

R
d(RN ,M) ≤ d(Ñ , ÑM̃). (71)

Proof. The rightmost inequality follows from picking the

suboptimal R′ = Ñ . For the leftmost inequality, suppose

that R′
0 minimizes d(Ñ ,R′M̃). Then, using the triangle

inequality,

d(Ñ , ÑM̃) ≤ d(Ñ ,R′
0M̃) + d(R′

0M̃, ÑM̃). (72)

Let ε0 := minR d(RN ,M). We know that the first term
is equal to ε0 since R′

0 is optimal. For the second term,
note that

d(R′
0M̃, Ñ M̃) = d(R′

0M̃2, Ñ M̃) ≤ d(R′
0M̃, Ñ ) = ε0.

(73)
For the last inequality, we used the fact that

d(NR,MR) ≤ d(N ,M) (74)

for any channels N , M, and R. This property follows
from the fact that R simply limits the number of in-
put states over which the maximum is taken inside the

definition of the distance. It follows that d(Ñ , ÑM̃) ≤
2ε0.

Note that computing d(N̂ , N̂ M̂) requires a convex
maximization over inputs only [27], which is a significant
simplification over the minimax minR d(RN ,M).

B. Near-optimal recovery channels

Let us show how we can construct a recovery channel
Rg which performs as well as guaranteed by our bounds
(Eq. (71)), i.e.,

d(RgN ,M) ≤ d(Ñ , ÑM̃). (75)

If we take M̃ = M̂ to be complementary to M and

Ñ = N̂ to be complementary to N , then the fidelity

F (N̂ , N̂ M̂) = 1 − d(N̂ , N̂ M̂)2 is given through a mini-
mization and a maximization as

F (N̂ , N̂ M̂) = min
ρ

max
‖A‖≤1

Re gρ(A,U
′), (76)
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where the bilinear function gρ is defined in Eq. (59), and

U ′ yields N̂ through N̂ (ρ) = Tr2[U ′(ρ⊗ |0〉〈0|)(U ′)†].
The minimax theorem guarantees that there exists a

saddle point, i.e., a pair (ρ0, A0) such that we have both

Re gρ0(A0, U
′) = min

ρ
max
‖A‖≤1

Re gρ(A,U
′) (77)

and

Re gρ0(A0, U
′) = max

‖A‖≤1
min
ρ

Re gρ(A,U
′). (78)

If we know this saddle point, then, defining the trace-
nonincreasing completely positive map

S(ρ) := Tr2(A0(ρ⊗ |0〉〈0|)A†
0) (79)

and completing it to the trace-preserving channel

Rg(ρ) = S(ρ) + Tr(ρ− S(ρ))τ (80)

for some state τ , we have

F (RgN ,M) ≥ F (SN ,M)

= min
ρ

max
U ′

Re gρ(A0, U
′)

= max
‖A′‖≤1

min
ρ

Re gρ(A0, A
′)

≥ min
ρ

Re gρ(A0, U
′)

= Re gρ0(A0, U
′)

= F (N̂ , N̂M̂),

(81)

i.e., Rg satisfies Eq. (75). Hence, a near-optimal cor-
rection channel Rg is given by the saddle point in the

minimax problem yielding the estimate F (N̂ , N̂M̂). For

completeness, suppose that instead of M̂ complemen-
tary to M, we use a generalized complementary channel

M̃ ∼ M̂. Let M′ be complementary to M̃. Using The-
orem 2 we obtain M′ ∼ M. As above, we can build R′

g

such that

d(R′
gN ,M′) ≤ d(N̂ , N̂M̃). (82)

Suppose that T ′ is such that M = T ′M′. Then using
Rg := T ′R′

g, we obtain

d(RgN ,M) ≤ d(R′
gN ,M′) ≤ d(N̂ , N̂M̃). (83)

If furthermore Ñ ∼ N̂ , we have

d(RgN ,M) ≤ d(N̂ , N̂M̃) ≤ d(Ñ , ÑM̃) (84)

by the monotonicity of the distance.
Let us now focus on the problem of finding the saddle

point in the case where

M(ρ) = ρ⊗ σ (85)

and we use the complementary channel

M̂(ρ) = σTr(ρ). (86)

We use a channel M slightly more general than for pure

quantum error correction so that we can use for M̂ the
most general channel similar to a channel complementary
to the identity. This means that to simulate the identity
rather than this channel M, we can just use the near-
optimal channel Rg that we will obtain and trace out
the extra state σ.

