arXiv:1103.2339v2 [quant-ph] 6 Mar 2012

Coherent adiabatic transport of atoms in radio-frequency traps
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Coherent transport by adiabatic passage has recently been suggested as a high-fidelity technique
to engineer the centre-of-mass state of single atoms in inhomogenous environments. While the basic
theory behind this process is well understood, several conceptual challenges for its experimental
observation have still to be addressed. One of these is the difficulty that currently available op-
tical or magnetic micro-trap systems have in adjusting the tunneling rate time-dependently while
keeping resonance between the asymptotic trapping states at all times. Here we suggest that both
requirements can be fulfilled to a very high degree in an experimentally realistic setup based on radio
frequency traps on atom chips. We show that operations with close to 100% fidelity can be achieved
and that these systems also allow significant improvements for performing adiabatic passage with

interacting atomic clouds.

I. INTRODUCTION

Going beyond nano-technologies and engineering quan-
tum systems on the basis of single particles has in recent
years been one of the most exciting and active areas of
physics [I]. Due to the fragile nature of single particle
quantum states, quantum engineering techniques need to
be fault tolerant and lead to high fidelities on every appli-
cation to avoid the large and costly overhead that comes
with error correction schemes [2]. One class of techniques
that can achieve this are so-called adiabatic techniques
and their use in optical systems has been widely inves-
tigated in the past. In particular, Stimulated Raman
Adiabatic Passage (STIRAP) is one adiabatic technique
that allows to transfer the populations from one elec-
tronic state to another with 100% fidelity [3]. It relies
on the existence of a so-called dark state in a three level
system and requires a counter-intuitive pulse sequence to
coherently couple the individual levels.

Recently, it has been shown that similar techniques
can, in principle, be used to control the quantised centre-
of-mass state of single particles [4H6]. This atom-optical
analogue has been dubbed Coherent Transport by Adia-
batic Passage (CTAP) and while the possibility of observ-
ing this process has received significant attention [7] [§],
the conditions that have to be fulfilled for its observation
are currently hard to achieve experimentally. In partic-
ular, all states involved are required to be in resonance
during the whole process. However, since the strength of
the tunnel-coupling is usually adjusted by changing the
distance between the microtraps, which leads to signifi-
cant overlap of the neighbouring trapping potentials, the
eigenstates become time-dependent. Several solutions to
the problem have been suggested, with all involving sig-
nificant experimental resources or restrictions on the pa-
rameter space [4, [0l [7]. A similar process coupling clas-
sical light between optical waveguides has recently been
experimentally demonstrated [9HIT].

Here we propose a simple experimental setup that ful-
fills all necessary conditions to observe CTAP for cold
atoms. Our proposal is based on radio frequency (rf)
traps, which have recently become one of the most versa-

tile tools for trapping cold atoms [12] [13]. The advantage
of rf-systems is that their physics is well known, they
are relatively benign systems to work with experimen-
tally and are widely available today. They not only allow
to create standard trapping potentials [12], but can also
be used to coherently manipulate matter waves [13 [14]
or create complicated, non-standard trapping geometries
[5HI7].

We will also show that our setup offers the possibil-
ity for extending adiabatic techniques to clouds of in-
teracting atoms. The presence of interaction between
the atoms introduces non-linearities into the system [I§]
which have been shown to inhibit the effectiveness of
CTAP in transporting atoms [7]. Several strategies to
adjust the process and to allow transport in the pres-
ence of these non-linear interactions have been suggested,
for example a fixed detuning between the potential wells
[19]. Here we will show that dynamically controlling the
detuning between the potentials provides a marked im-
provement in the state transfer efficiency over both reg-
ular and fixed detuning CTAP.

In the following we will first briefly review the idea of
CTAP for ultracold atoms. In section [[II] we will outline
the theoretical description of rf-trapping and describe the
system needed for CTAP. In section [[V] we demonstrate
atomic transport in this system and show that the pro-
cess allows high fidelity atomic transport in contrast to
the intuitive method, which fails. In section M we ex-
amine the transport of an interacting atomic cloud and
how the presence of non-linear interaction can be com-
pensated for by dynamic detuning. Finally we conclude.

