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Abstract

We give an explicit formula for the Becchi-Rouet-Stora-Tyutin
(BRST) charge associated with Poisson superalgebras. To this end,
we split the fundamental equation for the BRST charge into a pair of
equations such that one of them is equivalent to the original one. We
find the general solution to this equation. The solution possesses a
graphical representation in terms of diagrams.

1 Introduction

The BRST symmetry [1, 2] plays an important role in quantization of gauge
theories [3, 4]. It is generated by the BRST charge. If the quantum BRST
charge exists it is essentially determined by the corresponding classical one.

The classical BRST charge is represented by a power series in ghosts.
The first two terms of the series are well known in the general case. When
constraints form a Lie algebra, these terms reproduce an exact BRST charge.

The fundamental equation for the BRST charge is equivalent to a system
of recurrent equations. In the case of general Poisson algebras there exists
an algorithm for the construction of a solution to these equations [5].

For some classes of quadratically nonlinear algebras the classical BRST
charge was found in [6, 7]. Construction of the BRST charge for some boson
Poisson algebras was investigated in [8]. In the case of general quadratically
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nonlinear algebras the expression for the third order contribution in the ghost
fields to the BRST charge was found. In [9], the classical BRST charge for
quadratically nonlinear superalgebras was discussed. For some classes of
superalgebras the BRST charge was constructed up to the fourth order in
the ghost fields.

In this paper we derive an explicit expression of the classical BRST charge
for nonlinear Poisson superalgebras. We show that the system of equations
for the classical BRST charge is equivalent to a smaller subsystem. Then we
find the general solution to the subsystem. Expanding the solution in powers
of the ghost fields one can find the BRST charge in an arbitrary order.

The paper is organized as follows. In section 2, we introduce notations
and represent the master equation for the BRST charge in the form which
is convenient for our purposes. In section 3, we obtain an explicit expression
for the classical BRST charge. We show that the expression possesses a
graphical representation in terms of diagrams.

In what follows Grassman parity and ghost number of a function A are
denoted by ǫ(A) and gh(A), respectively.

2 Structure of the master equation for the

BRST charge

Let Gα, α = 1, . . . , J, be the first class constraints which satisfy the following
Poisson brackets

{Gα, Gβ} = Fαβ(G),

where Fαβ(G) is a polynomial in the G’s such that Fαβ(0) = 0. The con-
straints are supposed to be independent and of definite Grassmann parity
ǫα, ǫ(Gα) = ǫα.

Following the BRST method the ghost pair (Pα, c
α) is introduced for each

constraint Gα :

{Pα, c
β, } = δαβ , {Gα, c

β} = {Pα, Gβ, } = 0,

ǫ(Pα) = ǫ(cα) = ǫ(Gα) + 1,

−gh(Pα) = gh(cα) = 1.
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Let M be the set of variables (Gα,Pβ , c
γ), and let V = R[[M]] be the

ring of formal power series in the variables M.

The BRST charge Ω ∈ V is defined as a solution to the equation

{Ω,Ω} = 0, ǫ(Ω) = 1, gh(Ω) = 1, (1)

and the boundary conditions

∂Ω

∂cα

∣∣∣∣
c=0

= Gα. (2)

These equations are consistent [10, 11]. One can write

Ω = Gαc
α +M, (3)

where

M =
J∑

n=2

Ω(n), Ω(n) ∼ Pn−1cn.

Substituting (3) into (1) one obtains

δM +
1

2
F + AM +

1

2
{M,M} = 0, (4)

where

δ = Gα

∂l

∂Pα

, F = cαFαβ(G)cβ, A = cα{Jα, . }.

Let N be the counting operator

N = Gα

∂l

∂Gα

+ Pα

∂l

∂Pα

.

The space V splits as

V =
⊕

n≥0

Vn

with NX = nX for X ∈ Vn. One easily verifies that

N = δσ + σδ, σ = Pα

∂l

∂Gα

3



Nδ = δN, Nσ = σN.

We define N+ : V → V by

N+X =

{
1
n
X, X ∈ Vn, n > 0;

0, X ∈ V0.

Then δ+ = σN+ is a generalized inverse of δ:

δδ+δ = δ, δ+δδ+ = δ+.

Let 〈. , .〉 : V2 → V be defined by

〈X1, X2〉 = −
1

2
(I + δ+A)−1δ+ ({X1, X2}+ {X2, X1}) ,

where I is the identity map, and

(I + δ+A)−1 =
∑

m≥0

(−1)m(δ+A)m.

Lemma 1. Eq. (4) is equivalent to

M = M0 +
1

2
〈M,M〉, (5)

where

M0 = (I + δ+A)−1

(
Y −

1

2
δ+F

)
, (6)

and Y ∈ V is an arbitrary cocycle, δY = 0, subject only to the restrictions

ǫ(Y ) = 1, gh(Y ) = 1,

Y =
J∑

n=2

Y (n), Y (n) ∼ Pn−1cn. (7)

Proof. In accordance with the decomposition

V = V1 ⊕ V2,
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where
V1 = PV, V2 = (I − P )V, P = δδ+,

Eq.(4) splits as

δM + δδ+D = 0, (8)

(I − δδ+)D = 0, (9)

where

D =
1

2
F + AM +

1

2
{M,M}.