We also write

N (ρ) =
∑

i

EiV ρV
†E†

i (87)

as in Section I D.
Assuming σ =

∑
j pj |j〉〈j|, and writing a purification

of σ as |ψ〉 =
∑

i

√
pi|i〉A ⊗ |i〉R, we define the operator

Xρ :=
ψ

VN

//

V †
N

ρ A

//

B
//

R

=
∑

i ψ
VN

i i

//

V †
N

ρ A

//

B
//

R

=
∑

i

ρV †E†
i ⊗ (EiV ⊗ 1)|ψ〉

=
∑

ij

ρV †E†
i ⊗

√
pjEiV |j〉 ⊗ |j〉.

(88)

(We note that the operator Xρ defined here is different
from the one denoted by the same symbol in Ref. [1].)
One can check that

gρ(A,U
′) = Tr[A(X†

ρ ⊗ |0〉)], (89)

where the state |0〉 is the state used before to relate A to
a completely positive map S. Since this state is arbitrary,
we can just absorb it in the definition of a new operator
A, which is now not given by a square matrix anymore,
and we write simply

gρ(A,U
′) = Tr(AX†

ρ), (90)

where the completely positive map S is obtained from A
by

S(ρ) := TrB(AρA†). (91)

In terms of Xρ, we then have

F (N̂ , N̂M̂) = min
ρ

max
‖A‖≤1

Re Tr(AX†
ρ) = min

ρ
Tr|Xρ|,

(92)
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where

|Xρ| :=

√
X†
ρXρ. (93)

The second equality in Eq. (92) uses the fact that
max‖A‖≤1 Re Tr(AX†

ρ) = Tr|Xρ|, which can be seen
as follows. Let Xρ = V |Xρ| be a polar decomposi-
tion of Xρ. Then Re Tr(AX†

ρ) ≡ Re Tr(A|Xρ|V †) =

Re Tr(V †A|Xρ|). Since ‖V †A‖ ≤ ‖V †‖‖A‖ ≤ 1 and
|Xρ| ≥ 0, we have (see Appendix A) Re Tr(V †A|Xρ|) ≤
Tr|Xρ|. This bound is achievable for A = V .

The following result shows that under certain circum-
stances one can use as a saddle point the state ρ0 mini-
mizing Tr|Xρ| together with a unitary operator A0 com-
ing from the polar decomposition of Xρ0 ,

Xρ0 = A0|Xρ0 |. (94)

To express S, it will be convenient to introduce the com-
pletely positive map Φρ defined by

Φ†
ρ(τ) = TrBR(XρτX

†
ρ)

=
∑

ij

Tr(σV †E†
iEjV )ρV †E†

j τEiV ρ.
(95)

Note also that

X†
ρXρ = Φρ(1). (96)

Proposition 7. Let N be defined as in Eq. (87) and Φ
as in Eq. (95). Let ρ0 be a state minimizing

F0(ρ) := Tr
√

Φρ(1). (97)

We have

F0(ρ0) ≤ max
R

F (RN , id) ≤ 1

4
F0(ρ0) +

3

4
. (98)

If furthermore the optimal state ρ0 is unique and of full
rank, then any channel of the form

Rg(τ) = Φ†
ρ0

[Φρ0(1)−
1

2 τΦρ0 (1)−
1

2 ] + T (τ), (99)

for some completely positive map T , is near-optimal in

the sense that it satisfies

F0(ρ0) ≤ F (RgN , id). (100)

Proof. The inequalities involving F0(ρ0) follow directly
from Proposition 71. In view of the previous discus-
sion, we only need to prove that the optimal state ρ0
together with an operator A0 solving Xρ0 = A0|Xρ0 |
form a saddle point for Re Tr(AX†

ρ). It is clear from
the definitions that this pair (A0, ρ0) attains the value
minρ max‖A‖=1 Re Tr(AX†

ρ). But we do not a priori know
which solution A0 of the equation Xρ0 = A|Xρ0 | is such
that ρ0 is the minimum for Re Tr(A0X

†
ρ), which is what

is needed for (A0, ρ0) to be a saddle point. We show in
Appendix B that if ρ0 has full rank, then for any state

ρ′, Re Tr(A0Xρ′) is independent of which solution A0 of
Xρ0 = A|Xρ0 | we choose. Hence, any of them yields a
near-optimal correction channel.