II. COHERENT TRANSPORT ADIABATIC
PASSAGE

To briefly review the process of adiabatic population
transfer let us consider a system of three ground states
in three identical microtraps, |0)r,]|0)a and |0)r (see
Fig. . In a linear arrangement the only tunnel couplings
that are significant are Jpps for the transition |0);, —
|0)pr and Jasg for |0)ar — |0) . Assuming that the three
states are in resonance when isolated, the Hamiltonian
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FIG. 1. Schematic of the CTAP process for an atom in the
left trap. Reducing the distances between the traps leads to
an increase in the tunnelling strengths.

for such a system is given by

0 —Jrm(t) 0
Ht)=h| —Joum(t) 0 ~Jur(t) | . (1)
0 —Jur(t) 0

and a smooth time dependence of the tunnelling coupling
pulses can be achieved by continuously changing the dis-
tances between the traps, dras(t) and darg(t). The eigen-
states of this Hamiltonian are very well known [3] and of
particular interest to our work here is the so-called dark
state

|d) = cos0|0), — sin6|0) (2)
for which the mixing angle 6 is given by
tand = Jpar /I g- (3)

This state has a non-degenerate zero eigenvalue and
therefore an adiabatic evolution will guarantee that the
system, once prepared in |d), will always stay in it. Note
that as the only contribution to |d) from the state |0) s
comes through the mixing angle, the system has zero
probability to be found in |0),; at any time.

The CTAP process can now be understood by consid-
ering an atom initially in the state |0). Increasing and
decreasing Jysr before Jp s, which is counter-intuitive
to traditional tunneling schemes, continuously decreases
the population in state |0);, and increase the population
in state |0) g, leading to a 100% transfer at the end of the
process.

It is worth to stress again the conditions that have
to be fulfilled for the above dynamics to occur. Firstly,
the process must be adiabatic with respect to the energy
level splitting in the harmonic oscillators, which means
that the movement of the traps has to be slow and the
whole process must take longer than wﬁé, where wyo is
the harmonic oscillator frequency of the individual traps.
As typical numbers of wyo for microtraps are in the kHz
regime, this means that the time required for this pro-
cess is much shorter than lifetimes of the trapped atoms,
which makes this process a promising tool for quantum
information. The other condition we require, as previ-
ously mentioned, is that all single trap states are in res-
onance at any point in time, which is difficult to achieve
once the trapping potentials start to overlap.

In the next section we will demonstrate how the second
condition can be fulfilled in an experimentally realistic
system using radio frequency potentials.

IIT. RADIOFREQUENCY TRAPPING

Radio frequency trapping relies on the process of cou-
pling magnetic sublevels in the presence of an inhomo-
geneous magnetic field [I2HI5]. Consider a hyperfine
atomic groundstate with total spin F = % In the
presence of the magnetic field the two hyperfine sub-
levels mp = & and m} = —3 are split by an amount
upgrmp B, where gp is the atomic g-factor of the hy-
perfine level and pp is the Bohr magneton. Irradiating
such a system with a linearly polarized radio frequency,
B,¢cos(wt), couples the sublevels |3, 2) + [, —1) with
spatial resolution due to the spatial dependence of the
magnetic field. Here we will concentrate on a one dimen-
sional description of such a process, which is valid when
the radio frequency and magnetic field to be orthogo-
nal to each other. Assuming the inhomogeneous mag-
netic field to be oriented in the z-direction, B=B(x), the

Hamiltonian of the coupled system can be written as

1 B(x) — hw hQ)
H(z) = 5 (MBQF h(Q> —upgrB(x) + hw ) ’
(4)
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where the strength of the coupling is given by the Rabi
frequency [20]

Q= PPIB, el JF(F +1) = mpm)p,  (5)

and where ép is the orientation of the local static mag-
netic field. The eigenvalues of this Hamiltonian are [15]

Fo(z) = %\/fﬁm + [ungrB(x) — ho)? | (6)
h2Q0?
AlupgrB(z) — hw]’
(7)

where the second expression is valid far from the reso-
nance, ) < [ppgsB(x) — hw]. The second term in the
expression can be viewed as a Stark shift on the energy
levels.

To create a multi-well potential it is necessary to use
several frequencies and the above analysis will become
significantly more complicated. However, if we assume
that the individual frequencies are spaced sufficiently far
apart and have low Rabi frequencies with respect to the
detuning, we can approximate the dynamics locally by
considering only the nearest resonance frequency, w(z) =
Wn(z) [15]. Formally this means that n is chosen such
that [upgrB(z) — hwy(y)] is minimized at any position
x. The effects of the combined Stark shifts, produced
by the frequencies not closest to resonance, can then be

1
~ :t§[u3gFB(ac) — hw] £




summed up as [15]

W02

Ly(z) = ,
@) = 2 TingrB@) — )]

