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The dynamics of a vibronic system in a lossy two-mode cavity is studied, with the first mode being resonant to
the electronic transition and the second one being nearly resonant due to Raman transitions. We derive analytical
solutions for the dynamics of this system. For a properly chosen detuning of the second mode from the exact
Raman resonance, we obtain conditions that are closely related to the phenomenon of Rabi resonance as it is
well known in laser physics. Such resonances can be observed in the spontaneous emission spectra, where the
spectrum of the second mode in the case of weak Raman coupling is enhanced substantially.
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I. INTRODUCTION

The field of cavity QED is one of the main areas of quan-
tum optical research nowadays [1]. Cavities enhance the
interaction time between an electromagnetic mode and an
atomic system, which increases the coherence time of the
atom-radiation system. This allows superior measurements of
quantum correlations and their properties compared to experi-
ments in free space. Many quantum optical phenomena in the
emission of cavities could be predicted, such as photon anti-
bunching and squeezed light [2], stationary occupation inver-
sion [3], or subnatural linewidths [4]. Cavities are also used
to “slow down” or even freeze radiation fields via interaction
on a sufficiently long time scale [5]. More recently, the dy-
namics of single-photon wave packets in the strong-coupling
regime has been theoretically studied [6] and also observed in
experiments [7]. Due to the manifold of interesting features,
cavity structures are one of the fundamental resources for the
technical implementation of quantum information algorithms.

The strong atom-radiation coupling regime of cavity QED
has been studied in various systems. In experiments, mi-
crowave and rf cavities are coupled to Rydberg atoms of large
principal quantum number [8], which propagate through the
cavity. Strong atom-field couplings have also been achieved
in optical cavities [9]. Another interesting development is
the combination of ion trapping and cavity QED [10, 11].
The fabrication of high-quality cavities and ion traps allows
one to keep an interacting atom at a very precise position
inside the cavity for very long times [12]. This yields ex-
perimental realizations for many of the above-mentioned the-
oretical predictions. More recently, based on Fabry-Perot-
interferometry [13], semiconductor microcavities have been
developed, where excitons in quantum dots act as atomic sys-
tems [14, 15].

In most cases, cavity QED systems describe the interac-
tion of atoms with a single-mode cavity. However, in general,
there exist more modes. A typical scenario is the quasires-
onant interaction of an atomic transition with a single cavity
mode, which dominates the coupling. The influence of other
modes can often be neglected. Due to their off-resonance, they
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contribute in an oscillatory manner to the interaction, which
averages to zero over sufficiently large times.

Depending on the structure of the atomic system, it may
be possible to excite an additional degree of freedom, such
as a vibrational excitation of a molecule or a trapped ion. In
such situations, additional cavity modes may become relevant
because of Raman resonances. The Raman resonances, how-
ever, essentially leave the Rabi oscillations nearly unchanged,
since the interaction on the Raman resonance and on the elec-
tronic transition are in phase [16]. Typically the dynamics of
the Raman-resonant cavity field follows that being resonant
on the bare electronic transition. The situation changes dras-
tically when the Raman transition is quasiresonant, such that
the detuning corresponds to the Rabi frequency of the strongly
coupled electronic transition. For such a scenario, will we use
throughout our paper the term Raman-assisted Rabi resonance
(RARR). In such a case, an irregular behavior of the two cav-
ity modes was predicted [17]. Phenomena of this type may
also play some role in semiconductor microcavities, where
phonons may be excited.

In the present paper, we study a vibronic system in a two-
mode cavity, where the first mode is resonant to the electronic
transition. The second mode is Raman quasiresonant, which
leads to vibrational excitations. The remaining detuning from
the exact Raman resonance is a free parameter. We show that
for a detuning of the order of the Rabi-oscillation frequency,
the Raman-assisted mode becomes resonantly driven by the
Rabi oscillation. This drastically changes the dynamics of the
radiation fields in the two modes. Under these conditions,
the excitation of the Raman-assisted mode can significantly
exceed that of the resonant mode, even when the Raman cou-
pling is much weaker than the pure electronic one.

The paper is organized as follows. In Sec. II we consider
the models of one- and two-mode cavities. Section III deals
with the solution of the dynamics of the two-mode cavity in
the case of RARR. In Sec. IV we study the spectral properties
of the radiation coupled out of the cavity. A summary and
some conclusions are given in Sec. V.

