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Information capacity of quantum observable

A. S. Holevo

Abstract

In this paper we consider the classical capacities of quantum-classical

channels corresponding to measurement of observables. Special atten-

tion is paid to the case of continuous observables. We give the formu-

las for unassisted and entanglement-assisted classical capacities C,Cea

and consider some explicitly solvable cases which give simple examples of

entanglement-breaking channels with C < Cea. We also elaborate on the

ensemble-observable duality to show that Cea for the measurement chan-

nel is related to the χ-quantity for the dual ensemble in the same way as

C is related to the accessible information. This provides both accessible

information and the χ-quantity for the quantum ensembles dual to our

examples.

1 Introduction

In quantum information theory one often has to deal with both quantum and
classical information. A usual device is then to embed the classical system into
quantum by representing classical states, i.e. probability distributions on the
phase space Ω, as diagonal density operators in the artificial Hilbert space H
spanned by the orthonormal basis {|ω〉;ω ∈ Ω} :

P = {pω} −→ ρ =
∑

ω

pω|ω〉〈ω|.

This works for finite and countable Ω, although in the last case H becomes infi-
nite dimensional. Any channel with discrete classical input alphabet X or output
alphabet Y can then be regarded as a quantum channel. In the case of classical-
quantum (c-q) channel corresponding to preparation of states {ρx;x ∈ X} the
quantum channel is

P(ρ) =
∑

x∈X

〈x|ρ|x〉ρx, (1)

where {|x〉;x ∈ X} is a fixed orthonormal basis. Similarly, in the case of quantum-
classical (q-c) channel corresponding to measurement of observable given by
discrete probability operator-valued measure (POVM) M = {My; y ∈ Y} [14]
we have

M(ρ) =
∑

y∈Y

(TrρMy) |y〉〈y|. (2)
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However, in the case of continuous classical variables the situation is different
for c-q and q-c channels. In principle, there is no problem with embedding c-q
channels. Let X be a domain in Rk and dx is the Lebesgue measure, then the
continuous analog of (1) is

P(ρ) =

∫

X

〈x|ρ|x〉ρxdx,

where {|x〉;x ∈ X} is the Dirac’s system satisfying 〈x|x′〉 = δ(x − x′). Here P
maps density operators into density operators. Now let M = {M(dy)} be a
quantum observable (POVM) with continuous set of outcomes Y ⊆ R

k. Then
for a density operator ρ the “diagonal” operator

∫

Y
|y〉〈y|TrρM(dy) has infinite

trace, so in general there is no continuous analog of (2). This is related to the
well known repeatability issue for continuous observables and nonexistence of
the normal expectation onto the Abelian subalgebra of the diagonal operators
(see e.g. [6], Sec. 4.4, [18], [9], Sec. 4.1.4).

The only way is to consider the q-c channel as transformation M : ρ −→
TrρM(dy) of density operators to probability distributions1 on Y. The main
interest in this paper will be the classical capacities of such channel – both
unassisted C (M) and entanglement-assisted Cea (M). We give the general for-
mulas and consider some explicitly solvable cases which provide simple examples
of entanglement-breaking channels with Cea > C.

Almost simultaneously with the first version of this work the papers [1], [17]
appeared, where the quantity C(M) was studied in detail for the finite case. In
particular, the ensemble-observable duality [7] was used to relate C(M) with
the accessible information of the dual ensemble. In the last Section we elabo-
rated further on the duality transformation to show that Cea (M) is in similar
relation with the χ-quantity for the dual ensemble. This allows to compute both
accessible information and the χ-quantity for the quantum ensembles dual to
our examples.