(8)

so that the eigenvalues are given by

Fa(z) = i%\/thQ + [ugrB(x) — hw+ 2L, (2)]2.
(9)
From this, and considering the that the couplings are
strong enough to yield Landau-Zener transition proba-
bility close to unity, the resulting adiabatic potential is
given by

n(z)—1

Ve (z) = (-1)"® {Ei(x) F hwn(w)}

2
k=1

(10)
To produce a radio frequency potential with three min-
ima along the z-direction we will need six different radio
frequencies. In the following we will assume that the 1D
linear magnetic field is given by B(z) = bx where b is
the magnetic field gradient. For convenience we choose
five of the six radio frequencies to be equally spaced ini-
tially, w, = 2nm x 10000 kHz (n = 2 : 6), which produces
three equidistant minima. The value of the first radio
frequency wy does need to have the same distance as the
other frequencies, as its value only controls the height
of the first maximum (see Fig. [2) and can therefore be
adjusted without changing the trap geometry in the area
where tunneling takes place. For our potential we set
w; = 1000 kHz and in Fig. [2] we indicate the local fre-
quencies and show the resulting adiabatic potential in
the positive z-direction.

IV. ADIABATIC PASSAGE

In this section we will apply the CTAP procedure to a
single atom trapped in a three well rf-potential. We will
show that the strong decay of the influence of the radio
frequencies away from their respective resonance points
allows us to fulfill the resonance condition between the
asymptotic eigenstates at all times during the process.
While the Stark shift from neighbouring resonances can-
not be neglected, it is small enough to not destroy the
process.

Movement of the traps is achieved by changing the
individual radio frequencies that are associated with each
trap. Traditionally for CTAP the middle trap is chosen
to be at rest and the two outer ones are moving in and out
(see also Fig. . Here we will choose a slightly different,
but of course completely analogous, route in that we keep
the position of the left trap fixed. This allows us to keep
the values of the minima equal which is essential to satisfy
the condition of resonance between all traps.

In order to achieve CTAP when moving the traps in
this non traditional manner the approach of the right
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FIG. 2. Trapping potential created by six radio-frequencies
w1 = 1000 kHz and w, = 2wn x 10000 kHz, n = 2 : 6.
Their resonance-positions are marked by the broken vertical
lines and the range over which they are applied is indicated
by the grey and white zones. The magnetic field gradient
has the strength b = 213 Gem ™! and gr = —% for the 8"Rb
ground state 25 1 The Rabi frequency is chosen to be 27 x 50
kHz. The traps resemble harmonic oscillator potentials close
to each minima.

trap towards the middle must start earlier than that of
the approach of the middle trap to the left. One therefore
initially only changes the frequencies ws and wg, which
determine the shape and position of the right hand side
trap. After a delay 7, the two frequencies ws and wy
are changed as well, allowing to move the middle trap
towards the left. Due to the adiabatic nature of the pro-
cess the exact shape of this time-dependent frequency
adjustment, f(t), does not matter and we can formalise
this process as

w1 (t) = wi(to), (11a)
wa (t) = wa(to), (11b)
wslt) = wsto) — 3 7t —)6(t ~7) (11¢)
w(t) = walto) — F(t —7)6(t ) (114)
wslt) = wslto) = 3 (1)~ f(t =)0 —7), (11
wolt) = wolto) = f(1) — f(t =B —7)  (11f)

where 6(t) is the Heaviside step function. In Fig. [3(a)
these changes are shown for the typical system considered
here and the resulting movements of the trap minima are
displayed in Fig. [B[(b). As can been seen, the minimum
of the left trap remains stationary while the other traps
are moving towards and away from it. The resulting
movement between neighbouring traps exactly fulfills the
requirement of the CTAP process, leading to the desired
increase and decrease in the tunnelling strength between
initially the middle and right traps before the increase
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FIG. 3. (a) Radiofrequencies, wy, as a function of time to
achieve the counter-intuitive positioning sequence. (b) Posi-
tions of the trap minima as a function of time. The left trap
remains stationary while the other two traps move towards it.
The delay in the movement of middle trap in comparison to
the right trap (7 = 0.0055 s) is indicated by the broken line.

and decrease in tunnelling strength between the left and
middle traps.

To demonstrate adiabatic passage for single atoms and
for typical experimentally realistic parameters, we will in
the following show the results of numerical simulations of
the full Schrodinger equation. We choose a single 8"Rb
atom to be initially located in the centre-of-mass ground
state of the left trap and start the process described in
eq. (11)) with an initial separation between the radio fre-
quencies of 10000 kHz. The minimum distance to which
the frequencies approach each other is 200 kHz, which
ensures that we are always in the regime of tunnelling
interaction, as the minimum barrier height between the
individual traps is 5.3313 x 10=2% J at the point of clos-
est approach, compared to the ground state energy of
1.3615 x 10727 J. The form of the adjustment function
f(t) is taken to be a cosine and for numerical simplicity
we restrict ourselves to ones spatial dimension.

