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Abstract

We study the problem of reconstructing an unknown matrixM of rankr and di-
mensiond usingO(rd poly log d) Pauli measurements. This has applications in
quantum state tomography, and is a non-commutative analogue of a well-known
problem in compressed sensing: recovering a sparse vector from a few of its
Fourier coefficients.

We show that almost all sets ofO(rd log6 d) Pauli measurements satisfy the rank-
r restricted isometry property (RIP). This implies thatM can be recovered from
a fixed (“universal”) set of Pauli measurements, using nuclear-norm minimization
(e.g., the matrix Lasso), with nearly-optimal bounds on theerror. A similar result
holds for any class of measurements that use an orthonormal operator basis whose
elements have small operator norm. Our proof uses Dudley’s inequality for Gaus-
sian processes, together with bounds on covering numbers obtained via entropy
duality.

1 Introduction

Low-rank matrix recovery is the following problem: letM be some unknown matrix of dimension
d and rankr ≪ d, and letA1, A2, . . . , Am be a set of measurement matrices; then can one recon-
structM from its inner productstr(M∗A1), tr(M

∗A2), . . . , tr(M
∗Am)? This problem has many

applications in machine learning [1, 2], e.g., collaborative filtering (the Netflix problem). Remark-
ably, it turns out that for many useful choices of measurement matrices, low-rank matrix recovery
is possible, and can even be done efficiently. For example, when theAi are Gaussian random ma-
trices, then it is known thatm = O(rd) measurements are sufficient to uniquely determineM , and
furthermore,M can be reconstructed by solving a convex program (minimizing the nuclear norm)
[3, 4, 5]. Another example is the “matrix completion” problem, where the measurements return a
random subset of matrix elements ofM ; in this case,m = O(rd poly log d) measurements suffice,
provided thatM satisfies some “incoherence” conditions [6, 7, 8, 9, 10].

The focus of this paper is on a different class of measurements, known as Pauli measurements. Here,
theAi are randomly chosen elements of the Pauli basis, a particular orthonormal basis ofCd×d. The
Pauli basis is a non-commutative analogue of the Fourier basis inCd; thus, low-rank matrix recovery
using Pauli measurements can be viewed as a generalization of the idea of compressed sensing of
sparse vectors using their Fourier coefficients [11, 12]. Inaddition, this problem has applications
in quantum state tomography, the task of learning an unknownquantum state by performing mea-
surements [13]. This is because most quantum states of physical interest are accurately described by
density matrices that have low rank; and Pauli measurementsare especially easy to carry out in an
experiment (due to the tensor product structure of the Paulibasis).
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In this paper we show stronger results on low-rank matrix recovery from Pauli measurements. Pre-
viously [13, 8], it was known that, for every rank-r matrix M ∈ C

d×d, almost all choices of
m = O(rd poly log d) random Pauli measurements will lead to successful recoveryof M . Here
we show a stronger statement: there is a fixed (“universal”) set ofm = O(rd poly log d) Pauli mea-
surements, such that for all rank-r matricesM ∈ C

d×d, we have successful recovery.1 We do this
by showing that the random Pauli sampling operator obeys the“restricted isometry property” (RIP).
Intuitively, RIP says that the sampling operator is an approximate isometry, acting on the set of all
low-rank matrices. In geometric terms, it says that the sampling operator embeds the manifold of
low-rank matrices intoO(rd poly log d) dimensions, with low distortion in the 2-norm.

RIP for low-rank matrices is a very strong property, and prior to this work, it was only known to hold
for very unstructured types of random measurements, such asGaussian measurements [3], which
are unsuitable for most applications. RIP was known to fail in the matrix completion case, and
whether it held for Pauli measurements was an open question.Once we have established RIP for
Pauli measurements, we can use known results [3, 4, 5] to showlow-rank matrix recovery from a
universal set of Pauli measurements. In particular, using [5], we can get nearly-optimal universal
bounds on the error of the reconstructed density matrix, when the data are noisy; and we can even get
bounds on the recovery of arbitrary (not necessarily low-rank) matrices. These RIP-based bounds are
qualitatively stronger than those obtained using “dual certificates” [14] (though the latter technique
is applicable in some situations where RIP fails).

In the context of quantum state tomography, this implies that, given a quantum state that consists
of a low-rank componentMr plus a residual full-rank componentMc, we can reconstructMr up
to an error that is not much larger thanMc. In particular, let‖·‖∗ denote the nuclear norm, and let
‖·‖F denote the Frobenius norm. Then the error can be bounded in the nuclear norm byO(‖Mc‖∗)
(assuming noiseless data), and it can be bounded in the Frobenius norm byO(‖Mc‖F poly log d)
(which holds even with noisy data2). This shows that our reconstruction is nearly as good as the
best rank-r approximation toM (which is given by the truncated SVD). In addition, a completely
arbitrary quantum state can be reconstructed up to an error of O(1/

√
r) in Frobenius norm. Lastly,

the RIP gives some insight into the optimal design of tomography experiments, in particular, the
tradeoff between the number of measurement settings (whichis essentiallym), and the number of
repetitions of the experiment at each setting (which determines the statistical noise that enters the
data) [15].

These results can be generalized beyond the class of Pauli measurements. Essentially, one can
replace the Pauli basis with any orthonormal basis ofCd×d that isincoherent, i.e., whose elements
have small operator norm (of orderO(1/

√
d), say); a similar generalization was noted in the earlier

results of [8]. Also, our proof shows that the RIP actually holds in a slightly stronger sense: it holds
not just for all rank-r matrices, but for all matricesX that satisfy‖X‖∗ ≤

√
r‖X‖F .

To prove this result, we combine a number of techniques that have appeared elsewhere. RIP results
were previously known for Gaussian measurements and some oftheir close relatives [3]. Also,
restricted strong convexity (RSC), a similar but somewhat weaker property, was recently shown
in the context of the matrix completion problem (with additional “non-spikiness” conditions) [10].
These results follow from covering arguments (i.e., using aconcentration inequality to upper-bound
the failure probability on each individual low-rank matrixX , and then taking the union bound over
all suchX). Showing RIP for Pauli measurements seems to be more delicate, however. Pauli
measurements have more structure and less randomness, so the concentration of measure phenomena
are weaker, and the union bound no longer gives the desired result.

Instead, one must take into account the favorable correlations between the behavior of the sampling
operator on different matrices — intuitively, if two low-rank matricesM andM ′ have overlapping
supports, then good behavior onM is positively correlated with good behavior onM ′. This can be
done by transforming the problem into a Gaussian process, and using Dudley’s entropy bound. This
is the same approach used in classical compressed sensing, to show RIP for Fourier measurements
[12, 11]. The key difference is that in our case, the Gaussianprocess is indexed by low-rank matrices,
rather than sparse vectors. To bound the correlations in this process, one then needs to bound the
covering numbers of the nuclear norm ball (of matrices), rather than theℓ1 ball (of vectors). This

1Note that in the universal result,m is slightly larger, by a factor ofpoly log d.
2However, this bound is not universal.

