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Any physical quantum device for quantum information processing is subject to errors in

implementation. In order to be reliable and efficient, quantum computers will need error

correcting or error avoiding methods. Fault-tolerance achieved through quantum error cor-

rection will be an integral part of quantum computers. Of the many methods that have

been discovered to implement it, a highly successful approach has been to use transversal

gates and specific initial states. A critical element for itsimplementation is the availability

of high-fidelity initial states such as|0〉 and the Magic State. Here we report an experiment,

performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient

quantum control to improve the fidelity of imperfect initial magic states by distilling five of

them into one with higher fidelity.

Quantum information processing (QIP)1–4 promises a dramatic computational speed-up over

classical computers for certain problems. In implementation, the physical quantum devices for QIP

are subject to errors due to the effects of unwanted interactions with the environment or quantum

control imperfections. In order to be reliable and efficient, quantum computers will need error
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correcting or error avoiding methods. One method to achievefault-tolerant quantum computation is

to encode the state of a single quantum bit (qubit) into blocks of several qubits that are more robust

to errors. Based on this idea, quantum error correction codes, the theory of fault-tolerant quantum

computation and the accuracy threshold theorem have been developed5–7. A key element for fault-

tolerant quantum computation is to avoid bad error propagation. One straightforward protocol is to

use transversal gates where an error occurring on thekth qubit in one block can only propagate to

thekth qubit in the other blocks. A highly successful approach toachieve fault-tolerant universal

quantum computation is based on quantum error correcting codes with gates from the Clifford

group that can be applied transversally8, 9. Unfortunately they are not universal10, 11and they must

be supplemented with the preparation of not only the|0〉 state but also another type of state such

as aMagic State 12–16. Thus, a critical element for fault-tolerance is the availability of high-fidelity

magic states. Consequently, in the pursuit of experimentalfault-tolerant quantum computation, it

is important to determine whether we have sufficient experimental control to prepare these magic

states. In general these will be prepared with some imprecision. The states can be improved

by distilling many magic states to produce a fewer number of them which have higher fidelity.

Here we report an experiment, performed in a seven-qubit nuclear magnetic resonance (NMR)

quantum processor, showing sufficient quantum control to implement a distillation protocol based

on the five-bit quantum error correcting code12, 17 which uses only Clifford gates. The fidelity of

imperfect initial magic states is improved by distilling five of them into one with higher fidelity.
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Results

Theoretical protocol. The Clifford group is defined as the group of operators that maps the Pauli

group onto itself under conjugation. The Pauli group is defined as1 {±1l,±i1l,±σx,±iσx,±σy,

± iσy,±σz,±iσz} whereσx, σy, σz, and1l denote the Pauli matrices and identity operator, respec-

tively. The Clifford group onn qubits is a finite subgroup of the unitary groupU(2n) and can be

generated by the Hadamard gateH, the phase-shift gateSph, and the controlled-not gateCNOT

represented as

H =
1√
2
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(1)

in the computational basis{|0〉, |1〉}.

An arbitrary one-qubit state can be represented in the Blochsphere as

ρ = (1l + pxσx + pyσy + pzσz) /2 (2)

wherepx, py andpz are the three polarization components of the state. The magic states12 are

defined as the8 states withpx = ±1/
√
3, py = ±1/

√
3, pz = ±1/

√
3 (T type) and the12 states

with px = 0, py = ±1/
√
2, pz = ±1/

√
2; py = 0, pz = ±1/

√
2, px = ±1/

√
2; pz = 0,

px = ±1/
√
2, py = ±1/

√
2 (H type). These states are called ”magic” because of their ability,

with Clifford gates, to enable universal quantum computation and the ability to be purified, when

it has been prepared imperfectly, using only Clifford groupoperations12. In our current work we

distill an imperfect magic state into aT -type magic state represented as

ρM =
[

1l + (σx + σy + σz)/
√
3
]

/2. (3)
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To quantify how near a stateρ is to the magic state, we define the m-polarization (polarization in

the direction of the magic state)

p = 2 Tr[ρMρ]− 1 =
1√
3
(px + py + pz) . (4)

The distillation algorithm requires five copies of a faulty magic stateρin = ρ⊗5 as the input

state. In the original proposal12, the measurement of four stabilizersSi (i = 1, ...,4) is applied to

ρin, whereS1 = σx ⊗ σz ⊗σz ⊗ σx ⊗ 1l, S2 = 1l⊗ σx ⊗σz ⊗ σz ⊗ σx, S3 = σx ⊗ 1l⊗ σx ⊗σz ⊗ σz

andS4 = σz ⊗ σx ⊗ 1l ⊗ σx ⊗ σz. If the outcome of any of these observables is−1, the state

is discarded and the distillation fails. If the results of all the measurement are+1, corresponding

to the trivial syndrome, one applies the decoding transformation for the five-qubit error correcting

code17 to the measured state and obtains the output stateρdis ⊗ |0000〉〈0000| whereρdis has the

output m-polarizationpout. If the input m-polarizationpin > p0 =
√

3/7 ≈ 0.655, distillation is

possible andpout > pin and produces a state nearer to the magic one. In an iterative manner, it is

possible to obtain the output m-polarization approaching1.