In Fig. @] we show the probability density function with
respect to time for the CTAP process. The overall time
for this process is chosen to be T' = 0.11s which is large
compared to the approximate harmonic oscillator fre-
quency of the individual traps of wgd, ~ 4 x 107¢ s, and
we are therefore assured to be at all times in the dark
eigenstate of the system. This can also be seen from the
fact that the probability for being in the middle trap at
any time is zero. The process leads to high fidelity pop-
ulation transfer and an absence of Rabi oscillations.

To compare the above situation to a process in which
direct tunnelling between two neighbouring traps plays
an important role, we show in Fig. [5| the results of the
same process, this time however using an intuitive trap-
movement. The direct tunnelling is clearly manifest in
the appearance of Rabi oscillations between the traps and
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FIG. 4. (a) Probability density for a single atom initally lo-
cated in the trap on the left hand side with respect to time
for counter-intuitive trap movement. The inset shows the tun-
nelling area in greater detail. (b) Density of the final state in
each of the three traps.

the process therefore does not deliver the required ro-
bust population transfer. In fact, the final state becomes
highly susceptible to variations of the system parameters
[21].

We have confirmed that these results are representa-
tive for a large range of parameters, making rf-traps ideal
systems to investigate adiabatic processes in all general-
ity.

V. NON-LINEAR SYSTEMS

The extension of adiabatic methods to non-linear sys-
tems is of large importance not only to describe ex-
perimental situations, but also for the understanding of
the underlying physical principles [I8, 19, 22, 23]. In
this section we show how CTAP can be used with time-
dependent potentials to coherently transport a cloud of
interacting, Bose-condensed atoms. For this, we treat
the adiabatic process as a series of stationary states
which can be described by the time-independent Gross-
Pitaevskii equation

p¥(z) = <—;nv2 +V(x) —|-ng\11|2> U(zr), (12)
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FIG. 5. (a) Probability density for a single atom initally lo-
cated in the trap on the left hand side with respect to time
for intuitive trap movement. The inset shows the tunnelling
area in greater detail, where Rabi oscillations between neigh-
bouring traps are clearly visible. (b) Density of the final state
in each of the three traps.

where V(z) is the external and p the chemical po-
tential at each respective point in time. The one-
dimensional interaction strength between bosons with a
three-dimensional s-wave scattering length a, is given by

and g1p = %(al — Cag)™! [24]. The trap width in
the radial direction is given by a; and C' ~ 1.4603. In the
three level approximation the Hamiltonian can therefore

be written as
hwr, +pr —Joum(t) 0

—Jm(t)  hwy  —Jur(t) |, (13)
0 —JMR(t) hwR+MR

H(t)=h

where ur g are the chemical potentials associated with
the atomic clouds in left or right trap and wy, ar g are the
harmonic oscillator frequencies associated with the indi-
vidual traps. Because the particle number in each indi-
vidual trap is a function of time, the associated change
in the chemical potentials will detune the resonance be-
tween the energies. To be able to compensate for this we
will in the following allow for the trapping frequencies
to be functions of time as well. Starting with a cloud of
atoms in the left trap and then attempting to perform
CTAP, it is clear that the chemical potential py, will de-
crease over time, while pug will increase. As at all times
the uncoupled traps have to be in resonance, one can see
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FIG. 6. Final population in left (verticle dashed line, blue),
middle (horizontal dashed line, green) and right (solid line,
red) traps with increasing interaction strength. The dotted
black line shows the total population not occupying the target
(right) trap. The maximum value of gip corresponds to p =
1.4318 x 1072 J which is smaller than Awr, ar,r at all times.

that a time-dependent adjustment of the trapping fre-
quencies wy, r can allow us to compensate for this change.
However, in order to be able to make the three state ap-
proximation, we need to make sure that u < hwr ar at
all times, for all values of 1 and wy, a7, g. This means in
practice that the process is limited to cold atomic clouds
with small non-linearities.

Using the same radio frequency potential as in the lin-
ear case, we place a cloud of interacting 7Rb atoms in
the ground state of the left trap by determining the solu-
tion to the Gross-Pitaevskii equation for an isolated trap-
ping potential. To show the influence of the non-linear
behaviour, we first carry out the same counter-intuitive
trap movements as in the linear section without time-
dependent change in the trapping frequencies. In Fig. [0]
we show the final populations in the individual traps as
a function of increasing values for g, p. It is immediately
obvious that even for weak interactions the non-linear
term is disruptive to the process of CTAP. In fact, for
gip = 2 x 10737 Jm the state transfer efficiency is re-
duced to 84%. Choosing a typical radial trap width of
130 nm, this value of g1 p corresponds to N = 2 for 8"Rb.