II. THE MODEL

In this section, the effects of a single-mode cavity interact-
ing with an atom are briefly examined, before we introduce
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the studied two-mode cavity system. For all considered cases,
two conditions are fixed. First, we have no more than one op-
tical excitation in our system, i.e., no external pumping. Sec-
ond, initially the system is excited only in the electronic state,
whereas the cavity modes are in the ground state.

A. One-mode cavity

Let us first consider an atom in a single-mode cavity. Such
models have been extensively studied; see, e.g., [18]. Hence
we will only briefly recall the main results of the treatment in
order to introduce the notation and to compare the results with
those for the two-mode cavities to be studied in our paper.

For an excited atom in an undamped one-mode cavity
which is initially in the vacuum state, the study of the time
evolution requires only two quantum states: |E〉 = |2, 0〉 rep-
resents the excited atom and no excitation in the cavity mode,
and |G〉 = |1, 1〉 represents the atom in the ground state and
one photon in the cavity. The Hamiltonian of the system with-
out losses may be written in the Schrödinger picture as

Ĥ0 = ~ω21(Â22+â†â)+~δωaâ†â+~ga(â†Â12+Â21â), (1)

where ω21 is the transition frequency of the atom, δωa = ωa−
ω21 is the detuning between the cavity mode and the atom,
and the atom-field coupling strength is ga. The operators Âkl
(k, l = 1, 2) and â are the atomic flip operators and the photon
annihilation operator of the intracavity field, respectively.

To include the atomic and cavity losses in the Schrödinger
picture, we apply the quantum-trajectory approach; for details
see, e.g., [4]. Hence we arrive at the non-Hermitian Hamilto-
nian,

Ĥ0,L = Ĥ0 − i~
κ

2
â†â− i~Γ

2
Â22, (2)

where Γ is the atomic decay rate and κ the cavity damping
rate. The state |ψ(t)〉,

|ψ(t)〉 = e−iω21tCE(t)|E〉+ e−iωatCG(t)|G〉, (3)

describes the evolution in the time interval before the pho-
ton is coupled out of the cavity. The initial condition is
|ψ(0)〉 = |E〉; CE(t) and CG(t) are the slowly varying prob-
ability amplitudes.

The solution of the Schrödinger equation reads

CE(t) =
ga
ΩR

cos(ΩRt+ φ)e−
1
4 (κ+Γ)t, (4)

CG(t) = −i ga
ΩR

sin(ΩRt)e
− 1

4 (κ+Γ)t, (5)

Ω2
R = g2

a −
(
κ− Γ− 2iδωa

4

)2

, (6)

tanφ = −κ− Γ + 2iδωa
4ΩR

. (7)

For strong coupling (ga � δωa,Γ, κ), we have a resonant
Rabi oscillation between |G〉 and |E〉 with frequency ΩR ≈

ga. The norm of |ψ(t)〉 decreases exponentially with time,
which is caused by κ and Γ. One may summarize these results
roughly as follows: for perfect resonance and no losses, we
have complete Rabi oscillations between the states |E〉 and
|G〉. In the general case, damping and frequency shifts occur.
When examining the spontaneous emission spectrum, we find
a doublet of peaks in the strong-coupling regime. The width
of the split lines is determined by the emission rates Γ and κ,
with the splitting being 2ΩR ≈ 2ga.

B. Two-mode cavity

The basic structure of the system under study is shown in
Fig. 1. We consider a vibronic system in a cavity; the bare
electronic transition of the former couples resonantly to one
cavity mode a, but is off-resonant to the other modes. Via cre-
ation of a vibrational quantum, however, the corresponding
vibronic transition can become nearly resonant with a second
mode b of lower energy. In the low-temperature regime, vi-
brational excitations in the excited electronic state can be ne-
glected. We also may ignore the off-resonant coupling of the
vibrationless transition to the second mode.

Based on these assumptions, the dynamics of our system
can be described by the following three quantum states. First,
in |E〉 = |2,0,0,0〉, the electronic state is excited, the vibra-
tional mode is in the ground state, and the two cavity modes
are in the vacuum state. Second, |G〉 = |1,0,1,0〉 describes
the vibronic system in the ground state and a photon in the
cavity mode a. Third, in |F 〉 = |1,1,0,1〉, the vibronic system
is in the electronic ground state with a vibrational excitation
and one photon in the cavity mode b.

FIG. 1. Sketch of the vibronic system interacting with the two-mode
cavity. The states |k, l〉 label the electronic and vibrational states,
k = 1, 2 and l = 0, 1, respectively.