Note that the condition that ρ0 be full-rank is neces-
sary for the above construction to work. A counterexam-
ple to this construction for the case when ρ0 is not of full
rank is presented in Appendix C.

C. Nature of the approximately correctable

channels

It would seem natural that an approximately cor-
rectable channel is also close to some exactly correctable
channel. Here we will show a slight variation of this in-
tuition in terms of the worst-case entanglement fidelity,
namely that an approximately correctable channel is al-
ways similar to one which is close to an exactly cor-
rectable channel.

Theorem 8. For any channel N , there exists an exactly

correctable channel N0 and a channel N ′ ∼ N such that

d(N ′,N0) = min
R

d(RN , id). (101)

Proof. Let

ε := min
R

d(RN , id). (102)

To prove that d(N ′,N0) ≥ ε, consider the channel R0

correcting N0. Using first the monotonicity of the dis-
tance and then Corollary 4, we conclude

d(N ′,N0) ≥ d(R0N ′, id) ≥ min
R

d(RN ′, id) = ε. (103)

For the converse, observe that by Corollary 5 there
exists a constant channel C,

C(ρ) = σTr(ρ), (104)

such that

d(N̂ , C) = ε. (105)

Using Theorem 3 with d = 1,

ε = d(N̂ , C) ≥ min
|R|=1

d(RN̂ , C) = min
|R|=1

d(N ,RĈ). (106)

Let R0 be the optimal trace-nonincreasing CP map on
the right-hand side. It is of the form R0(ρ) = AρA†

where A†A ≤ 1. Consider the isometry

V := A⊗ |0〉 +
√
1−A†A⊗ |1〉 (107)

with corresponding map V(ρ) := V ρV †. We have

ε ≥ d(N ,R0Ĉ) = d(N ′,VĈ) (108)

where

N ′(ρ) := N (ρ) ⊗ |0〉〈0|. (109)
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Clearly N ′ ∼ N . In addition, we know from the Knill-

Laflamme conditions (see Section I D) that Ĉ is exactly

correctable. Therefore N0 = VĈ is also exactly cor-
rectable.

Let us find a channel Ĉ complementary to C explicitly.
If σ =

∑
i pi|i〉〈i|, we have

C(ρ) =
∑

ij

pi|i〉〈j|ρ|j〉〈i| = TrEWρW †, (110)

where

W =
∑

ij

√
pi|i〉〈j| ⊗ |ij〉E. (111)

The corresponding complementary channel is

Ĉ(ρ) = TrBWρW † =
∑

ijj′

pi〈j|ρ|j′〉 ⊗ |ij〉〈ij′| = ρ⊗ σ.

(112)
Hence we see that the exactly correctable channel N0 in
the above proof has the form

N0(ρ) = V (ρ⊗ σ)V †, (113)

which is indeed the general form of a correctable chan-
nel [31].

D. State discrimination

To illustrate the generality of our result, let us show
how it yields a nontrivial result for minimax state dis-
crimination [32].

We want to specialize the relation

1

2
d(N̂ , N̂M̂) ≤ min

R
d(RN ,M) ≤ d(N̂ , N̂M̂), (114)

where d(N ,M) =
√

1 − F (N ,M) and F (N ,M) is the
worst-case entanglement fidelity between channels N and
M, to the case where

M(ρ) =
∑

i

|i〉〈i|ρ|i〉〈i| (115)

and

N (ρ) =
∑

i

ρi〈i|ρ|i〉 =
∑

ij

s†i |j〉〈i|ρ|i〉〈j|si (116)

for a fixed set of states {ρi}, where ρi = s†isi. This is
the problem of minimax state discrimination [32]. In-
deed, this channel N can be thought of as a classical-to-
quantum channel, which is just what a state preparation
is: it outputs a quantum state depending on some clas-
sical data, namely, the choice of which ρi to output.