2 The classical capacities of quantum observ-

ables

Consider the channel (2) in the case of discrete Y and finite-dimensional input
Hilbert space H. Since q-c channel is entanglement-breaking, the unassisted
classical capacity is given by the one-letter expression

C(M) = Cχ(M) = sup
π
I (π;M) , (3)

where π is a finite probability distribution on the state space S(H) assigning
probabilities πx to states ρx (ensemble), and

I (π;M) = H (Pρ̄π )−
∑

x

πxH (Pρx)

1 For a rigorous unified description of quantum and classical systems using the language
of operator algebras see e.g. [9], [2].
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is the Shannon information between the input x and the output y. Here ρ̄π =
∑

x
πxρx, Pρ = {TrρMy} – the probability distribution of the measurement out-

comes and H (·) is the Shannon entropy. This can be rewritten as

C(M) = Cχ(M) = sup
ρ
χΦ (ρ) , (4)

where
χΦ (ρ) = H (Pρ)− inf

π:ρ̄π=ρ

∑

x

πxH (Pρx) , (5)

Then consider the entanglement-assisted capacity which according to the
result of Shor et al [3] is given by the formula

Cea(M) = sup
ρ
I(ρ;M), (6)

where
I(ρ;M) = S(ρ) + S(M(ρ))− S(ρ,M)

is the quantum mutual information. Here S(·) is von Neumann entropy and
S(ρ,M) is the entropy exchange. Let py = TrρMy and Vy be an operator

satisfying My = V ∗
y Vy , for example, Vy = M

1/2
y . Then the density operator

VyρV
∗

y

py
= ρ (y|M) can be interpreted as posterior state of the measurement of

observable M with the instrument ρ → {VyρV
∗
y } in the state ρ. The following

formula was obtained by Shirokov [19]

I(ρ;M) = S (ρ)−
∑

y

(TrρMy)S (ρ (y|M)) . (7)

Indeed, let us use the relation S (ρ,M) = S(M̃(ρ)), where M̃ is the comple-
mentary channel. According to [12] the complementary channel for (2) is

M̃(ρ) =
∑

y

|y〉〈y| ⊗ VyρV
∗
y =

∑

y

|y〉〈y| ⊗ pyρ (y|M) .

It follows S(M̃(ρ)) = H(Pρ)+
∑

y
pyS (ρ (y|M)) , while S(M(ρ)) = H(Pρ), hence

(7). The entanglement-assisted classical capacity of the channel M follows by
substituting this expression into (6).

Now consider the channel M : ρ −→ TrρM(dy) in the case of arbitrary
measurable space Y and finite-dimensional input Hilbert space H. Then the
relations (3) and (6) can be generalized to this case. Since the output is classi-
cal, the protocol of entanglement-assisted transmission of classical information
should be explained in this case. First, a pure entangled state

|ψ〉 =
∑

j

λj |j〉 ⊗ |j〉,
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where {|j〉} is an orthonormal basis in H is distributed between the input (Al-
ice) and output (Bob). Thus classical Bob gets additional quantum space H
becoming classical-quantum system [2]. The states of such a system are pos-
itive operator-valued measures {σ(dy)} satisfying Tr

∫

Y σ(dy) = 1. Alice uses
different encoding maps Ew for different input signals w. The joint state of
Alice and Bob is then

(Ew ⊗ Id) (|ψ〉〈ψ|) =
∑

j,k

λjλkEw (|j〉〈k|)⊗ |j〉〈k|,

and after the Alice measurement M Bob gets the state {σw(dy)} with

σw(dy) =
∑

j,k

λjλk [TrEw (|j〉〈k|)M(dy)] |j〉〈k|

=
∑

j,k

λjλk〈k|E
∗
w (M(dy)) |j〉|j〉〈k| = ρ1/2E∗

w (M(dy))ρ1/2,

where ρ =
∑

j λj |j〉〈j| and bar means complex conjugation in the basis {|j〉} .
Then Bob applies his decoding given by classical-quantum observable {Nyw′} ,
satisfying

∑

wNyw′ ≡ I, with the conditional probabilities of outcomes P (w′|w) =
∫

Y Trσw(dy)Nyw′ .
The continuous analog of formula (7) considered in [19] is

I(ρ;M) = S (ρ)−

∫

Y

(TrρM(dy))S (ρ (y|M)) . (8)

In [3] it was stressed that entanglement-assisted classical capacity of entanglement-
breaking channels can be greater than the unassisted capacity. The example
given there was the depolarizing channel with high enough error probability (see
also Appendix). In the next Sections we will see that the inequality Cea > C is
rather common for the measurement channels with unsharp observables.