In the following we will show that the most interesting sit-
uation will not be that of perfect Raman resonance with the
b mode, where the vibrational energy directly fills the gap be-
tween the electronic transition and that mode. For this pur-
pose, the detuning from the Raman resonance will be included
as a free parameter. Note that this free parameter, δω, is eas-
ily controlled by the cavity length. We will find situations
for which the evolutions of the excitations of the two cavity
modes completely differ from the situation for exact Raman
resonance, as well as from the case of one resonant and one
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far-off-resonant mode. In particular, the coupling of the vi-
bronic system with the mode b will substantially increase in a
RARR scenario. In this situation, the Raman resonance is re-
placed by a resonance condition which includes the Rabi fre-
quency describing the interaction of the vibronic system with
the a mode.

For the system without losses the Hamiltonian reads

Ĥ =~ω21(Â22 + â†â+ b̂†v̂†b̂ v̂)− ~δωb̂†v̂†b̂v̂

+ ~Â21

(
gaâ+ gbb̂v̂

)
+ h.c., (8)

where δω = ω21 − ωb − ων is the detuning from the Ra-
man resonance, with the mode frequency ωb of the b mode,
and the vibrational frequency ων . For the structure of the
vibration-assisted coupling to the b mode we refer to [19, 20].
The coupling strength gb describes the atom-field coupling on
the vibrational sideband. The operators b̂ and v̂ represent the
annihilation operators of the b mode and of a vibrational ex-
citation, respectively. The actual value for gb can be deduced
from the precise structure of the system under study. For our
purpose, we will assume that gb � ga, which holds true for
systems with a weak vibronic coupling. The state |ψ(t)〉 can
be written as

|ψ(t)〉 =e−iω21tCE(t)|E〉+ e−iωatCG(t)|G〉
+ e−i(ω21−δω)tCF (t)|F 〉,

(9)

where CK(t) (K = E,G, F ) are the occupation probability
amplitudes of the states as defined above.

For perfect Raman resonance (δω = 0), the Hamilto-
nian (8) reduces to

Ĥ =~ω21(Â22 + â†â+ b̂†v̂†b̂v̂)

+ ~Â21

(
gaâ+ gbb̂v̂

)
+ h.c..

(10)

In this case, the solutions for the coefficients are readily ob-
tained as

CE(t) = cos(ΩRt), (11)

CG(t) = −i ga
ΩR

sin(ΩRt), (12)

CF (t) = −i gb
ΩR

sin(ΩRt), (13)

Ω2
R = g2

a + g2
b . (14)

This corresponds to a three-level system, with an effective
Rabi frequency determined by the couplings of the two vi-
bronic transitions with the two cavity modes. In this case,
the occupation probabilities of the two modes obey exactly
the same dynamics. They are only weighted by the differ-
ent (squared) coupling strengths of the corresponding cavity
modes to the different vibronic transitions,

|〈F |ψ(t)〉|2

|〈G|ψ(t)〉|2
=
|CF (t)|2

|CG(t)|2
=
g2
b

g2
a

. (15)

For a weak vibronic coupling, the occupation of the b mode is
thus very small compared to that of the a mode. Note that in
a somewhat different context, this solution has been used for
cavity systems with degenerate cavity modes [16].

III. RAMAN-ASSISTED RABI RESONANCES

As already stated above, we are interested in the effect of a
Raman-assisted coupling of the atomic system to the b mode,
under conditions when the vacuum Rabi splitting due to the
coupling with the a mode is relevant, leading to so-called
RARR. To our best knowledge, such scenarios have not been
considered yet in the context of cavity QED. In this section,
we will study the dynamics without losses. We will visualize
the resulting dynamics and explain the physics behind RARR.

The mathematical structure of a lossless two-mode cavity
interacting with an atom has been studied in [17]. However,
the authors did not consider a physical system realizing the
studied behavior. Even more importantly, they only studied
some special conditions. Hence the authors could not provide
a detailed interpretation of the physics and they did not con-
sider the RARR, in which we are interested here. As we will
show below, in our system, an interpretation of the dynamics
is straightforward, both for our conditions of RARR and for
those considered in [17].