Since the output of M is diagonal in the basis |i〉, we
also expect the output of the optimal channel R to be,

in which case there is a positive operator-valued measure
(POVM) with elements Ai (

∑
iAi = 1) such that

R(ρ) =
∑

i

Tr(ρAi)|i〉〈i|. (117)

We then have

max
R

F (RN ,M) = max
A

min
p

∑

i

√
pi

√∑

j

pjTr(ρjAi),

(118)
where pi = 〈i|ρ|i〉 is all that matters about the initial
state ρ. Since the classical fidelity is jointly concave in
both arguments, the minimum of p is achieved when p is
pure. Hence,

max
R

F (RN ,M) = max
A

min
i

√
Tr(ρiAi). (119)

The square of this expression is the minimal worst-case
success probability for the discrimination of the states ρi.

In order to see what the bound F (N̂ , N̂M̂) is, we need
channels complementary to N and M, or the correspond-
ing isometries V and W . If

W =
∑

i

|i〉E ⊗ |i〉B〈i|, (120)

then clearly M(ρ) = TrEWρW †. Hence, we can pick

M̂ := TrBWρW †. Similarly, if

V =
∑

ij

|ij〉E ⊗ s†i |j〉B〈i|, (121)

then N (ρ) = TrEV ρV
†, and so we can use N̂ :=

TrBV ρV
†. The worst-case entanglement fidelity

F (N̂ , N̂ M̂) then can be written as

F (N̂ , N̂M̂) = min
ψ

max
U

|f(U, ρ)|, (122)

where

f(U, ρ) =
ψ

V 0

//

U
// V †

//

W †

//

ψ

=
∑

ij

ψ
i j s

†
i

0
U

si j

i i

//

ψ

=
∑

i

〈i|ρ|i〉 s
†

i

0
U

si

oo

i

=
∑

i

〈i|ρ|i〉 ρi

0
U

oo

i = Tr(UX†),

(123)
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with |ψ〉 being a purification of ρ, and

X =
∑

i

〈i|ρ|i〉 ρi ⊗ |i〉〈0|. (124)

In the above, we used the notation

A

oo

=
∑

i

i i

A //

=
∑

i

i A i = TrA.

(125)

We also used that fact that

ψ
i i

//

ψ =
i

ψ ψ

oo

i

= i ρ i = 〈i|ρ|i〉.
(126)

Therefore,

X†X =
∑

i

ρ2i 〈i|ρ|i〉2 ⊗ |0〉〈0| (127)

and

F (N̂ , N̂ M̂) = min
ρ

Tr
√
X†X. (128)

Hence, the quantity

∆ := 1 − min
p

Tr

√∑
i
p2i ρ

2
i (129)

satisfies

1

4
∆ ≤ min

A
max
i

[
1 −

√
Tr(ρiAi)

]
≤ ∆, (130)

i.e.,

1

2
∆− 1

16
∆2 ≤ min

A
max
i

[1 − Tr(ρiAi)] ≤ 2∆−∆2. (131)

This provides a simple estimate to the optimal achievable
solution to the minimax state discrimination problem.

We note that the same upper bound, and a better lower
bound exactly equal to ∆, can also be derived [10] by
applying the minimax theorem to previously obtained
state discrimination bounds [33–35].

IV. COMPARISON WITH OTHER RESULTS

Results similar to ours exist in the special case M =
id [9, 10], or in the particular case of state discrimina-
tion [33]. In these works, bounds are derived for the en-
tanglement fidelity for a fixed state, but a direct applica-
tion of the minimax theorem yields bounds for the worst-
case entanglement fidelity [10]. However, it is not known

whether there exists an efficient procedure for construct-
ing near-optimal recovery channels compatible with the
worst-case bounds obtained in this way.

Let us show that our method also works for the fixed-
state entanglement fidelity, at least for the main theorem.
Then we will see that it yields almost the same bounds
as in Ref. [10] in the case M = id, albeit weaker.

It is easy to show that both Theorems 3 and 5 still hold
if the worst-case fidelity F is replaced by the fidelity Fρ
for a fixed input state ρ [1]. The proofs are much simpler
as the minimum disappears from Eq. (58). Hence, it
suffices to see that max‖A‖≤1,‖A′‖≤1 g(A,A′) is equal to
both sides of the equation

max
|R|≤d

Fρ(RN ,M) = max
|R′|≤d

Fρ(N̂ ,R′M̂) (132)

when N̂ and M̂ are complementary, respectively, to N
and M. From this it follows also that if Ñ ∼ N̂ and
M̃ ∼ M̂, then

max
R

Fρ(RN ,M) = max
R′

Fρ(Ñ ,R′M̃). (133)

However, since Fρ does not have the special property
expressed in Eq. (74), we cannot use the same technique

to get a simple approximation of maxR′ Fρ(Ñ ,R′M̃) in

the case M̃2 = M̃. However, we can obtain an inequality
similar to Eq. (71) for the important case

M̃(σ) = ρTr(σ), (134)

where ρ is the same state as the one used to evaluate the

fidelity. This channel M̃ is generalized complementary
to M = id. Hence, this corresponds to the approximate
quantum error correction problem.