2



requires a different technique, using entropy duality, which is due to Guédon et al [16]. (See also
the related work in [17].)

As a side note, we remark that matrix recovery can sometimes fail because there exist large sets of
up tod Pauli matrices that all commute, i.e., they have a simultaneous eigenbasisφ1, . . . , φd. (These
φi are of interest in quantum information — they are called stabilizer states [18].) If one were to
measure such a set of Pauli’s, one would gain complete knowledge about the diagonal elements of
the unknown matrixM in theφi basis, but one would learn nothing about the off-diagonal elements.
This is reminiscent of the difficulties that arise in matrix completion. However, in our case, these
pathological cases turn out to be rare, since it is unlikely that a random subset of Pauli matrices will
all commute.

Finally, we note that there is a large body of related work on estimating a low-rank matrix by solving
a regularized convex program; see, e.g., [19, 20].

This paper is organized as follows. In section 2, we state ourresults precisely, and discuss some
specific applications to quantum state tomography. In section 3 we prove the RIP for Pauli matrices,
and in section 4 we discuss some directions for future work. Some technical details appear in
sections A and B.

Notation: For vectors,‖·‖2 denotes theℓ2 norm. For matrices,‖·‖p denotes the Schattenp-norm,
‖X‖p = (

∑

i σi(X)p)1/p, whereσi(X) are the singular values ofX . In particular,‖·‖∗ = ‖·‖1
is the trace or nuclear norm,‖·‖F = ‖·‖2 is the Frobenius norm, and‖·‖ = ‖·‖∞ is the operator
norm. Finally, for matrices,A∗ is the adjoint ofA, and(·, ·) is the Hilbert-Schmidt inner product,
(A,B) = tr(A∗B). Calligraphic letters denote superoperators acting on matrices. Also,

∣

∣A
)(

A
∣

∣ is
the superoperator that maps every matrixX ∈ C

d×d to the matrixA tr(A∗X).

2 Our Results

We will consider the following approach to low-rank matrix recovery. LetM ∈ Cd×d be an un-
known matrix of rank at mostr. LetW1, . . . ,Wd2 be an orthonormal basis forCd×d, with respect
to the inner product(A,B) = tr(A∗B). We choosem basis elements,S1, . . . , Sm, iid uniformly
at random from{W1, . . . ,Wd2} (“sampling with replacement”). We then observe the coefficients
(Si,M). From this data, we want to reconstructM .

For this to be possible, the measurement matricesWi must be “incoherent” with respect toM .
Roughly speaking, this means that the inner products(Wi,M) must be small. Formally, we say that
the basisW1, . . . ,Wd2 is incoherentif the Wi all have small operator norm,

‖Wi‖ ≤ K/
√
d, (1)

whereK is a constant.3 (This assumption was also used in [8].)

Before proceeding further, let us sketch the connection between this problem and quantum state
tomography. Consider a system ofn qubits, with Hilbert space dimensiond = 2n. We want to learn
the state of the system, which is described by a density matrix ρ ∈ Cd×d; ρ is positive semidefinite,
has trace 1, and has rankr ≪ d when the state is nearly pure. There is a class of convenient (and
experimentally feasible) measurements, which are described by Pauli matrices (also called Pauli
observables). These are matrices of the formP1 ⊗ · · · ⊗ Pn, where⊗ denotes the tensor product
(Kronecker product), and eachPi is a2× 2 matrix chosen from the following four possibilities:

I =

(

1 0
0 1

)

, σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

. (2)

One can estimate expectation values of Pauli observables, which are given by(ρ, (P1 ⊗ · · · ⊗ Pn)).
This is a special case of the above measurement model, where the measurement matricesWi are
the (scaled) Pauli observables(P1 ⊗ · · · ⊗ Pn)/

√
d, and they are incoherent with‖Wi‖ ≤ K/

√
d,

K = 1.

3Note that‖Wi‖ is the maximum inner product betweenWi and any rank-1 matrixM (normalized so that
‖M‖F = 1).
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Now we return to our discussion of the general problem. We chooseS1, . . . , Sm iid uniformly at
random from{W1, . . . ,Wd2}, and we define thesampling operatorA : C

d×d → C
m as

(A(X))i =
d√
m
tr(S∗

i X), i = 1, . . . ,m. (3)

The normalization is chosen so thatEA∗A = I. (Note thatA∗A =
∑m

j=1

∣

∣Sj

)(

Sj

∣

∣ · d2

m .)

We assume we are given the datay = A(M)+z, wherez ∈ Cm is some (unknown) noise contribu-
tion. We will construct an estimator̂M by minimizing the nuclear norm, subject to the constraints
specified byy. (Note that one can view the nuclear norm as a convex relaxation of the rank function
— thus these estimators can be computed efficiently.) One approach is the matrix Dantzig selector:

M̂ = argmin
X

‖X‖∗ such that‖A∗(y −A(X))‖ ≤ λ. (4)

Alternatively, one can solve a regularized least-squares problem, also called the matrix Lasso:

M̂ = argmin
X

1
2‖A(X)− y‖22 + µ‖X‖∗. (5)

Here, the parametersλ andµ are set according to the strength of the noise componentz (we will
discuss this later). We will be interested in bounding the error of these estimators. To do this, we
will show that the sampling operatorA satisfies the restricted isometry property (RIP).

2.1 RIP for Pauli Measurements

Fix some constant0 ≤ δ < 1. Fix d, and some setU ⊂ Cd×d. We say thatA satisfies therestricted
isometry property(RIP) overU if, for all X ∈ U , we have

(1 − δ)‖X‖F ≤ ‖A(X)‖2 ≤ (1 + δ)‖X‖F . (6)

(Here,‖A(X)‖2 denotes theℓ2 norm of a vector, while‖X‖F denotes the Frobenius norm of a
matrix.) WhenU is the set of allX ∈ Cd×d with rankr, this is precisely the notion of RIP studied
in [3, 5]. We will show that Pauli measurements satisfy the RIP over a slightly larger set (the set of
all X ∈ C

d×d such that‖X‖∗ ≤ √
r‖X‖F ), provided the number of measurementsm is at least

Ω(rd poly log d). This result generalizes to measurements in any basis with small operator norm.