Recalling Eq. (8), the Schrödinger equation for this system
leads to a third-order differential equation for the coefficients
of the state |ψ(t)〉, such as[

d3

dt3
−iδω d

2

dt2
+(g2

a+g2
b )
d

dt
−ig2

aδω

]
CE(t)=0. (16)

These equations of motion can be easily solved in general,
but the analytical expressions do not yield much insight into
the physical phenomena. Thus we focus on some more direct
descriptions of the system at hand. An exponential ansatz eλit

for the solution leads to three purely imaginary solutions, as
we included no losses. They represent the three, generally
incommensurate, eigenfrequencies of the system.

0.0 0.5 1.0 1.5 2.0
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

∆Ω�ga

Im
HΛ

iL�
g a

,i
=

1,
2,

3

FIG. 2. Imaginary parts of the solutions λ1 (dashed line), λ2 (solid
line), and λ3 (dotted line) as functions of δω. They are obtained from
an exponential ansatz for Eq. (16) for the parameter ga/gb = 10.

In Fig. 2 they are shown as functions of δω for ga/gb =
10. For convenience we label them as λi (i = 1, 2, 3) for
further discussions. One can see that for almost no detuning,
we reobtain the results for a perfect Raman resonance; see
Eqs. (10)–(15). For very large detuning, δω � ga, the b mode
is far off-resonant, even from the vibrational state of the atom.
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Hence it is suppressed, as in the usual case of single-mode
cavity QED. The Rabi frequency of the oscillation between
the electronic state and the amode becomes ga, independently
of gb.

Around δω ≈ ga, we observe in Fig. 2 an avoided crossing
between λ2 and λ3. In the region of this crossing we have
λ2 ≈ λ3 ≈ −λ1 ≈ iga. Hence the main Rabi cycle between
the atom and the a mode is not suppressed. Parallel to this
transition, the close frequency branches λ2 and λ3 lead to an
independent oscillation with the frequency=(λ3−λ2)/2, with
= being the imaginary part. As this frequency is also not sup-
pressed, we obtain two independent oscillations in different
frequency ranges: the fast Rabi oscillation with approximately
ga and the much slower one with the frequency=(λ3−λ2)/2.

The three occupation probability amplitudes, given as a
sum of the three resulting exponentials with corresponding
prefactors, are of the form

CE(t) =

3∑
n=1

(λn − iδω)λn
g2
a + g2

b + (3λn − 2iδω)λn
eλnt, (17)

CF (t) =

3∑
n=1

−igbλn
g2
a + g2

b + (3λn − 2iδω)λn
eλnt, (18)

CG(t) =

3∑
n=1

−iga(λn − iδω)

g2
a + g2

b + (3λn − 2iδω)λn
eλnt. (19)

In the region around δω ≈ ga, we see that the coefficients
proportional to λn− iδω decrease significantly. Hence the co-
efficient CF (t) plays an increasing role. The main transition
is expected to be the strongly coupled electronic one between
|E〉 and |G〉. However, on a longer time scale, the occupa-
tion of the b mode, being related to the state |F 〉, may even
exceed the occupation of the strongly coupled a mode, due to
the effect of RARR.

In Fig. 3 we compare the occupation probabilities |CK(t)|2
of the states |K〉 (K = E,F,G) for ga/gb = 10, for both the
perfect Raman resonance [δω = 0, Fig. 3(a)] and for RARR
[δω = ga, Fig. 3(b)]. The time evolutions can be seen to
differ substantially in both cases. As expected from Eq. (15),
for Raman-resonance the occupation |CF (t)|2 of the bmode is
shown to follow that of the amode, |CG(t)|2, but the former is
smaller by two orders of magnitude. For the RARR scenario,
all three occupation probabilities still show the typical Rabi
oscillations, but for specific time intervals, the occupation of
the b mode even exceeds that of the a mode.

The physical explanation of this situation is rather simple.
The b mode is quasiresonant and, in slowly varying variables,
its occupation probability is oscillating with a frequency offset
of δω relative to the main Rabi cycle. Thus it becomes very
small in the case of Raman resonance. By choosing δω ≈ ga,
the vibronic transition becomes resonantly driven, which is
caused by the Rabi oscillation between the states |E〉 and |G〉.

This effect is well known in laser physics for two-mode
laser beams. The so-called Rabi resonances lead to an en-
hanced atomic excitation if the first laser mode is resonant
with the atomic transition and the second one is detuned by the
Rabi frequency characterizing the atom-field coupling with

the first mode [21, 22]. However, in cavity QED such an
effect, to our best knowledge, has not been considered so
far. The essential difference in our case, compared to laser
physics, is that we have a limited amount of energy, as there is
only one optical excitation. Consequently, as the occupation
of the bmode increases, the occupations of the other two states
are reduced, until the former becomes dominant and the Rabi
oscillations nearly die out. In this case, both the atom and the
a mode approach the values of |CE(t)|2 = |CG(t)|2 = 1/4.
Over time, the process is inverted, with the b mode driving the
Rabi cycle between |E〉 and |G〉, and the evolution starts over
again.