Concretely, suppose that R′
0 is such that

dρ(Ñ ,R′
0(ρ)Tr) = min

R′
dρ(Ñ ,R′(ρ)Tr) ≡ ε0. (135)

Then, using the triangle inequality, we have

dρ(Ñ , Ñ (ρ)Tr) ≤ ε0 + dρ(R′
0(ρ)Tr, Ñ (ρ)Tr). (136)

The second term is calculated from

Fρ(R′
0(ρ)Tr, Ñ (ρ)Tr) = f(R′

0(ρ), Ñ (ρ))

≤ Fρ(Ñ ,R′
0(ρ)Tr) = 1 − ε20.

(137)

Hence, dρ(Ñ , Ñ (ρ)Tr) ≤ 2ε0, from which we obtain the
estimate

1

2
dρ(Ñ , Ñ (ρ)Tr) ≤ min

R
dρ(RN , id) ≤ dρ(Ñ , Ñ (ρ)Tr).

(138)
This is a weaker form of the bounds derived by Tyson

(Eq. (153) of Ref. [10]) using a different method. The
upper bound can be seen to be equivalent to the cor-
responding bound in Ref. [10], but the lower bound is
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weaker, which may be significant in the regime where
the optimal error is large.

Indeed, if we write the estimate explicitly in terms of
some Kraus operators Ei of N , we have

Fρ(Ñ , Ñ (ρ)Tr) = Tr

√∑

ij

Eiρ2E
†
jTr(ρE†

iEj). (139)

This is precisely the quantity that Tyson denotes by Λ
(Eq. (154) of Ref. [10]) (note that the quantity that Tyson
calls ‘fidelity’ is the square of our fidelity). Tyson writes

the channel as N (ρ) =
∑

i piFiρF
†
i , where Tr(ρF †

i Fj) =
δij and pi > 0, which is always possible. Hence, we obtain
his formula for Λ using Ei =

√
p
i
Fi.

The corresponding near-optimal channel that we ob-
tain in this way is the same as the one introduced
by Tyson, which is Rg defined in Eq. (99) but with
ρ0 = σ = ρ, i.e.,

Rg(τ) = Φ†[Φ(1)−
1

2 τ Φ(1)−
1

2 ] + T (τ), (140)

where

Φ†(τ) :=
∑

ij

Tr(ρE†
iEj)ρE

†
j τEiρ, (141)

and T is any CP map that makes Rg trace-preserving.
For instance, T can be chosen as

T (τ) = Tr(τP )σ, (142)

where P projects on the kernel of Φ(1), and σ can be any
state.

As explained in Ref. [10], this channel is not the same
as the one used in Ref. [9], which yields similar bounds
and was introduced by Petz [36, 37] who showed that it
yields exact inversion on two given states. The latter is
built in the same way, but from the CP map

Φ†(τ) =
√
ρN †(τ)

√
ρ. (143)

The performance of this channel with ρ maximally mixed
(known as the “transpose channel”) was also studied for
approximate QEC in terms of the worst-case fidelity in
Ref. [16].
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Appendix A: Proof of the relation

ReTr(V †A|Xρ|) ≤ Tr|Xρ|

Let {|i〉} be an eigenbasis of |Xρ|, |Xρ| =
∑
j xj |j〉〈j|,

xj ≥ 0. Since V is unitary and ‖A‖ ≤ 1, we have
‖V †A‖ ≤ ‖V †‖‖A‖ ≤ 1. This means that for all j,

‖V †A|j〉‖2 = 〈j|A†V V †A|j〉 =
∑

i

〈j|A†V |i〉〈i|V †A|j〉 ≤ 1.