3 Examples

1. Consider the case of general overcomplete system,My = |ψy〉〈ψy|,
∑

y |ψy〉〈ψy | =
I in m−dimensional Hilbert space H. Then the posterior state ρ (y|M) =
|ψy〉〈ψy|
〈ψy|ψy〉

is pure and hence S (ρ (y|M)) = 0. Thus I(ρ;M) = S (ρ) and

Cea(M) = sup
ρ
S (ρ) = logm. (9)

A special case is covariant observable

Mg =
m

|G|
Vg|ψ0〉〈ψ0|V

∗
g , (10)
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where Vg is irreducible representation of the group G and |ψ0〉 is a unit vector
[14]. Then the channel M is covariant and by [11] we have

C(M) = Cχ(M) = H

(

M

(

I

m

))

−min
ψ
H (M (|ψ〉〈ψ|)) . (11)

But M
(

I
m

)

is uniform distribution over G, hence H
(

M
(

I
m

))

= log |G| , while

H (M (|ψ〉〈ψ|)) = −
∑

g

m

|G|
|〈ψ|Vg |ψ0〉|

2
log

m

|G|
|〈ψ|Vg|ψ0〉|

2

= − log |G| −
m

|G|

∑

g

|〈ψ|Vg|ψ0〉|
2
log |〈ψ|Vg |ψ0〉|

2
.

Therefore

C(M) = logm+
m

|G|
max
ψ

∑

g

|〈ψ|Vg |ψ0〉|
2
log |〈ψ|Vg|ψ0〉|

2

which is typically less than Cea(M) = logm (see Sec. 4).

2. Let Θ be the unit sphere in H and let ν(dθ) be the uniform distribution
on Θ. Then by [14] , Sec. IV.4 (see also Appendix)

m

∫

Θ

|θ〉〈θ|ν(dθ) = I, (12)

thus we have a continuous overcomplete system, i.e. observable M(dθ) =
m|θ〉〈θ|ν(dθ) in H with values in Θ . According to the remark above, Cea(M) =
logm.

The channel M maps density operator ρ to the probability distribution
m〈θ|ρ|θ〉ν(dθ) on Θ. All these outcome probability distributions are absolutely
continuous with respect to ν(dθ), hence we can use the differential entropy
h(pρ) = −

∫

Θ pρ(θ) log pρ(θ)ν(dθ), where pρ(θ) =m〈θ|ρ|θ〉, to get the continuous
analog of the formula (5)

χΦ (ρ) = h (pρ)− inf
π:ρ̄π=ρ

∑

x

πxh (pρx) . (13)

Let us use this formula together with (4) to compute C(M) = Cχ(M).
The channel M is covariant with respect to the irreducible action of the

unitary group U(H) in the sense that

M (UρU∗) = m〈U∗θ|ρ|U∗θ〉ν(dθ).

Therefore similarly to (11)

C(M) = Cχ(M) = h

(

M

(

I

d

))

−min
θ′

h (M (|θ′〉〈θ′|)) , (14)
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But M
(

I
d

)

is uniform distribution over Θ with the density p(θ) ≡ 1, hence

h
(

M
(

I
d

))

= 0. On the other hand,

− h (M (|θ′〉〈θ′|)) =

∫

Θ

m |〈θ|θ′〉|
2
logm |〈θ|θ′〉|

2
ν(dθ). (15)

By unitary invariance of ν, this quantity is the same for all θ′ so there is no
need for minimization in (14). To compute it we use Lemma IV.4.1 from [14]
according to which

∫

Θ

F (|〈θ|θ′〉|) ν(dθ) = −

1
∫

0

F (r)d(1 − r2)m−1. (16)

Then (15) becomes

−

1
∫

0

mr2 logmr2d(1− r2)m−1 =

1
∫

0

m(1− u) logm(1− u)dum−1,

where u = 1− r2, which after integrations by parts gives (see Appendix)

C(M) = logm− log e

m
∑

k=2

1

k
. (17)

For m→ ∞ we have C(M) → log e (1−γ), where γ ≈ 0.577 is Euler’s constant.
At the same time, Cea(M) = logm→ ∞.

The value (17) was obtained in the paper [15] as the “subentropy” of the
chaotic state ρ = I/m. This is not a simple coincidence, see Sec. 4.