FIG. 3. (Color online) Occupation probabilities as a function of the
scaled time gat for the atomic excited state (black dotted line), the
resonant a mode (blue solid line), and the b mode (thick red dashed-
dotted line) for ga/gb = 10. (a) The pure Raman resonance, δω = 0,
where the b mode is magnified by a factor of 10 to be clearly visible.
(b) The RARR scenario, with the Raman-assisted transition being
detuned by δω = ga.

From this interpretation, it becomes clear why the authors
of [17] could not explain their results. As the eigenfrequen-
cies are incommensurate, the two oscillations do not map onto
each other with rational values. This yields a phase shift,
leading to a more or less irregular evolution. Furthermore,
the authors considered the situation for ga/gb = 2. In this
case, the change of the occupation of the bmode is large, even
within one Rabi cycle. Thus the b-mode occupation proba-
bility reaches its maximal value and decreases again within a
few Rabi cycles. Due to the irrational relations, this maximum
may appear at some random phase in the oscillation. Hence
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the dynamical pattern in such a case may seem to be “chaotic
like”, cf. [17]. For gb � ga, however, the change of the occu-
pation of the b mode is rather small within one Rabi cycle and
the dynamics of the two modes appears to be regular.

IV. SPECTRAL PROPERTIES OF THE EXTERNAL FIELD

Let us now include the losses into this system as in Eq. (2).
The Hamiltonian then reads

ĤL =Ĥ − i~Γ

2
Â22 − i~

κ

2
â†â− i~κ

2
b̂†b̂, (20)

where Ĥ is the lossless Hamiltonian in Eq. (8). The b mode
has the same emission rate κ as the a mode, as this rate
is just a geometric parameter of the cavity. Note that the
losses here include the out-coupling of the photon from the
b mode, but no decay of the vibrational quantum to be excited
in the Raman-assisted transition. These excitations have usu-
ally much longer lifetimes than the electronic excited state and
the intracavity photons. Thus we may disregard the decay of
vibrational excitations.

Similar to the results of the single-mode calculations see
Eqs. [(4)–(7)], now there appear shifts in all eigenfrequencies
λi. In the strong-coupling regime, these shifts become neg-
ligibly small. A real damping part occurs in all frequencies,
with a damping rate of (Γ + κ)/4. In the following, we will
study the photon emission properties of our system, which can
be easily measured in the field outside the cavity.

There are three different decaying channels through which
the photons may leave the cavity. First, it can be directly emit-
ted from the atom out of the side of the cavity. This process
occurs due to the atomic decay with the rate Γ. In an experi-
ment, where the experimenter usually excites the atom and is
interested in the photons emitted along the cavity axis, these
events represent unwanted photon losses. Second, a photon
can be emitted out of the cavity mode a to record a count at a
detector around the frequency ωa with rate κ. Third, it can be
emitted from the b mode, leading to a recorded event around
the frequency ωb. This process also occurs with a rate κ. We
remind the reader that the two mode frequencies ωa and ωb
are supposed to be significantly different and thus they can be
analyzed independently.

According to the quantum-trajectory method [6], the prob-
abilities pi(t) of emitting the photon at time t through one of
the three channels, i = 1, 2, 3, are given by

p1(t) = Γ

∫ t

0

dt′|CE(t′)|2, (21)

p2(t) = κ

∫ t

0

dt′|CG(t′)|2, (22)

p3(t) = κ

∫ t

0

dt′|CF (t′)|2. (23)

Here we number the decay channels in the order of their ex-
planation above. The limit t → ∞ yields the total emission
probabilities through each decay channel. These probabili-
ties are shown as functions of δω in Fig. 4. The a mode has

a significantly higher emission probability than the b mode,
since it is on average more strongly occupied. For δω close
to zero, the corresponding ratio reflects that of the coupling
strengths, ga to gb. For large detuning, practically no emis-
sion is given from the b mode, as it is far off-resonance. In
the case of RARR, δω = ga, the emission from the b mode is
enhanced by a factor of about 30 compared with exact Raman
resonance. Thus, it is approximately half of the total emission
probability of the a mode.