As we have already stated above, a possible strategy
to combat this effect of changing system energies in the
individual traps is to adjust the individual trapping fre-
quencies. To restore resonance for a changing chemical
potential one can adjust the trapping frequency to make
sure that at any point in time hwp (t) + pr(t) = hwy =
hwr(t) + pgr(t). However, determining the required ad-
justments is not a simple exercise for at least two reasons.
First, the density dependence of the chemical potential
will prevent this change from simply being linear in time
and, secondly, a conceptual difficulty in determining the
individual chemical potentials arises when the traps are



close together. While one could try to calculate the chem-
ical potential, and therefore the on-site energies, in all
traps at all times to a good approximation, this is cer-
taintly not experimentally possible. In the following, we
therefore suggest a simple functional form for dynami-
cally detuning the outer traps and we show that it allows
us to achieve significantly higher transfer than possible
without adjustments. A similar idea, however without
time-dependence, was recently proposed by Graefe et al.
[19], who showed that by detuning the left and the right
trap by the same fixed amount throughout the process
an improved transfer of population can be achieved.

The outline of our scheme for dynamic detuning is as
follows. Initially the cloud is trapped in the left trap
which we detune such that resonance with the eigenstates
of the other two traps is ensured (since the traps are far
apart, it is possible to determine the chemical potential
ur). As we time evolve the system tunnelling sets in
and we begin to reduce the detuning on the left trap to
zero while increasing the detuning of the right trap, as
atoms enter it. This can be achieved by adjusting the
radio frequencies wo and wg, associated with the left and
right hand side trap, respectively. Here we suggest that
a good form of function for the adjustment related to the
left hand side trap is

Aws(k;t) = 5[1 — tanh(kt)]Awp , (14)

where the inital value for the change in ws is given by wy.
The function runs between Awgy and 0 and the steepness
in the crossover region is determined by . This gives
us an effective handle on both, the time when the ad-
justment starts, and the duration of the adjustment (see
inset of Fig. . Here t = t—T/2, with T being the overall
duration of the process. At the same time the frequency
of the right hand side trap needs to be adjusted as well
and it is easy to see that a mirror symmetric change in
we is the best choice.

Awg(k;t) = %[1 + tanh(kt)]Awp , (15)

The dynamic adjustments of the radio frequency equa-
tions then become

w1 (t) = wi(to), (16a)
wat) = walto) — Aws(k, 1), (16b)
wslt) = wsto) — 3 7t —7)6(t ~7), (16¢)
wa(t) = wy(to) — f(t—7)0(t — 1), (16d)
wslt) = wslto) = 3 (1)~ [t —T)6(—7),  (160)
wolt) = wo(lo) — F(t) — F(t — 7Ot — 7) + A (s, T

t) .
(16f)

In Fig. [7] we show the final population transferred to
the right trap for increasing values of x and for Awy = 1.5
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FIG. 7. Final population in left (verticle dashed green line),
middle (horizontal dashed blue line) and right (solid red line)
traps for non-linear CTAP with increasing x and Awo = 1.5
kHz. The dotted black line shows the total population not
occupying the target (right) trap. The insets show the shape
of Aws(k;1) for different values of . An increased value of &
increases the time when the adjustment begins and decreases
the adjustment time.

kHz. We can see that the dynamic adjustment of the de-
tunings of the outer traps allows us to achieve population
transfer of > 99%, up from 84%. This is an improvement
over both standard CTAP and fixed detuning in the weak
interaction regime and, in fact, returns to the transfer ef-
ficiency of single particle CTAP.

VI. CONCLUSIONS

We have shown that radio frequency traps can be used
as microtraps for processes in which an adjustable tun-
neling strength is required. Neighbouring trapping po-
tentials can be overlapped without significantly changing
the underlying energy level structure. This property has
allowed us to create a triple well radio frequency poten-
tial in which coherent transport using adiabatic passage
can be demonstrated. For a single atom, it was shown
that complete transfer between the left and right traps by
utilizing the dark state of the system is possible, main-
taining the advantages of an absence of Rabi oscillations
and robustness against variation in system parameters.

For a cloud of weakly interacting atoms we have
demonstrated a technique that significantly improves the
efficiency of CTAP by dynamically detuning the outer
traps. Our suggested setup is close to experimental real-
ities, avoids the large overhead of other suggestions and
can easily be extended to other adiabatic techniques.
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