Theorem 2.1 Fix some constant0 ≤ δ < 1. Let{W1, . . . ,Wd2} be an orthonormal basis forCd×d

that is incoherent in the sense of (1). Letm = CK2 · rd log6 d, for some constantC that depends
only onδ, C = O(1/δ2). LetA be defined as in (3). Then, with high probability (over the choice
of S1, . . . , Sm), A satisfies the RIP over the set of allX ∈ Cd×d such that‖X‖∗ ≤ √

r‖X‖F .
Furthermore, the failure probability is exponentially small in δ2C.

We will prove this theorem in section 3. In the remainder of this section, we discuss its applications
to low-rank matrix recovery, and quantum state tomography in particular.

2.2 Applications

By combining Theorem 2.1 with previous results [3, 4, 5], we immediately obtain bounds on the
accuracy of the matrix Dantzig selector (4) and the matrix Lasso (5). In particular, for the first time
we can showuniversalrecovery of low-rank matrices via Pauli measurements, and near-optimal
bounds on the accuracy of the reconstruction when the data isnoisy [5]. (Similar results hold for
measurements in any incoherent operator basis.) These RIP-based results improve on the earlier
results based on dual certificates [13, 8, 14]. See [3, 4, 5] for details.

Here, we will sketch a couple of these results that are of particular interest for quantum state to-
mography. Here,M is the density matrix describing the state of a quantum mechanical object, and
A(M) is a vector of Pauli expectation values for the stateM . (M has some additional properties:
it is positive semidefinite, and has trace 1; thusA(M) is a real vector.) There are two main issues
that arise. First,M is not precisely low-rank. In many situations, theideal state has low rank (for
instance, a pure state has rank 1); however, for theactualstate observed in an experiment, the den-
sity matrixM is full-rank with decaying eigenvalues. Typically, we willbe interested in obtaining a
good low-rank approximation toM , ignoring the tail of the spectrum.
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Secondly, the measurements ofA(M) are inherently noisy. We do not observeA(M) directly;
rather, we estimate each entry(A(M))i by preparing many copies of the stateM , measuring the
Pauli observableSi on each copy, and averaging the results. Thus, we observeyi = (A(M))i + zi,
wherezi is binomially distributed. When the number of experiments being averaged is large,zi can
be approximated by Gaussian noise. We will be interested in getting an estimate ofM that is stable
with respect to this noise. (We remark that one can also reduce the statistical noise by performing
more repetitions of each experiment. This suggests the possibility of a tradeoff between the accuracy
of estimating each parameter, and the number of parameters one chooses to measure overall. This
will be discussed elsewhere [15].)

We would like to reconstructM up to a small error in the nuclear or Frobenius norm. LetM̂ be
our estimate. Bounding the error in nuclear norm implies that, for any measurement allowed by
quantum mechanics, the probability of distinguishing the stateM̂ from M is small. Bounding the
error in Frobenius norm implies that the differencêM − M is highly “mixed” (and thus does not
contribute to the coherent or “quantum” behavior of the system).

We now sketch a few results from [4, 5] that apply to this situation. WriteM = Mr +Mc, where
Mr is a rank-r approximation toM , corresponding to ther largest singular values ofM , andMc

is the residual part ofM (the “tail” of M ). Ideally, our goal is to estimateM up to an error that is
not much larger thanMc. First, we can bound the error in nuclear norm (assuming the data has no
noise):

Proposition 2.2 (Theorem 5 from [4]) LetA : Cd×d → Cm be the random Pauli sampling operator,
with m = Crd log6 d, for some absolute constantC. Then, with high probability over the choice of
A, the following holds:

Let M be any matrix inCd×d, and writeM = Mr + Mc, as described above. Say we observe
y = A(M), with no noise. LetM̂ be the Dantzig selector (4) withλ = 0. Then

‖M̂ −M‖∗ ≤ C′
0‖Mc‖∗, (7)

whereC′
0 is an absolute constant.

We can also bound the error in Frobenius norm, allowing for noisy data:

Proposition 2.3 (Lemma 3.2 from [5]) Assume the same set-up as above, but say we observey =

A(M) + z, wherez ∼ N(0, σ2I). LetM̂ be the Dantzig selector (4) withλ = 8
√
dσ, or the Lasso

(5) withµ = 16
√
dσ. Then, with high probability over the noisez,

‖M̂ −M‖F ≤ C0

√
rdσ + C1‖Mc‖∗/

√
r, (8)

whereC0 andC1 are absolute constants.

This bounds the error of̂M in terms of the noise strengthσ and the size of the tailMc. It is universal:
one sampling operatorA works for all matricesM . While this bound may seem unnatural because
it mixes different norms, it can be quite useful. WhenM actually is low-rank (with rankr), then
Mc = 0, and the bound (8) becomes particularly simple. The dependence on the noise strengthσ
is known to be nearly minimax-optimal [5]. Furthermore, when some of the singular values ofM
fall below the “noise level”

√
dσ, one can show a tighter bound, with a nearly-optimal bias-variance

tradeoff; see Theorem 2.7 in [5] for details.

On the other hand, whenM is full-rank, then the error of̂M depends on the behavior of the tailMc.
We will consider a couple of cases. First, suppose we do not assume anything aboutM , besides the
fact that it is a density matrix for a quantum state. Then‖M‖∗ = 1, hence‖Mc‖∗ ≤ 1− r

d , and we

can use (8) to get‖M̂−M‖F ≤ C0

√
rdσ+ C1√

r
. Thus, even forarbitrary (not necessarily low-rank)

quantum states, the estimator̂M gives nontrivial results. TheO(1/
√
r) term can be interpreted as

the penalty for only measuring an incomplete subset of the Pauli observables.

Finally, consider the case whereM is full-rank, but we do know that the tailMc is small. If we
know thatMc is small in nuclear norm, then we can use equation (8). However, if we know thatMc

is small in Frobenius norm, one can give a different bound, using ideas from [5], as follows.
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Proposition 2.4 LetM be any matrix inCd×d, with singular valuesσ1(M) ≥ · · · ≥ σd(M).

Choose a random Pauli sampling operatorA : Cd×d → Cm, with m = Crd log6 d, for some
absolute constantC. Say we observey = A(M) + z, wherez ∼ N(0, σ2I). LetM̂ be the Dantzig
selector (4) withλ = 16

√
dσ, or the Lasso (5) withµ = 32

√
dσ. Then, with high probability over

the choice ofA and the noisez,

‖M̂ −M‖2F ≤ C0

r
∑

i=1

min(σ2
i (M), dσ2) + C2(log

6 d)

d
∑

i=r+1

σ2
i (M), (9)

whereC0 andC2 are absolute constants.