As NMR QIP is implemented in an ensemble of spin systems, onlythe output of expectation

values of ensemble measurements18 are available. Consequently the above projective measure-

ment of the stabilizers cannot be implemented in our experiment. However, as the decoding opera-

tion is just a basis transformation from one stabilizer subspace to another, it is possible to evaluate

the result of the distillation after decoding. Therefore, we directly apply the decoding operation

to the input stateρin, and the output state becomes a statistical mixture of 16 possible outcomes
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represented as

ρout =
15
∑

i=0

θiρi ⊗ |i〉〈i| (5)

whereθi is the probability of each outcome, and|i〉 = |0000〉, |0001〉, ... , |1111〉, for i = 0,

1, 2, ..., 15, notingρ0 = ρdis. Now measuring|0〉 on all four qubits in|i〉 indicates a successful

purification. We can obtainθi andρi using partial quantum state tomography19.

Experimental results. The data were taken with a Bruker 700 MHz spectrometer. We

choose13C- labelled trans-crotonic acid dissolved in d6-acetone asa seven-qubit register. The

structure of the molecule and the parameters of qubits are shown in Table 1. We prepare a labelled

pseudo-pure stateρs = 00σz0000 using the method in Ref.20, where0 = |0〉〈0| and the order of

qubits is M, H1, H2, C1, C2, C3, C4. One should note that we are using the deviation density matrix

formalism.

We prepare an initial imperfect magic state with three equalpolarization components by

depolarizing the state0 = (1l+σz)/2. First we apply aπ/2 pulse to rotate the state0 to (1l+σx)/2

and then anotherπ/2 pulse along direction[cos a, sin a, 0] is applied. We use phase cycling to

average thex- andy- components of the state to zero, and therefore the polarization of the spin

initially in the state0 is reduced. The depolarized state is represented as

(1l− σz sin a)/2. (6)

Finally we apply a rotation with anglearccos(1/
√
3) about the direction[−1/

√
2, 1/

√
2, 0] to
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obtain an imperfect magic state

ρ =
[

1l + p(σx + σy + σz)/
√
3
]

/2 (7)

wherep = − sin a. The evolution ofσz in the preparingρ is shown in Fig. 1. By doing the above

operation for qubits M, C1, C2, C3, C4, respectively, we obtain five copies of the imperfect magic

statesρin = ρ⊗5. Exploiting partial state tomography, we measurep for each qubit and use the

average as the input m-polarizationpin for ρin.

The circuit for the distillation operation is shown in Fig. 2. C1 carries the distilled state

after the distillation. With partial state tomography, we can determineθi andρi in equation (5),

whereρ0 = ρdis, from which the output m-polarizationpout is obtained. The experimental results

for magic state distillation for variouspin are shown in Fig. 3, where figures (a) and (b) show the

measuredpout andθ0, respectively. The straight line in figure (a) represents the functionpout = pin.

The data points above the line show the states that have been distilled experimentally.

The implementation time of the distillation procedure is about 0.1 s, a non-negligible amount

of time (10%) compared to coherence time (T2 in Table 1). Hence the decay of the signals due

to the limitation of coherence time is an important source oferrors. We extractpout by measuring

the ratio ofθ0pout andθ0, where these two factors are obtained by various single coherent terms in

a series of experiments (see details in Methods). We have assumed that the terms have the same

amount of decoherence. The results of simulations with dephasing ratesT ∗

2
andT2 are shown in

Fig. 3 as the blue squares and red triangles. The simulation results show that the decoherence rates

are long enough to allow the distillation and suggest that the deviation ofθ0 from the theoretical
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expectation can be mainly attributed to relaxation effects. Additionally, imperfection in the shaped

pulses and inhomogeneities of magnetic fields also contribute to errors.

