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Disproof of Bell’s Theorem
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We illustrate an explicit counterexample to Bell’s theorem by constructing a pair of spin variables
in S3 that exactly reproduces the EPR-Bohm correlation in a manifestly local-realistic manner.

We begin by defining the detections of spin bivectors L(s, A\¥) by the detector bivectors D(a) and D(b) {Ref. [1]}:
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where the orientation X of S is assumed to be a random variable with 50/50 chance of being +1 or — 1 at the moment
of the pair-creation, making the spinning bivector L(n, A) a random variable relative to the detector bivector D(n):

L(n, \) = AD(n) < D(n) = AL(n, \). (3)
The expectation value of the simultaneous outcomes <7 (a, \¥) = £1 and %(b, \*¥) = £1 is then worked out as follows:
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E(a,b) = ligll — Z o (a, \F) Z(b, )\k)] within S® := the set of all unit (left-handed) quaternions (4)
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= 711g11 - Z L(a, A*)L(b, A*) | {cf. Appendix B of Ref. [1]}. (9)
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Here the integrand of (6) is necessarily a unit quaternion q(a, b; s, A¥) € S since S? is closed under multiplication;
(7) follows upon using (3); (8) follows upon using \> = +1; and ( ) follows from the fact that all unit bivectors such

as L(s, \) square to —1. Using I := e, A e, A e, with 2 = —1, the final sum can now be evaluated by recognizing
that the spins in the right and left oriented S satisfy the following geometrical relations {cf. Appendix A of Ref. [1]}:
Lia, X = +1) L(b, X = +1) = (+1-a)(+1-b) (10)

and L(a, \* = —1) L(b, \* = 1) = (+1-b)(+1-a). (11)

In other words, when A\* happens to be equal to +1, L(a, A¥) L(b, A\¥) = (+1-a)(+1 -b), and when A\* happens to
be equal to —1, L(a, A¥) L(b, A*) = (+1-b)(+ I -a). Consequently, the above expectation value reduces at once to

E(a, b) = L +7I-a)(+1-b) —l—l +1-b)(+1-a) = —%{ab—i—ba}: —a-b+0, (12)
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because the orientation A of S is a fair coin. Here the last equality follows from the definition of the inner product.
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