This bound can be interpreted as follows. The first term expresses the bias-variance tradeoff for esti-
matingMr, while the second term depends on the Frobenius norm ofMc. (Note that thelog6 d factor
may not be tight.) In particular, this implies:‖M̂ − M‖F ≤

√
C0

√
rdσ +

√
C2(log

3 d)‖Mc‖F .
This can be compared with equation (8) (involving‖Mc‖∗). This bound will be better when
‖Mc‖F ≪ ‖Mc‖∗, i.e., when the tailMc has slowly-decaying eigenvalues (in physical terms, it
is highly mixed).

Proposition 2.4 is an adaptation of Theorem 2.8 in [5]. We sketch the proof in section B. Note
that this bound is not universal: it shows that for all matricesM , a random choice of the sampling
operatorA is likely to work.

3 Proof of the RIP for Pauli Measurements

We now prove Theorem 2.1. The general approach involving Dudley’s entropy bound is similar to
[12], while the technical part of the proof (bounding certain covering numbers) uses ideas from [16].
We summarize the argument here; the details are given in section A.

3.1 Overview

Let U2 = {X ∈ C
d×d | ‖X‖F ≤ 1, ‖X‖∗ ≤ √

r‖X‖F}. LetB be the set of all self-adjoint linear
operators fromCd×d toCd×d, and define the following norm onB:

‖M‖(r) = sup
X∈U2

|(X,MX)|. (10)

(Supposer ≥ 2, which is sufficient for our purposes. It is straightforwardto show that‖·‖(r) is a
norm, and thatB is a Banach space with respect to this norm.) Then let us define

εr(A) = ‖A∗A− I‖(r). (11)

By an elementary argument, in order to prove RIP, it suffices to show thatεr(A) < 2δ − δ2. We
will proceed as follows: we will first boundEεr(A), then show thatεr(A) is concentrated around
its mean.

Using a standard symmetrization argument, we have thatEεr(A) ≤ 2E
∥

∥

∥

∑m
j=1 εj

∣

∣Sj

)(

Sj

∣

∣

d2

m

∥

∥

∥

(r)
,

where theεj are Rademacher (iid±1) random variables. Here the round ket notation
∣

∣Sj

)

means

we view the matrixSj as an element of the vector spaceCd2

with Hilbert-Schmidt inner product;
the round bra

(

Sj

∣

∣ denotes the adjoint element in the (dual) vector space.

Now we use the following lemma, which we will prove later. This bounds the expected magnitude
in (r)-norm of a Rademacher sum of a fixed collection of operatorsV1, . . . , Vm that have small
operator norm.

Lemma 3.1 Let m ≤ d2. Fix someV1, . . . , Vm ∈ Cd×d that have uniformly bounded operator
norm,‖Vi‖ ≤ K (for all i). Letε1, . . . , εm be iid uniform±1 random variables. Then

Eε

∥

∥

∥

m
∑

i=1

εi
∣

∣Vi

)(

Vi

∣

∣

∥

∥

∥

(r)
≤ C5 ·

∥

∥

∥

m
∑

i=1

∣

∣Vi

)(

Vi

∣

∣

∥

∥

∥

1/2

(r)
, (12)

whereC5 =
√
r · C4K log5/2 d log1/2 m andC4 is some universal constant.
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After some algebra, one gets thatEεr(A) ≤ 2(Eεr(A) + 1)1/2 · C5 ·
√

d
m , whereC5 =

√
r ·

C4K log3 d. By finding the roots of this quadratic equation, we get the following bound onEεr(A).
Letλ ≥ 1. Assume thatm ≥ λd(2C5)

2 = λ · 4C2
4 · dr ·K2 log6 d. Then we have the desired result:

Eεr(A) ≤ 1
λ + 1√

λ
. (13)

It remains to show thatεr(A) is concentrated around its expectation. For this we use a concentration
inequality from [22] for sums of independent symmetric random variables that take values in some
Banach space. See section A for details.

3.2 Proof of Lemma 3.1 (bounding a Rademacher sum in (r)-norm)

Let L0 = Eε‖
∑m

i=1 εi
∣

∣Vi

)(

Vi

∣

∣‖(r); this is the quantity we want to bound. Using a standard com-
parison principle, we can replace the±1 random variablesεi with iid N(0, 1) Gaussian random
variablesgi; then we get

L0 ≤ Eg sup
X∈U2

√

π
2 |G(X)|, G(X) =

m
∑

i=1

gi|(Vi, X)|2. (14)

The random variablesG(X) (indexed byX ∈ U2) form a Gaussian process, andL0 is upper-
bounded by the expected supremum of this process. Using the fact thatG(0) = 0 andG(·) is
symmetric, and Dudley’s inequality (Theorem 11.17 in [22]), we have

L0 ≤
√
2πEg sup

X∈U2

G(X) ≤ 24
√
2π

∫ ∞

0

log1/2 N(U2, dG, ε)dε, (15)

whereN(U2, dG, ε) is a covering number (the number of balls inCd×d of radiusε in the metricdG
that are needed to cover the setU2), and the metricdG is given by

dG(X,Y ) =
(

E[(G(X) −G(Y ))2]
)1/2

. (16)

Define a new norm (actually a semi-norm)‖·‖X onCd×d, as follows:
‖M‖X = max

i=1,...,m
|(Vi,M)|. (17)

We use this to upper-bound the metricdG. An elementary calculation shows thatdG(X,Y ) ≤
2R‖X − Y ‖X , whereR = ‖

∑m
i=1

∣

∣Vi

)(

Vi

∣

∣‖1/2(r) . This lets us upper-bound the covering numbers in
dG with covering numbers in‖·‖X :

N(U2, dG, ε) ≤ N(U2, ‖·‖X , ε
2R ) = N( 1√

r
U2, ‖·‖X , ε

2R
√
r
). (18)

We will now bound these covering numbers. First, we introduce some notation: let‖·‖p denote the
Schattenp-norm onCd×d, and letBp be the unit ball in this norm. Also, letBX be the unit ball in
the‖·‖X norm.

Observe that 1√
r
U2 ⊆ B1 ⊆ K · BX . (The second inclusion follows because‖M‖X ≤

maxi=1,...,m‖Vi‖‖M‖∗ ≤ K‖M‖∗.) This gives a simple bound on the covering numbers:

N( 1√
r
U2, ‖·‖X , ε) ≤ N(B1, ‖·‖X , ε) ≤ N(K · BX , ‖·‖X , ε). (19)

This is 1 whenε ≥ K. So, in Dudley’s inequality, we can restrict the integral tothe interval[0,K].

Whenε is small, we will use the following simple bound (equation (5.7) in [23]):

N(K · BX , ‖·‖X , ε) ≤ (1 + 2K
ε )2d

2

. (20)
Whenε is large, we will use a more sophisticated bound based on Maurey’s empirical method and
entropy duality, which is due to [16] (see also [17]):

N(B1, ‖·‖X , ε) ≤ exp(
C2

1
K2

ε2 log3 d logm), for some constantC1. (21)
We defer the proof of (21) to the next section.