Discussion

We modify the original distillation protocol by avoiding the projective measurement, which is

not possible to implement in the NMR QIP’s. We exploit partial-state tomography to obtain each

output in the mixture of the outcomes after the distillation, and only in a post-processing step do we

choose the one we need. Although we could access the|0000〉〈0000| subspace using a procedure

similar to the pseudo-pure state preparation, the method would take a substantially longer amount

of time and would be more error-prone. In this work we aim for aquantitative result, i.e. increasing

the magic state purity. We need to minimize the readout manipulations to avoid control-error

induced distortions of the inferred final state and associated purity. Hence, we limited ourselves to

simple high-fidelity readout procedures.

In summary, we have implemented a protocol for distilling magic states based on the five

qubit quantum error correction code. We exploit five qubits by controlling a seven-qubit NMR

quantum information processor. The experiment shows that we have obtained enough control to

purify faulty magic states through distillation.

Methods

Overview of the experiment. To implement the experiment, we exploit standard Isech and
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Hermite-shaped pulses as well as numerically optimized GRAPE pulses21 to implement single-

spin operations. The GRAPE pulses are optimized to be robustto radio frequency (r.f.) inho-

mogeneities and chemical shift variations. All pulses are combined in a custom-built software

compiler22. The compiler loads the information about the internal Hamiltonian and the desired

unitary transformation from simple predefined building blocks. The blocks are then systemati-

cally put together to form a pulse sequence ensuring that theerrors in the building blocks do not

propagate as the sequence progresses.

R.f. selection. The effect of pulse imperfections due to r.f. inhomogeneities is reduced

by selecting signal based on r.f. power20. The signal selection is achieved by spatially selecting

molecules from a small region in the sample. The method is similar to imaging methods23 and has

been used in previous works20. Here we substitute the original pulse sequence proposed inRef.20

by a single GRAPE pulse to optimize the performance. Besidesreducing r.f inhomogeneities, the

spatial selection of spins can also reduce the static field inhomogeneities and therefore reduces the

loss of signal during the experiment. We have found that the effective relaxation time (T ∗

2
) of spins

after the r.f. selection increases significantly, e.g., up to a factor 2 for some spins.

Partial state tomography. We use the spectra obtained from the labelled pseudo-pure state

ρs = 00σz0000 shown in Fig. 4 as a phase reference and to normalize the signals in C1 and C2

spectra, for measuring the initial and output m-polarization. To obtain the reduced density matrix

of C1 through the partial state tomography, we expand equation (5) as a sum of product operators

19, and representρi as

ρi =
1

2
(I + pi,xσx + pi,yσy + pi,zσz) . (8)
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In the expansion there are 128 terms that are required to determine by the experiment.

The coefficients of such expansion can be directly related tothe measurable spectral ampli-

tudes19. On the other hand, such coefficients can also be related to the relevant parameters of (5),

i.e,pi,x, pi,y, pi,z andθi for i = 0, 1, 2, ...,15. The relation between these parameters and the NMR

observables can be expressed by the set of linear equations

C = A×R. (9)

Thenth element,C(n), of the column vectorC is the coefficient related to the operatorσn̄4

z Iσzsσ
n̄1

z σn̄2

z σn̄3

z

with the order of qubitsM , H1, H2, C1, C2, C3, C4, wheres can be one element of the Pauli group

{σx, σy, σz, I} and the vector̄n = (n̄1, n̄2, n̄3, n̄4) is the four digit binary representation of the

integern− 1 . Fors = σx, σy, σz, andI, R(n) = θnpn,x, θnpn,y, θnpn,z andθn, respectively. The

elements of the matrixA are given by

A(k,m) = Π4

i=1
(−1)k̄im̄i . (10)

Providing that we have all necessary coefficients measured,we can reconstruct the distilled

states using the following approach. First, we fit the NMR spectral lines to the yield complex

amplitudes for measuring all necessary coefficients19. Fig. 5 illustrates the spectra of C1 after

the completion of distillation forpin = 0.95, where the experimentally measured, fitted, and ideal

spectra are shown as the red, black, and blue curves, respectively. Then the state (5) is reconstructed

by solving the set of equations (9). Our calculation shows that four readout operations are sufficient

to determine all coefficients: first, read out on C1; second, read out on C1 after the application of a

π/2 pulse; third, read out on C2 after the application of aπ/2 pulse; and forth, read out on C2 after
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a polarization transfer from H1 to C2. The last two readout operations are sufficient to measure

all θi, and the first two are used to measureθiρi. The errors for the coefficients, as well errors for

pi,x, pi,y, pi,z andθi , are estimated from the uncertainty of the fitting parameters. The measured

initial and output m-polarization, as well asθi andρi, are listed as Supplementary Tables S1-S10

in the Supplementary Information25. The comparison of the various measuredρ0 with the theory

is shown as equations (1-7) in the Supplementary Methods in the Supplementary Information.
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M H1 H2 C1 C2 C3 C4