3. If H is infinite-dimensional while Y is discrete, then the quantity (3) is
usually infinite but there is additional input constraint {ρ : TrρE ≤ N} , where
E is a positive selfadjoint operator (usually, energy) andN is a constant (energy
constraint). Then instead of (4) one has the constrained classical capacity

C(M, N) = Cχ(M, N) = sup
ρ:TrρE≤N

χΦ (ρ) , (18)

and instead of (6) – the constrained entanglement-assisted classical capacity

Cea(M, N) = sup
ρ:TrρE≤N

I(ρ;M). (19)

Some additional conditions are required to ensure finiteness of entropies in (5)
and (7), see [10].

If M is continuous observable, we expect formulas (18), (19) to hold with
appropriate modifications (13), resp. (8). Such is the case of the canonical
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observable with the energy constraint. Consider one Bosonic mode Q,P and
the canonical observable given by POVM

M(d2z) = |z〉〈z|
d2z

π
; z ∈ C. (20)

This observable describes approximate joint measurement of Q,P [14], Sec.
VI.8 and in quantum optics is realized by heterodyning. The corresponding q-c
channel M takes a density operator into the probability distribution

ρ→ pρ(z) = 〈z|ρ|z〉
d2z

π
,

which is absolutely continuous with respect to the Lebesgue measure d2z
π with

the probability density 〈z|ρ|z〉 equal to the Husimi function. The posterior
states are the coherent states ρ (z|M) = |z〉〈z| which are pure and have zero
entropy. Thus I(ρ;M) = S (ρ) .

Denote by ρN the Gaussian density operator with zero mean and the number
of quanta TrρNa

†a = N. It maximizes the quantum entropy under the constraint

Trρa†a ≤ N, (21)

namely

max
(21)

S(ρ) = S(ρN ) = (N + 1) log(N + 1)−N logN ≡ g(N).

The formula (19) gives then the following expression for the entanglement-
assisted classical capacity of channel M with the constraint (21)

Cea(M;N) = g(N) = log(N + 1) + log

(

1 +
1

N

)N

. (22)

On the other hand, the channel is covariant with respect to the irreducible
action of the Weyl (displacement) operators at the input and the shift group of
the argument z at the output. The output entropy of the channel M is just the
classical differential entropy h(pρ) and the continuous analog of (14) gives

C(M;N) = Cχ(M;N) = max
(21)

h(pρ)− ȟ(M),

where
ȟ(M) = min

|ψ〉〈ψ|
ȟ(p|ψ〉〈ψ|)

is the minimal output differential entropy. By the Wehrl conjecture proved by
Lieb [16], ȟ(M) = log e and the minimum is attained on any coherent state.
On the other hand, max(21) h(pρ) is attained on ρN and

max
(21)

h(pρ) = h(pρN ) = log e(N + 1).
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Indeed,

∫

pρ(z)|z|
2 d

2z

π
=

∫

〈z|a†ρa|z〉
d2z

π
= Trρaa† = Trρa†a+ 1

and the constraint (21) implies
∫

pρ(z)|z|
2 d2z
π ≤ N +1. But maxh(p) under the

last constraint is achieved on the probability density

(N + 1)−1 exp

(

−
|z|2

N + 1

)

= pρN (z).

Thus we obtain the value2

C(M;N) = Cχ(M;N) = log(N + 1). (23)

4 Ensemble-measurement duality

Let us first describe the duality between quantum observables and ensembles,
see [7], [1], [17]. If M = {My; y ∈ Y} is a quantum observable and π =
{px, ρx;x ∈ X} an ensemble of quantum states then

pxy = pxTrρxMy

is a probability distribution on X × Y. On the other hand,

pxy = p′yTrρ
′
yM

′
x,

where, denoting ρ̄π =
∑

x
pxρx, we have p′yρ

′
y = ρ̄π

1/2Myρ̄π
1/2 so that p′y =

Trρ̄πMy and M ′
x = pxρ̄π

−1/2ρxρ̄π
−1/2. Here M ′ = {M ′

x;x ∈ X} is the new
observable and π′ =

{

p′y, ρ
′
y; y ∈ Y

}

is the new ensemble. Therefore the Shannon
information between x, y is

I(π,M)=I(π′,M ′).