Using (20) and (21), we can bound the integral in Dudley’s inequality. We get

L0 ≤ C4R
√
rK log5/2 d log1/2 m, (22)

whereC4 is some universal constant. This proves the lemma.
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3.3 Proof of Equation (21) (covering numbers of the nuclear-norm ball)

Our result will follow easily from a bound on covering numbers introduced in [16] (where it appears
as Lemma 1):

Lemma 3.2 LetE be a Banach space, having modulus of convexity of power type 2with constant
λ(E). LetE∗ be the dual space, and letT2(E

∗) denote its type 2 constant. LetBE denote the unit
ball in E.

LetV1, . . . , Vm ∈ E∗, such that‖Vj‖E∗ ≤ K (for all j). Define the norm onE,

‖M‖X = max
j=1,...,m

|(Vj ,M)|. (23)

Then, for anyε > 0,

ε log1/2 N(BE , ‖·‖X , ε) ≤ C2λ(E)2T2(E
∗)K log1/2 m, (24)

whereC2 is some universal constant.

The proof uses entropy duality to reduce the problem to bounding the “dual” covering number. The
basic idea is as follows. Letℓmp denote the complex vector spaceCm with the ℓp norm. Consider
the mapS : ℓm1 → E∗ that takes thej’th coordinate vector toVj . LetN(S) denote the number of
balls inE∗ needed to cover the image (under the mapS) of the unit ball inℓm1 . We can boundN(S)
using Maurey’s empirical method. Also define the dual mapS∗ : E → ℓm∞, and the associated dual
covering numberN(S∗). ThenN(BE , ‖·‖X , ε) is related toN(S∗). Finally,N(S) andN(S∗) are
related via entropy duality inequalities. See [16] for details.

We will apply this lemma as follows, using the same approach as [17]. LetSp denote the Banach
space consisting of all matrices inCd×d with the Schattenp-norm. Intuitively, we want to set
E = S1 andE∗ = S∞, but this won’t work becauseλ(S1) is infinite. Instead, we letE = Sp,
p = (log d)/(log d− 1), andE∗ = Sq, q = log d. Note that‖M‖p ≤ ‖M‖∗, henceB1 ⊆ Bp and

ε log1/2 N(B1, ‖·‖X , ε) ≤ ε log1/2 N(Bp, ‖·‖X , ε). (25)

Also, we haveλ(E) ≤ 1/
√
p− 1 =

√
log d− 1 andT2(E

∗) ≤ λ(E) ≤
√
log d− 1 (see the

Appendix in [17]). Note that‖M‖q ≤ e‖M‖, thus we have‖Vj‖q ≤ eK (for all j). Then, using
the lemma, we have

ε log1/2 N(Bp, ‖·‖X , ε) ≤ C2 log
3/2 d (eK) log1/2 m, (26)

which proves the claim.

4 Outlook

We have showed that random Pauli measurements obey the restricted isometry property (RIP), which
implies strong error bounds for low-rank matrix recovery. The key technical tool was a bound on
covering numbers of the nuclear norm ball, due to Guédon et al [16].

An interesting question is whether this method can be applied to other problems, such as matrix com-
pletion, or constructing embeddings of low-dimensional manifolds into linear spaces with slightly
higher dimension. For matrix completion, one can compare with the work of Negahban and Wain-
wright [10], where the sampling operator satisfies restricted strong convexity (RSC) over a certain set
of “non-spiky” low-rank matrices. For manifold embeddings, one could try to generalize the results
of [24], which use the sparse-vector RIP to construct Johnson-Lindenstrauss metric embeddings.

There are also many questions pertaining to low-rank quantum state tomography. For example,
how does the matrix Lasso compare to the traditional approach using maximum likelihood estima-
tion? Also, there are several variations on the basic tomography problem, and alternative notions of
sparsity (e.g., elementwise sparsity in a known basis) [25], which have not been fully explored.

Acknowledgements: Thanks to David Gross, Yaniv Plan, Emmanuel Candès, Stephen Jordan, and
the anonymous reviewers, for helpful suggestions. Parts ofthis work were done at the University
of California, Berkeley, and supported by NIST grant number60NANB10D262. This paper is
a contribution of the National Institute of Standards and Technology, and is not subject to U.S.
copyright.
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Universal low-rank matrix recovery from Pauli measurements:

Supplementary material

A Proof of the RIP for Pauli Measurements

A.1 Overview

We now prove Theorem 2.1. In this section we give an overview;proofs of the technical claims are
deferred to later sections. The general approach involvingDudley’s entropy bound is similar to [12],
while the technical part of the proof (bounding certain covering numbers) uses ideas from [16].

Recall the definition of the restricted isometry property, with constant0 ≤ δ < 1. Let

U = {X ∈ C
d×d | ‖X‖∗ ≤

√
r‖X‖F}. (27)

Let us define
U2 = {X ∈ C

d×d | ‖X‖F ≤ 1, ‖X‖∗ ≤
√
r‖X‖F}, (28)

εr(A) = sup
X∈U2

|(X, (A∗A− I)X)|. (29)

Also, defineε = 2δ − δ2. We claim that, to show RIP, it suffices to showεr(A) < ε. To see this,
note that the RIP condition is equivalent to the statement

for all X ∈ U, (1 − δ)2(X,X) ≤ (X,A∗AX) ≤ (1 + δ)2(X,X), (30)

which is equivalent to

for all X ∈ U, (−2δ + δ2)(X,X) ≤ (X, (A∗A− I)X) ≤ (2δ + δ2)(X,X), (31)

which is implied by

for all X ∈ U2, |(X, (A∗A− I)X)| ≤ min{2δ + δ2, 2δ − δ2} = 2δ − δ2. (32)

Thus our goal is to showεr(A) < ε. (Note that forδ in the range[0, 1], we have thatε ≥ δ.)

Let B be the set of all self-adjoint linear operators fromCd×d to Cd×d, and define the following
norm onB:

‖M‖(r) = sup
X∈U2

|(X,MX)|. (33)

Suppose thatr ≥ 2 (this will suffice for our purposes, since RIP withr = 2 implies RIP withr = 1).
We claim that‖·‖(r) is a norm, and thatB is a Banach space with respect to this norm.