(A1)

Therefore,

|〈j|V †A|j〉| ≤ 1, ∀j. (A2)

We thus have

Re Tr(V †A|Xρ|) = Re
∑

j

〈j|V †A|j〉xj ≤
∑

j

|〈j|V †A|j〉|xj

≤
∑

j

xj ≡ Tr|Xρ|.

Appendix B: The saddle point in the case of a

unique, full-rank ρ0

Our procedure for constructing a near-optimal re-
covery channel requires finding a saddle point (ρ0, A0)

of Re gρ(A,U
′), where U ′ yields N̂ through N̂ (ρ) =

Tr2(U ′(ρ ⊗ |0〉〈0|)(U ′)†). In the case of M(ρ) = ρ ⊗ σ,
we saw that this is equivalent to finding (ρ0, A0) that
achieves the optimization minρ max‖A‖≤1 Re Tr(AX†

ρ) =
minρ Tr|Xρ|. One way to approach the problem in
this case could be to first search for ρ0 that achieves
minρ Tr|Xρ|, which is a convex optimization task. If we
find ρ0 that is unique, then we know that it must be
the one at the saddle point. Now imagine that this ρ0 is
also of full rank. We will prove that in such a case the
staddle-point A0 can be taken to be A0 = U0, where U0

is any unitary that comes from the polar decomposition
of Xρ0 , Xρ0 = U0|Xρ0 |.

Clearly, the unitary U0 achieves the maximum
in max‖A‖≤1 Re Tr(AX†

ρ0
), because Re Tr(U0X

†
ρ0

) =

Re Tr(U0|Xρ0 |U †
0 ) = Tr|Xρ0 |, but we also need that ρ0

achieves the minimum in minρ Re Tr(U0X
†
ρ). If U0 is

the unique maximizer of max‖A‖≤1 Re Tr(AX†
ρ0

), then we
know that it must be a saddle point. The problem is that
in general A0 need not be unique. However, we will see
that if ρ0 is of full rank, A0 is unique up to a freedom
that is irrelevant for the value of Re Tr(AX†

ρ) whose sad-
dle point we are looking for. Hence, any operator A0 that
maximizes Re Tr(AX†

ρ0
) would yield a saddle point.

To show this, let us characterize the operators A,
‖A‖ ≤ 1, that satisfy

Re Tr(AX†
ρ0

) = Tr|Xρ0 |. (B1)

Eq. (B1) can be equivalently written as

Re Tr(Ǎ|Xρ0 |) = Tr|Xρ0 |, (B2)
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where (using the cyclic invariance of the trace)

Ǎ := U †
0A. (B3)

Note that ‖Ǎ‖ ≤ ‖U †
0‖‖A‖ ≤ 1.

Let |i〉, i = 1, . . . , d, be eigenvectors of |Xρ0 | ordered
such that the first n ≤ d of them are all those with
nonzero eigenvalues, |Xρ0 | =

∑
i≤n xi|i〉〈i|, xi > 0. Then

Eq. (B2) is equivalent to

Re
∑

i≤n

〈i|Ǎ|i〉xi =
∑

i≤n

xi, (B4)

or
∑

i≤n

(1 − Re 〈i|Ǎ|i〉)xi = 0. (B5)

Since ‖Ǎ‖ ≤ 1, we have |〈i|Ǎ|i〉| ≤ 1 for all i ≤ n. There-
fore, the above is satisfied if and only if

〈i|Ǎ|i〉 = 1, ∀i ≤ n. (B6)

From ‖Ǎ‖ ≤ 1 we also have that for all j ≤ n,

‖Ǎ|j〉‖2 = 〈j|Ǎ†Ǎ|j〉 =
∑

i

〈j|Ǎ†|i〉〈i|Ǎ|j〉

= 1 +
∑

i6=j

〈j|Ǎ†|i〉〈i|Ǎ|j〉 ≤ 1,
(B7)

which is only possible if

〈i|Ǎ|j〉 = 0, ∀ i 6= j , j ≤ n. (B8)

Since ‖Ǎ†‖ = ‖Ǎ‖ ≤ 1, we obtain via the same argument

〈i|Ǎ|j〉 = 0, ∀ i 6= j , i ≤ n. (B9)

This implies that Ǎ is block diagonal in the basis {|i〉},
with the upper block (corresponding to the first n basis
vectors) equal to 1. This is necessary and sufficient for
our condition to hold. Let us write

Ǎ =

(
1 0
0 B

)
(B10)

for some matrix B and 1 =
∑
i≤n |i〉〈i|.