From this it is deduced ([1], Proposition 3) that

C(M) ≡ max
π

I(π,M) = max
ρ
A(π′

ρ), (24)

where A(π′
ρ) =maxM ′′ I(π′

ρ,M
′′) is the accessible information of the ensemble

π′
ρ =

{

TrρMy,
ρ1/2Myρ

1/2

TrρMy

}

.

Let us recall the well known bound [8]

A(π) ≤ S

(

∑

y

pyρy

)

−
∑

y

pyS (ρy) ≡ χ (π) (25)

2This formula as well as similar result for homodyne measurement (Q or P ) were obtained
in [7] by “information exclusion” argument.
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with the equality attained if and only if the operators πyρy all commute. Ap-
plying this to the dual situation we obtain

A(π′
ρ) ≤ S

(

∑

y

p′yρ
′
y

)

−
∑

y

p′yS
(

ρ′y
)

= χ
(

π′
ρ

)

. (26)

But
∑

y
p′yρ

′
y = ρ, and S

(

ρ′y
)

= H
(

VyρV
∗

y

p′y

)

, where Vy is arbitrary operator satis-

fyingMy = V ∗
y Vy because operators VyρV

∗
y = Vyρ

1/2ρ1/2V ∗
y and ρ1/2V ∗

y Vyρ
1/2 =

ρ1/2Myρ
1/2 = p′yρ

′
y are unitarily equivalent via polar decomposition and hence

have the same spectrum. The density operator
VyρV

∗

y

p′y
= ρ (y|M) is the posterior

state of the measurement of observableM with the instrument {Vy} in the state
ρ. Thus

χ
(

π′
ρ

)

= S (ρ)−
∑

y

p′yS (ρ (y|M)) = I(ρ;M) (27)

i.e. the χ-quantity in the right side of (25) is dual to the quantum mutual
information for the measurement channel and hence in addition to (24) we have
via (7)

Cea(M) = max
ρ

χ
(

π′
ρ

)

. (28)

The inequality (26) appears in [7], Eq. (19), as “measurement-dependent
dual” to (25). The necessary and sufficient condition for the equality in the
case of (26) becomes

ρ1/2MyρMy′ρ
1/2 = ρ1/2My′ρMyρ

1/2 (29)

for all y, y′. Therefore necessary and sufficient condition for the equality Cea(M) =
C(M) is that the condition (29) is fulfilled for a density operator ρ maximizing
the quantity (27).

Consider the case of overcomplete systemMy = |ψy〉〈ψy | in m− dimensional
Hilbert space H where ρ = I/m. The corresponding ensemble is π′

ρ ≡ π̄ =
{

〈ψy|ψy〉
m ,

|ψy〉〈ψy|
〈ψy|ψy〉

}

and χ (π̄) = logm = Cea(M) (Notice that this is also equal

to the classical capacity of the c-q channel y −→
|ψy〉〈ψy|
〈ψy|ψy〉

, since this is the

maximal possible value). The condition (29) amounts to

|ψy〉〈ψy|ψy′〉〈ψy′ | = |ψy′〉〈ψy′ |ψy〉〈ψy |.

We can always assume that the vectors |ψy〉 are all pairwise linearly independent,
then the last condition is equivalent to the fact that they form an orthonormal
basis [7]. Thus this is the only case where Cea(M) = C(M).

In order to pass to continuous observables we use the fact that there are

unitary operators Uy such that
ρ1/2Myρ

1/2

TrρMy
= Uyρ (y|M)U∗

y in the ensemble π′
ρ.

Since the posterior states ρ (y|M) are well defined for arbitrary observableM =
{M(dy)} and apriori state ρ [18], this opens the way to the general definition of

9



the ensemble π′
ρ =

{

TrρM(dy), Uyρ (y|M)U∗
y

}

. Applying this to the example
2, we find that the accessible information for the continuous ensemble π̄ =
{ν(dθ), |θ〉〈θ|; θ ∈ Θ} is equal to (17) while χ (π̄) = logm, where χ

(

π′
ρ

)

is defined
as in (8).