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2
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0.6

∆Ω�ga
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FIG. 4. (Color online) The time-integrated probabilities of finding
the emitted photon in the a mode (red dotted curve) or the b mode
(blue solid curve) are given as a function of δω. The dashed black
curve describes the photon losses of out the side of the cavity. The
parameters are chosen as Γ/ga = 0.05, κ/ga = 0.07, and gb/ga =
0.1.

-12 -10 -8 -6 -4 -2 0 2
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0.001
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HΩ-Ω21L�ga

g a
SHΩ

-
Ω

21
L

FIG. 5. (Color online) Logarithmic plot of the spontaneous emission
spectrum along the cavity axis for the two-mode cavity with perfect
Raman resonance (red dashed line, δω = 0) and RARR (black solid
line, δω = ga). The parameters are the same as in Fig. 4. The two
vertical lines indicate the resonance frequencies ωa (right) and ωb

(left) of the cavity modes.

Now we study the spontaneous emission spectrum of the
described system. We calculate the time-integrated spectra as
used in [4]. In the Schrödinger picture, the spectrum of the
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two-mode cavity can be easily obtained via

S(ω) = κ/(2π)[Sa(ω) + Sb(ω)], (24)

Sa(ω) =

∫ ∞
0

dt

∫ ∞
0

dt′C∗G(t)CG(t′)e−i(ω−ωa)(t−t′), (25)

Sb(ω) =

∫ ∞
0

dt

∫ ∞
0

dt′C∗F (t)CF (t′)e−i(ω−ωb)(t−t′). (26)

The respective single-mode spectra Sa(ω) and Sb(ω) are lo-
cated around their resonance frequencies. Thus we obtain
well-separated spectra, provided that ωa − ωb � ga is ful-
filled. We may again distinguish the two cases of exact Raman
resonance, δω = 0, and of RARR, δω = ga.

The spectra for both scenarios are shown in Fig. 5. For
the exact Raman resonance, we obtain the expected frequency
spectrum with two Rabi-split peaks around each mode fre-
quency. For the RARR, however, we get a triplet structure
around both mode frequencies. Both the spectra of the amode
and the b mode undergo a slight splitting at the low-frequency
side, which is of the order of gb. As an important effect of
RARR, we observe a substantial enhancement of the emission
spectrum of the b mode at the low-frequency side.

V. SUMMARY AND CONCLUSION

In summary, we have studied a two-mode cavity system
with a single vibronic system inside it. One of the cavity
modes, the a mode, was assumed to be resonant to the bare
electronic transition. The other one, the b mode, is far off-
resonant with respect to the electronic transition, so that it
would be ignored in standard scenarios of cavity QED. How-
ever, in our approach, the b mode couples nearly resonant to a
vibronic transition of the atomic system, with some detuning

that can be properly adjusted. For exact Raman resonance of
this mode with the corresponding vibronic transition, we re-
obtain the known results that the dynamics of both modes un-
dergoes the same Rabi oscillation. For rather weak vibronic
coupling, the occupation of the b mode is almost suppressed
compared with that of the a mode. Hence for exact Raman
resonance, the contribution of the former to the dynamics of
the system is very small.

The effects of the b mode become more important if we
choose a detuning from the exact Raman resonance by the
Rabi frequency for the strong interaction of the a mode with
the electronic transition. In this case, we obtain a Raman-
assisted Rabi resonance, which substantially increases the in-
fluence of the b mode on the system dynamics. The occupa-
tion of the bmode can even exceed that of the strongly coupled
a mode, thereby draining the population of the main Rabi cy-
cle. Over time, the occupation of the a mode increases again,
and so forth.

We have also studied the spontaneous emission spectrum of
the output field from the two-mode cavity. Due to the Raman-
assisted Rabi resonance, the spectrum around the frequency of
the bmode is strongly enhanced at its low-frequency side. The
spectra of both cavity modes are split into triplets, with the
dominant splitting being caused by the Rabi frequency driv-
ing the electronic transition through the a mode. In addition,
the spectra on the low-frequency sides of the two modes show
another splitting with the Rabi frequency driving the interac-
tion with the b mode. Altogether, our results clearly show that
Rabi-resonance effects may strongly modify the dynamics and
the emission spectra of a two-mode cavity interacting with a
vibronic system.

This work was supported by the Deutsche Forschungsge-
meinschaft through Grant No. SFB 652.
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