Coming back to A itself, and labeling the blocks of U0

by Uµν , we have that

A = U0Ǎ =

(
U11 U12

U21 U22

)(
1 0
0 B

)
=

(
U11 U12B
U21 U22B

)
.

(B11)
Since the left block column of A is unique, we know that
it is equal to that of A0 which sits at the saddle point.

Now, suppose that we replace Xρ0 by Xρ which is such
that the support of |Xρ| is within the support of |Xρ0 |.
Then let us show that only the left block column of A
as defined above would matter for the calculation of the
pseudo-fidelity

Re Tr(AX†
ρ) = Re Tr(V †A|Xρ|), (B12)

where Xρ = V |Xρ|. Indeed, since the only nonzero com-
ponents of |Xρ| are in the upper left block, for the trace
in the last expression only the upper left block of V †A
would matter, and this block is

(V †A)11 = V †
11A11 + V †

21A21 = V †
11U11 + V †

21U21, (B13)

where Vµν are the corresponding blocks of V . We see that
(V †A)11 is independent of any freedom we may have in
choosing A and therefore behaves just like for the saddle-
point A0.

For M(ρ) = ρ⊗ σ, we can write |Xρ0 |2 in the form

|Xρ0 |2 =
∑

i

Eiρ
2
0E

†
i λi, (B14)

where Ei are suitable Kraus operators of N , and λi =

Tr(EiσE
†
i ) [M̂(ρ) = σTr(ρ)]. It is easy to see that a state

|ψ〉 is in the kernel of |Xρ0 |2 (and therefore of |Xρ0 |) if

and only if, for all i, λi = 0 or ρ0E
†
i |ψ〉 = 0. If ρ0 is full-

rank, the last condition reads E†
i |ψ〉 = 0. This means

that for any ρ, the kernel of |Xρ| contains the kernel
of |Xρ0 |, or equivalently, the support of |Xρ0 | contains
the support of |Xρ| for all ρ. By the above argument,
A0 = U0 would be the unique maximizer of Re Tr(AX†

ρ0
)

up to the freedom in the way Ǎ = U †
0A acts on the

kernel of |Xρ|, which has no relevance for the value of

Re Tr(Ǎ|Xρ|) = Re Tr(AX†
ρ0

). Hence, (U0, ρ0) is a sad-

dle point of Re Tr(AX†
ρ).

Appendix C: Inadequacy of the above procedure

when ρ0 is not of full rank

Unfortunately, the above argument cannot be used to
simplify the procedure in the general case, since in princi-
ple ρ0 need not be unique (take, for example, the extreme
case where N is correctable), and even if it is unique, it
need not be of full rank. Let us illustrate the latter case
by an example.

Let N̂ be a channel with a 2-dimensional input
(we will denote the input system by A) and a 2-
dimensional output (denoted by E) with basis vectors
{|0〉A, |1〉A} and {|0〉E , |1〉E}, respectively, that acts as

follows: N̂ (ρA) = (1 − s)ρE + s|0〉〈0|ETr(ρA). Take

M̂(ρA) = |0〉〈0|ETr(ρA). Note that N̂ = (1 − s)1 + sM̂
and N̂ M̂ = M̂. Let |ψρ〉AR be a purification of ρA.
From the concavity of the square of the fidelity [25], we
have

min
ρ
F 2
ρ (N̂ , N̂M̂)

= min
ρ
F 2((1 − s)|ψ〉〈ψ|ER + sM̂ ⊗ idR(|ψ〉〈ψ|AR),

M̂ ⊗ idR(|ψ〉〈ψ|AR))

≥ min
ρ

[(1 − s)F 2(|ψ〉〈ψ|ER,M ⊗ idR(|ψ〉〈ψ|AR))+

sF 2(M ⊗ idR|ψ〉〈ψ|AR,M ⊗ idR(|ψ〉〈ψ|AR))] ≥ s. (C1)
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We will show that the lower bound s is actually achiev-
able for ρA0 = |1〉〈1|A. Indeed, in this case we can take

|ψ〉AR = |1〉A|1〉R. We then have M⊗ idR(|ψ〉〈ψ|AR) =
|0〉〈0|E ⊗ |1〉〈1|R. We obtain

F 2
|1〉〈1|(N̂ , N̂ M̂)

= 〈0|E〈1|R((1 − s)|1〉〈1|E ⊗ |1〉〈1|R+

s|0〉〈0|E ⊗ |1〉〈1|R)|0〉E |1〉R = s. (C2)

Moreover, it is easy to see that ρA0 = |1〉〈1|A is the unique
state that achieves the minimum value.