To show these claims, we will consider the Frobenius norm‖·‖F onB, which is defined by viewing
each element ofB as a “matrix” acting on “vectors” that are elements ofCd×d. Then we will bound
‖·‖(r) in terms of‖·‖F . More precisely, let~ea (a ∈ {0, 1, . . . , d− 1}) be the standard basis vectors
in C

d, and letEab = ~ea~e
∗
b (a, b ∈ {0, 1, . . . , d − 1}) be the standard basis vectors inCd×d. Then

the Frobenius norm onB can be written as

‖M‖F =
(

∑

abcd

∣

∣

∣

(

Ecd

∣

∣M
∣

∣Eab

)

∣

∣

∣

2)1/2

. (34)

We claim that, for allM ∈ B,

‖M‖(r) ≥
1

3
√
2d2

‖M‖F . (35)

To see this, suppose that‖M‖F ≥ µ; then there must exista, b, c, d ∈ {0, 1, . . . , d − 1} such
that

∣

∣(Ecd|M|Eab)
∣

∣ ≥ 1
d2µ. If Eab = Ecd, then we have‖M‖(r) ≥ 1

d2µ. Otherwise, we have
(Eab|Ecd) = 0. Now at least one of the following must be true:

∣

∣Re
(

Ecd

∣

∣M
∣

∣Eab

)∣

∣ ≥ 1√
2d2

µ (case 1), (36)
∣

∣Im
(

Ecd

∣

∣M
∣

∣Eab

)∣

∣ ≥ 1√
2d2

µ (case 2). (37)
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In case 1, letX = 1√
2
(Eab + Ecd), and write

Re
(

Ecd

∣

∣M
∣

∣Eab

)

=
(

X
∣

∣M
∣

∣X
)

− 1
2

(

Eab

∣

∣M
∣

∣Eab

)

− 1
2

(

Ecd

∣

∣M
∣

∣Ecd

)

. (38)

One of the three terms on the right hand side must have absolute value at least 1
3
√
2d2

µ. Since

X,Eab, Ecd are inU2, it follows that‖M‖(r) ≥ 1
3
√
2d2

µ. In case 2, letX = 1√
2
(Eab + iEcd), and

write
Im

(

Ecd

∣

∣M
∣

∣Eab

)

= i
(

X
∣

∣M
∣

∣X
)

− 1
2 i
(

Eab

∣

∣M
∣

∣Eab

)

− 1
2 i
(

Ecd

∣

∣M
∣

∣Ecd

)

. (39)

By a similar argument, we get that‖M‖(r) ≥ 1
3
√
2d2

µ. This shows (35).

In addition, it is straightforward to see that

‖M‖(r) ≤ sup
X : ‖X‖F≤1

|(X,MX)| ≤ ‖M‖op ≤ ‖M‖F . (40)

Finally, using (35) and (40), we see that‖·‖(r) is a norm, andB is a Banach space with respect
to ‖·‖(r). (This follows since these same properties already hold for‖·‖F .) In particular,‖·‖(r) is
nondegenerate (‖M‖(r) = 0 impliesM = 0), andB is complete with respect to‖·‖(r).
Returning to our main proof, we can now writeεr(A) = ‖A∗A − I‖(r). The strategy of the proof
will be to first boundEεr(A), then show thatεr(A) is concentrated around its mean.

We claim that

Eεr(A) ≤ 2E
∥

∥

∥

m
∑

j=1

εj
∣

∣Sj

)(

Sj

∣

∣

d2

m

∥

∥

∥

(r)
, (41)

where theεj are Rademacher (iid±1) random variables. Here the round ket notation
∣

∣Sj

)

means we

view the matrixSj as an element of the vector spaceCd2

with Hilbert-Schmidt inner product; the
round bra

(

Sj

∣

∣ denotes the adjoint element in the (dual) vector space. The above bound follows from

a standard symmetrization argument: writeA∗A − I =
∑m

j=1 Xj whereXj =
∣

∣Sj

)(

Sj

∣

∣

d2

m − I
m ,

then letX ′
j be independent copies of the random variablesXj , and use equation (2.5) and Lemma

6.3 in [22] to write:

Eεr(A) = E

∥

∥

∥

∑

j

Xj

∥

∥

∥

(r)

≤ E

∥

∥

∥

∑

j

(Xj −X ′
j)
∥

∥

∥

(r)
= E‖

∑

j

εj(Xj −X ′
j)‖(r)

= E

∥

∥

∥

∑

j

εj

(

∣

∣Sj

)(

Sj

∣

∣−
∣

∣S′
j

)(

S′
j

∣

∣

)

d2

m

∥

∥

∥

(r)

≤ 2E
∥

∥

∥

∑

j

εj
∣

∣Sj

)(

Sj

∣

∣

d2

m

∥

∥

∥

(r)
.

(42)

Now we use the following lemma, which we will prove later. This bounds the expected magnitude
in (r)-norm of a Rademacher sum of a fixed collection of operatorsV1, . . . , Vm that have small
operator norm.

Lemma A.1 (restatement of Lemma 3.1) Letm ≤ d2. Fix someV1, . . . , Vm ∈ Cd×d that have
uniformly bounded operator norm,‖Vi‖ ≤ K (for all i). Letε1, . . . , εm be iid uniform±1 random
variables. Then

Eε

∥

∥

∥

m
∑

i=1

εi
∣

∣Vi

)(

Vi

∣

∣

∥

∥

∥

(r)
≤ C5 ·

∥

∥

∥

m
∑

i=1

∣

∣Vi

)(

Vi

∣

∣

∥

∥

∥

1/2

(r)
, (43)

whereC5 =
√
r · C4K log5/2 d log1/2 m andC4 is some universal constant.

We apply the lemma as follows. LetΩ = {S1, . . . , Sm} be the multiset of all the measurement
operators that appear in the sampling operatorA. Then we have

Eεr(A) ≤ 2EΩEε

∥

∥

∥

∑

J∈Ω

εJ
√
d
∣

∣J
)(

J
∣

∣

√
d
∥

∥

∥

(r)
· d
m . (44)
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Using the lemma on the set of operators
√
dJ (J ∈ Ω), we get

Eεr(A) ≤ 2EΩC5 ·
∥

∥

∥

∑

J∈Ω

√
d
∣

∣J
)(

J
∣

∣

√
d
∥

∥

∥

1/2

(r)
· d
m

≤ 2
(

EΩ

∥

∥

∥

∑

J∈Ω

√
d
∣

∣J
)(

J
∣

∣

√
d
∥

∥

∥

(r)

)1/2

· C5 · d
m

= 2
(

E‖A∗A‖(r)
)1/2

· C5 ·
√

d
m

≤ 2(Eεr(A) + 1)1/2 · C5 ·
√

d
m ,

(45)

whereC5 =
√
r · C4K log3 d.