From (8) it follows that

M = Y − δ+D, (10)

where the cocycle Y ∈ V satisfies (7). Eq. (10) can be rewritten in the form
(5). One can show that Y = δW, W ∈ V [11].

Eq. (5) can be iteratively solved as:

M = M0 +
1

2
〈M0,M0〉+ . . . . (11)

Using (11), we can write

Ω(n) = δW (n) + Ω̃(n)
(
Y (2), Y (3), . . . , Y (n−1)

)
, n ≥ 2,

where δW (n) = Y (n). The arbitrariness of the solution for Ω(n) is described
by the transformation [12]

Ω(n) → Ω(n) + δZ(n), Z ∈ V.

This transformation is absorbed into a transitive group transformation of the
coboundary δW (n):

δW (n) → δW (n) + δZ(n).

Therefore, M (11) is the general solution to eq. (4). It follows that Eq. (4)
is equivalent to (5). Eq. (9) can be omitted.

In the next section, we obtain an explicit solution to Eq. (5 ).
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3 Explicit expression for the BRST charge

To solve eq. (5) we introduce the functions

〈. . . .〉 : Vm → V, m = 1, 2, . . . ,

which recursively defined by
〈X〉 = X,

〈X1, . . . , Xm〉 =
1

2

m−1∑

r=1

∑

1≤i1<...<ir≤m

〈〈Xi1, . . . , Xir〉, 〈X1, . . . , X̂i1, . . . , X̂ir , . . . , Xm〉〉(12)

if m = 2, 3, . . . , where X̂ means that X is omitted.
The following lemma is easily proved by induction.

Lemma 2. 〈X1, . . . , Xm〉 is an m− linear symmetric function.

For m ≥ 2, 1 ≤ i, j ≤ m, let

Pm
ij : Vm → Vm−1

be defined by

Pm
ij (X1, . . . , Xm) = (〈Xi, Xj〉, X1, . . . , X̂i, . . . , X̂j, . . . , Xm).

If X ∈ V is given by

X = P 2
12P

3
im−2jm−2

. . . Pm−1
i2j2

Pm
i1j1

(X1, . . . , Xm)

for some (i1j1), . . . , (im−2jm−2),we say thatX is a descendant of (X1, . . . , Xm).
A descendant of X ∈ V is defined as X.

The function 〈X1, . . . , Xm〉 can be described by diagrams. In these dia-
grams an element of V is represented by the line segment . A product
(Xi, Xj) → 〈Xi, Xj〉 is represented by the vertex joining the line segments
for Xi, Xj and 〈Xi, Xj〉 (see figure 1).

Lemma 3. [13] The function 〈X1, . . . , Xm〉 equals the sum of all the
descendants of (X1, . . . , Xm).

For example,

〈X1, X2, X3〉 = 〈〈X1, X2〉, X3〉+ 〈〈X1, X3〉, X2〉+ 〈〈X2, X3〉, X1〉.
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Xi

Xj 〈Xi, Xj〉

Figure 1: (Xi, Xj) → 〈Xi, Xj〉.

X3

X2

X1

〈〈X1, X2〉, X3〉

Figure 2: Diagram for 〈〈X1, X2〉, X3〉.

In figure 2, we show the diagram for 〈〈X1, X2〉, X3〉.
Lemma 4. [13] A solution to Eq.(5) is given by

M = 〈eM0〉, (13)

where

〈eM0〉 =
∑

m≥0

1

m!
〈Mm

0 〉, 〈M r
0 〉 = 〈M0, . . . ,M0︸ ︷︷ ︸

r times

〉, 〈M0
0 〉 = 0.

Our previous results lead to the following theorem.

Theorem. The general solution to Eqs. (1),(2) is given by

Ω = Gαc
α +

∑

m≥1

1

m!
〈Mm

0 〉. (14)
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From (6) it follows immediately that M0 = O(c2). Using (12) and the
induction method, one can show that

〈Mm
0 〉 = O(cm+1).

Hence, in the case of bosonic constraints, ǫ(Gα) = 0, ǫ(cα) = 1, eq. (14) takes
the form

Ω = Gαc
α +

J−1∑

m=1

1

m!
〈Mm

0 〉.

For example, using lemma 1, we get

Ω = Gαc
α +

5∑

m=1

1

m!
〈Mm

0 〉+O(c7),

where

1

3!
〈M3

0 〉 =
1

2
〈〈M0,M0〉,M0〉,

1

4!
〈M4

0 〉 =
1

2
〈〈〈M0,M0〉,M0〉,M0〉+

1

8
〈〈M0,M0〉, 〈M0,M0〉〉,

1

5!
〈M5

0 〉 =
1

2
〈〈〈〈M0,M0〉,M0〉,M0〉,M0〉+

1

4
〈〈〈M0,M0〉,M0〉, 〈M0,M0〉〉+

+
1

8
〈〈〈M0,M0〉, 〈M0,M0〉〉,M0〉.
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