The state ρA0 = |1〉〈1|A does not have full support. To
show that this does not allow us to obtain a saddle-point
A0 by simply taking any maximizer of maxA gρ0(A,U ′),
let us look at the support of |Xρ0 | as a function of ρ.

Since N̂ has three Kraus operators, Ê0 =
√

1 − s1,
Ê1 =

√
s|0〉〈0|, Ê2 =

√
s|0〉〈1|, we will take system B

in the circuit diagram to be 3-dimensional, with basis

{|0B〉, |1B〉, |2B〉}. The dilation of N̂ (or N ) is

|0〉A →
√

1 − s|0〉E |0〉B +
√
s|0〉E |1〉B, (C3)

|1〉A →
√

1 − s|1〉E |0〉B +
√
s|0〉E |2〉B. (C4)

From this, we obtain the Kraus operators of N ,

E0 =
√

1 − s|0〉〈0| +
√
s|1〉〈0| +

√
s|2〉〈1|, (C5)

E1 =
√

1 − s|0〉〈1|. (C6)

Using the expression for X†
ρXρ in terms of an arbitrary

choice of Kraus operators,

X†
ρXρ =

∑

ij

Eiρ
2E†

jTr(EjσE
†
i ), (C7)

we obtain (in our case σ = |0〉〈0|)

X†
ρXρ = E0ρ

2E†
0. (C8)

For ρ = ρ0 = |1〉〈1|, we have

|Xρ0 |2 = s|2〉〈2|. (C9)

However, if we take, for example, ρ = |0〉〈0|, we obtain

X†
|0〉〈0|X|0〉〈0| = |φ〉〈φ|, (C10)

where

|φ〉 =
√

1 − s|0〉 +
√
s|1〉. (C11)

We therefore see that the support of |Xρ0 | in this case
does not contain the support of |Xρ| for all ρ.

Let us show that due to this fact, not every unitary
one obtains from the polar decomposition of X†

ρ0
is a

saddle point. Denote the left and right ancilla systems (in
state |0〉) displayed in the main circuit diagram by C (of
dimension 2) and C′ (of dimension 3), respectively, and
denote the system corresponding to the middle wire by D
(the latter has dimension 3). Now, consider the case ρA =
|1〉〈1|A (the state |ψρ〉AR can be taken to be |1〉A|1〉R).
The action of the isometry VN is given by (C4), and U ′

in this case realizes this isometry on the input E′ when
the ancilla C′ is in state |0〉C′

. The input (from the right)

at E′ is in the state |0〉E′

since by definition this is the

output of M̂. Using that, one easily obtains that the
overlap reduces to

g|1〉〈1|(U,U
′) =

√
s〈1|B′〈φ|DU |2〉B|0〉C . (C12)

The real part of g|1〉〈1|(U,U
′) is maximized when

U |2〉B|0〉C = |1〉B′ |φ〉D. (C13)

However, we have a freedom of choosing how U acts on
Span{|0〉B|0〉C , |1〉B|0〉C}. To see that not every unitary
satisfying (C13) yields a saddle point, consider the case
of ρA = |0〉〈0|A. In this case, the overlap reduces to

g|0〉〈0|(U,U
′) = 〈0|B′〈φ|DU |φ〉B|0〉C . (C14)

Since the action of U on |φ〉B |0〉C is completely undeter-
mined by condition (C13), we could choose U0 such that
it satisfies both (C13) and, e.g.,

U0|φ〉B |0〉C = −|0〉B′ |φ〉D. (C15)

Then we obtain that Re g|0〉〈0|(U0, U
′) = −1 <

Re g|1〉〈1|(U0, U
′) =

√
s, i.e., (U0, |1〉〈1|) is not a saddle

point of Re gρ(A,U
′) since ρ0 = |1〉〈1| does not minimize

Re gρ(U0, U
′).