To make the notation more concise, defineE0 = Eεr(A) andC0 = 2C5

√

d
m . Then, squaring both

sides and rearranging, we have
E2

0 − C2
0E0 − C2

0 ≤ 0. (46)

This quadratic equation has two roots, which are given byα± = 1
2 (C

2
0 ± C0

√

C2
0 + 4), and we

know thatE0 is bounded by
α− ≤ 0 ≤ E0 ≤ α+. (47)

Also, we can simplify the bound by writingα+ ≤ 1
2 (C

2
0 + C0(C0 + 2)) = C2

0 + C0.

Now we use the fact thatm is large. Letλ ≥ 1 (we will choose a precise value forλ later). Assume
that

m ≥ λd(2C5)
2 = λ · 4C2

4 · dr ·K2 log6 d. (48)

ThenC0 ≤ 1/
√
λ, andα+ ≤ 1

λ + 1√
λ

, and we have the desired result:

Eεr(A) ≤ 1
λ + 1√

λ
. (49)

It remains to show thatεr(A) is concentrated around its expectation. We will use a concentration
inequality from [22] for sums of independent symmetric random variables that take values in some
Banach space. DefineX =

∑m
j=1 Xj whereXj = d2

m

∣

∣Sj

)(

Sj

∣

∣ − I
m ; then we haveA∗A− I = X

andεr(A) = ‖X‖(r).

We showed above thatE‖X‖(r) ≤ 1
λ + 1√

λ
. In addition, we can bound eachXj as follows, using

the fact that, forX ∈ U2, |(Sj , X)| ≤ ‖Sj‖‖X‖∗ ≤ (K/
√
d)
√
r‖X‖F ≤ (K/

√
d)
√
r.

‖Xj‖(r) = sup
X∈U2

∣

∣

∣

d2

m |(Sj , X)|2 − 1
m‖X‖2F

∣

∣

∣
≤ drK2 + 1

m
≤ 1

λ · 4C2
4

. (50)

We use a standard symmetrization argument: letX ′
j denote an independent copy ofXj , and define

Yj = Xj − X ′
j , which is symmetric (−Yj has the same distribution asYj ). Also defineY =

∑m
j=1 Yj = X − X ′. Using the triangle inequality, we have

E‖Y‖(r) ≤ 2E‖X‖(r) ≤ 2( 1λ + 1√
λ
), (51)

‖Yj‖(r) ≤ 2‖Xj‖(r) ≤
1

λ · 2C2
4

. (52)

Using equation (6.1) in [22], we have, for anyu ≥ 0,

Pr
[

‖X‖(r) > 2( 1λ + 1√
λ
) + u

]

≤ Pr
[

‖X‖(r) > 2E‖X‖(r) + u
]

≤ 2Pr
[

‖Y‖(r) > u
]

. (53)

We will use the following concentration inequality of Ledoux and Talagrand [22]. This is a special
case of Theorem 6.17 in [22], where we sets = Rℓ and use equation (6.19) in [22]. This is the same
bound used in [12].
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Theorem A.2 LetY1, . . . ,Ym be independent symmetric random variables taking values insome
Banach space. Assume that‖Yj‖ ≤ R for all j. LetY =

∑m
j=1 Yj . Then, for any integersℓ ≥ q,

and anyt > 0,

Pr
[

‖Y‖ ≥ 8qE‖Y‖+ 2Rℓ+ tE‖Y‖
]

≤ (C7/q)
ℓ + 2 exp(−t2/256q), (54)

whereC7 is some universal constant.

Now setq = ⌈eC7⌉. Introduce a new parameters ≥ √
q + 1, and setℓ = ⌊s2⌋ andt = s. We get

that the failure probability is exponentially small ins:

Pr
[

‖Y‖(r) ≥ (8q + s)E‖Y‖(r) + 2Rs2
]

≤ e−s2+1 + 2e−s2/256q. (55)

Then, using (51), (52) and (53), we get

Pr
[

‖X‖(r) ≥ (1 + 8q + s) · 2( 1λ + 1√
λ
) + 1

λC2

4

s2
]

≤ 2[e−s2+1 + 2e−s2/256q]. (56)

Now let λ ≥ (1 + 8q)2 · 256
ε2 (note thatλ ≥ 1, as required). Then sets = ε

√
λ

16 (note thats ≥
1 + 8q ≥ √

q + 1, as required). Then we can write

(1 + 8q + s) · 2( 1λ + 1√
λ
) + 1

λC2

4

s2 ≤ 8s√
λ
+ s2

C2

4
λ
= ε

2 + ε2

256C2

4

≤ ε. (57)

Plugging into the previous inequality, we have

Pr[‖X‖(r) ≥ ε] ≤ e−Ω(s2) = e−Ω(ε2λ). (58)

Therefore, we haveεr(A) ≤ ε, with a failure probability that decreases exponentially in λ. This
completes the proof.

A.2 Proof of Lemma 3.1 (bounding a Rademacher sum in (r)-norm)

Let L0 = Eε‖
∑m

i=1 εi
∣

∣Vi

)(

Vi

∣

∣‖(r); this is the quantity we want to bound. We can upper-bound
it by replacing the±1 random variablesε1, . . . , εm with iid N(0, 1) Gaussian random variables
g1, . . . , gm (see Lemma 4.5 and equation (4.8) in [22]); then we get

L0 ≤ Eg

∥

∥

∥

√

π
2

m
∑

i=1

gi
∣

∣Vi

)(

Vi

∣

∣

∥

∥

∥

(r)
. (59)

Using the definition of the norm‖·‖(r) (equation (33)), we have

L0 ≤ Eg sup
X∈U2

√

π
2 |G(X)|, G(X) =

m
∑

i=1

gi|(Vi, X)|2. (60)

The random variablesG(X) (indexed byX ∈ U2) form a Gaussian process, andL0 is upper-
bounded by the expected supremum of this process. In particular, using the fact thatG(0) = 0 and
G(·) is symmetric (see [22], pp.298), we have

L0 ≤
√

π
2Eg sup

X∈U2

|G(X)−G(0)| ≤
√

π
2Eg sup

X,Y ∈U2

|G(X)−G(Y )|

=
√

π
2Eg sup

X,Y ∈U2

G(X)−G(Y ) =
√
2πEg sup

X∈U2

G(X).
(61)

Using Dudley’s inequality (Theorem 11.17 in [22]), we have

L0 ≤ 24
√
2π

∫ ∞

0

log1/2 N(U2, dG, ε)dε, (62)

whereN(U2, dG, ε) is a covering number (the number of balls inCd×d of radiusε in the metricdG
that are needed to cover the setU2), and the metricdG is given by

dG(X,Y ) =
(

E[(G(X) −G(Y ))2]
)1/2

. (63)
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We can simplify the metricdG, using the fact thatE[gigj] = 1 wheni = j and 0 otherwise:

dG(X,Y ) =
(

E

[(

m
∑

i=1

gi(|(Vi, X)|2 − |(Vi, Y )|2)
)2])1/2

=
(

m
∑

i=1

(

|(Vi, X)|2 − |(Vi, Y )|2
)2)1/2

(64)