The continuous ensemble is the “Scrooge ensemble” for the density operator
I/d for which the value (17) of the accessible information was obtained by
different method in [15]3. In [14], Sec. IV.4 the Bayes estimation problem for
this ensemble was solved; it was shown, in particular, that with m→ ∞ there is
no better strategy than simple guessing. In information-theoretic scenario this
would suggest zero capacity of the c-q channel θ → |θ〉〈θ| which however is not
the case.

In the case of infinite dimensional space with the constraint the formulas
(24), (28) should be modified as

C(M, N) = sup
ρ:TrρE≤N

A(π′
ρ), (30)

Cea(M, N) = sup
ρ:TrρE≤N

χ
(

π′
ρ

)

. (31)

Consider the canonical observable (20) with the state ρN . The corresponding
ensemble is

π̄ =

{

〈z|ρN |z〉
d2z

π
,
ρ
1/2
N |z〉〈z|ρ

1/2
N

〈z|ρN |z〉
; z ∈ C

}

.

By making computation in the Fock basis, we have 〈z|ρN |z〉 = (N+1)−1 exp
(

− |z|2

N+1

)

and ρ
1/2
N |z〉 = c

∣

∣

∣

√

N
N+1z

〉

, so that the ensemble states are
∣

∣

∣

√

N
N+1z

〉〈√

N
N+1z

∣

∣

∣
.

But with the change of variable z′ =
√

N
N+1z this ensemble is equivalent to the

ensemble

π̄′ =

{

exp

(

−
|z|2

N

)

d2z

πN
, |z〉〈z|

}

.

From (30), (31) it follows

A(π̄′) = C(M, N) = log(N + 1),

χ(π̄′) = Cea(M, N) = log(N + 1) + log

(

1 +
1

N

)N

.

The last expression is also equal to the constrained classical capacity of the c-q
channel z −→ |z〉〈z|.

5 Appendix

1. In the paper [3] it was shown that the depolarizing channel

Φ (ρ) = (1− p)ρ+ p
I

m
(32)

3 M. J. W. Hall, private communication.
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in m dimensions is entanglement-breaking for p ≥ m
m+1 : “The simulation is

performed by having Alice measure in a pre-agreed random basis, send Bob
the result through a m-ary symmetric noisy classical channel, after which he
re-prepares an output state in the same basis”. We will supply an analytical
proof by showing that

1

m+ 1
ρ+

m

m+ 1

I

m
= m

∫

Θ

|θ〉〈θ|ρ|θ〉〈θ|ν(dθ)

for all density operators ρ, which means that the depolarizing channel with
p = m

m+1 is entanglement-breaking [13]. Then the depolarizing channel for p >
m
m+1 can be represented as mixture of this channel and completely depolarizing

channel ρ→ I
m , which are both entanglement-breaking.

It is sufficient to establish (32) for all ρ = |θ′〉〈θ′|, θ′ ∈ Θ. Consider the
operator

σ = m

∫

Θ

|θ〉〈θ|θ′〉〈θ′|θ〉〈θ|ν(dθ).

It has trace 1 since

Trσ = m

∫

Θ

|〈θ|θ′〉|2ν(dθ) = −m

1
∫

0

r2d(1 − r2)m−1 = 1

by (16). From this (12) follows by polarization.
Next, σ commutes with all the unitaries leaving invariant |θ′〉, hence it has

the form

(1− p) |θ′〉〈θ′|+ p
I

m
.

To find p take 〈θ′|σ|θ′〉, then we obtain

m

∫

Θ

|〈θ|θ′〉|4ν(dθ) = −m

1
∫

0

r4d(1 − r2)m−1 = (1− p) +
p

m
.

Computing the integral with the formula (16) we get the value 2
m+1 , whence

p = m
m+1 .
2. Proof of the formula

1
∫

0

m(1− u) lnm(1− u)dum−1 = lnm−

m
∑

k=2

1

k
.

Splitting the integral and integrating by parts we obtain

m lnm

1
∫

0

(1− u)dum−1 +

11



+ m

1
∫

0

(1− u) ln(1− u)dum−1

= lnm+m

1
∫

0

um−1 [1 + ln(1− u)] du

= lnm+ 1 +

1
∫

0

ln(1 − u)d (um − 1)

= lnm+ 1−

1
∫

0

(um − 1)

u− 1
du

= lnm+ 1−

1
∫

0

m−1
∑

k=0

ukdu.
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