M −1309

H1 6.9 −4864

H2 −1.7 15.5 −4086

C1 127.5 3.8 6.2 −2990

C2 −7.1 156.0 −0.7 41.6 −25488

C3 6.6 −1.8 162.9 1.6 69.7 −21586

C4 −0.9 6.5 3.3 7.1 1.4 72.4 −29398

T2(s) 0.84 0.85 0.84 1.27 1.17 1.19 1.13

T
∗
2(s) 0.61 0.57 0.66 1.04 0.66 1.16 0.84

Table 1: Characteristics of the molecule of trans-crotonic acid.Molecular structure is shown

as Fig. 6. The chemical shifts and J-coupling constants (in Hz) are on and below the

diagonal in the table, respectively. The transversal relaxation times T2 measured by a

Hahn echo and T ∗

2
calculated by measuring the width of the peaks through fitting the

spectra are listed at the bottom. The chemical shifts are given with respect to reference

frequencies of 700.13 MHz (protons) and 176.05 MHz (carbons). The molecule contains

nine weakly coupled spin half nuclei but consists of a seven qubit system since the methyl

group can be treated as a single qubit using a gradient-based subspace selection 20.
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Figure 1: The evolution of σz in the preparation of a faulty magic state in Bloch sphere,

where arrows represent the states of the qubit. a, A π/2 rotation along y-axis transformsσz

(blue) toσx (green).b, Anotherπ/2 rotation along direction[cos a, sin a, 0] transformsσx (green)

to σx cos
2 a + σy cos a sin a − σz sin a (black). In phase cycling we apply the secondπ/2 rotation

by changinga to π + a to transformσx to σx cos
2 a + σy cos a sin a + σz sin a. After averaging

thex- andy- components to zero, the polarization is reduced to−σz sin a, shown as the yellow

arrow in figurec, noting thata ∈ [π, 3π/2]. d, A final rotation with anglearccos(1/
√
3) along

[−1/
√
2, 1/

√
2, 0] transforms−σz sin a (yellow) to− sin a(σx + σy + σz)/

√
3 (red).
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Figure 2:Gate sequence for Magic State distillation.The sequence is constructed from the five

qubit error correction code17 where±X = exp(∓iπσx/4), ±Y = exp(∓iπσy/4), andZα =

exp(−iασz/2). Qubits labelled as M, C1, C2, C3 and C4 are used to encode the five copies of the

initial state. Due to the nature of the algorithm, the carbonC1 contains the distilled magic state

only when M, C2, C3 and C4 are in the|0000〉 state. It is important to emphasize that all gates are

Clifford gates. The refocussing pulses (which also decoupleH1 andH2) are not shown.
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Figure 3: Experimental results after the completion of magic state distillation. Output m-

polarization of the faulty magic state (a) and the probabilityθ0 (b) of finding this state in the mix-

ture of outcomes [see equation (5)] as a function of the inputm-polarization of the initial faulty

magic state. The experimental data are represented by the filled circles and the error bars are esti-

mated from the uncertainty of the fitting parameters. The line in figure (a) represents the function

pout = pin. The experimental points above the line show the states thathave been distilled, while

the points below the line show the states that cannot be distilled in the protocol. The theoretical

prediction is represented by the black solid curves. The blue squares and red triangles, connected

by dashed lines for visual convenience, are the simulation results where the dephasing rates are

chosen asT ∗

2
andT2 (see Table 1), respectively. The effectiveT2 during the experiment should

be similar to the Hahn echoT2. The deviation can be attributed to other error sources (seetext).

The dephasing times of H1 and H2 actually do not influence the results because H1 and H2 can be

effectively assumed in0 andσz during the whole experiment, respectively.
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Figure 4: NMR spectra. a,b, Spectra of C1 and C2 obtained byπ/2 readout pulses when the

system lies in the labelled pseudo-pure stateρs = 00σz0000. The vertical axes have arbitrary but

the same units.
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Figure 5: Spectra of C1 after the completion of distillation for pin = 0.95. The spectra are

divided in four different parts shown as figures (a-d) for better visualization. The vertical axes

have arbitrary but the same units. The experimentally measured, fitting, and ideal spectra are

shown as the red, black, and blue curves, respectively.
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Figure 6: Molecular structure of trans-crotonic acid.
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