Define a new norm (actually a semi-norm)‖·‖X onCd×d, as follows:

‖M‖X = max
i=1,...,m

|(Vi,M)|. (65)

Note that4
∣

∣

∣
|(Vi, X)|2 − |(Vi, Y )|2

∣

∣

∣
≤

(

|(Vi, X)|+ |(Vi, Y )|
)

· |(Vi, X)− (Vi, Y )|

≤
(

|(Vi, X)|+ |(Vi, Y )|
)

· ‖X − Y ‖X .
(66)

This lets us give a simpler upper bound on the metricdG:

dG(X,Y ) ≤
(

m
∑

i=1

(

|(Vi, X)|+ |(Vi, Y )|
)2

· ‖X − Y ‖2X
)1/2

≤
[(

m
∑

i=1

|(Vi, X)|2
)1/2

+
(

m
∑

i=1

|(Vi, Y )|2
)1/2]

· ‖X − Y ‖X

≤ 2 sup
X∈U2

(

m
∑

i=1

|(Vi, X)|2
)1/2

· ‖X − Y ‖X

= 2
∥

∥

∥

m
∑

i=1

∣

∣Vi

)(

Vi

∣

∣

∥

∥

∥

1/2

(r)
· ‖X − Y ‖X .

(67)

Note that the last step holds for allX,Y ∈ U2. To simplify the notation, letR =

‖∑m
i=1

∣

∣Vi

)(

Vi

∣

∣‖1/2(r) , then we havedG(X,Y ) ≤ 2R‖X − Y ‖X .

This lets us upper-bound the covering numbers indG with covering numbers in‖·‖X :

N(U2, dG, ε) ≤ N(U2, ‖·‖X , ε
2R ) = N( 1√

r
U2, ‖·‖X , ε

2R
√
r
). (68)

Plugging into (62) and changing variables, we get

L0 ≤ 48
√
2πR

√
r

∫ ∞

0

log1/2 N( 1√
r
U2, ‖·‖X , ε)dε. (69)

We will now bound these covering numbers. First, we introduce some notation: let‖·‖p denote the
Schattenp-norm onCd×d, and letBp be the unit ball in this norm. Also, letBX be the unit ball in
the‖·‖X norm.

Observe that
1√
r
U2 ⊆ B1 ⊆ K · BX . (70)

(The second inclusion follows because‖M‖X ≤ maxi=1,...,m‖Vi‖‖M‖∗ ≤ K‖M‖∗.) This gives
a simple bound on the covering numbers:

N( 1√
r
U2, ‖·‖X , ε) ≤ N(B1, ‖·‖X , ε) ≤ N(K · BX , ‖·‖X , ε). (71)

This equals 1 whenε ≥ K. So, in equation (69), we can restrict the integral to the interval[0,K].

Whenε is small, we will use the following simple bound (equation (5.7) in [23]): (this is equation
(20))

N(K · BX , ‖·‖X , ε) ≤ (1 + 2K
ε )2d

2

. (72)

4Note that, for any complex numbersa andb, |a|2−|b|2 = 1

2
(ā+b̄)(a−b)+ 1

2
(a+b)(ā−b̄) ≤ |a+b|·|a−b|.
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Whenε is large, we will use a more sophisticated bound based on Maurey’s empirical method and
entropy duality, which is due to [16] (see also [17]): (this is equation (21))

N(B1, ‖·‖X , ε) ≤ exp(
C2

1
K2

ε2 log3 d logm), for some constantC1. (73)

We defer the proof of (21) to the next section. Here, we proceed to bound the integral in (69).

LetA = K/d. For the integral over[0, A], we write

L1 :=

∫ A

0

log1/2 N( 1√
r
U2, ‖·‖X , ε)dε ≤

∫ A

0

√
2d log1/2(1 + 2K

ε )dε

≤
√
2d

∫ A

0

(

1 + log(1 + 2K
ε )

)

dε =
√
2d ·A+

√
2d · L′

1

(74)

where

L′
1 :=

∫ A

0

log(1 + 2K
ε )dε =

∫ ∞

1/A

log(1 + 2Ky)dyy2

≤
∫ ∞

1/A

log((A+ 2K)y)dyy2 =

∫ ∞

1/A

log(A+ 2K)dyy2 +

∫ ∞

1/A

log y dy
y2 .

(75)

Integrating by parts, we get

L′
1 ≤ A log(A+ 2K) +A log 1

A +A = A log(1 + 2K
A ) +A, (76)

and substituting back in,

L1 ≤
√
2dA(2 + log(1 + 2K

A )) =
√
2K(2 + log(1 + 2d)). (77)

For the integral over[A,K], we write

L2 :=

∫ K

A

log1/2 N( 1√
r
U2, ‖·‖X , ε)dε ≤

∫ K

A

C1K
ε log3/2 d log1/2 m dε

= C1K log3/2 d log1/2 m log K
A = C1K log5/2 d log1/2 m.

(78)

Finally, substituting into (69), we get

L0 ≤ 48
√
2πR

√
r(L1 + L2) ≤ C4R

√
rK log5/2 d log1/2 m, (79)

whereC4 is some universal constant. This proves the lemma.

A.3 Proof of Equation (21) (covering numbers of the nuclear-norm ball)

Our result will follow easily from a bound on covering numbers introduced in [16] (where it appears
as Lemma 1):

Lemma A.3 LetE be a Banach space, having modulus of convexity of power type 2with constant
λ(E). LetE∗ be the dual space, and letT2(E

∗) denote its type 2 constant. LetBE denote the unit
ball in E.

LetV1, . . . , Vm ∈ E∗, such that‖Vj‖E∗ ≤ K (for all j). Define the norm onE,

‖M‖X = max
j=1,...,m

|(Vj ,M)|. (80)

Then, for anyε > 0,

ε log1/2 N(BE , ‖·‖X , ε) ≤ C2λ(E)2T2(E
∗)K log1/2 m, (81)

whereC2 is some universal constant.

15



The proof uses entropy duality to reduce the problem to bounding the “dual” covering number. The
basic idea is as follows. Letℓmp denote the complex vector spaceCm with the ℓp norm. Consider
the mapS : ℓm1 → E∗ that takes thej’th coordinate vector toVj . LetN(S) denote the number of
balls inE∗ needed to cover the image (under the mapS) of the unit ball inℓm1 . We can boundN(S)
using Maurey’s empirical method. Also define the dual mapS∗ : E → ℓm∞, and the associated dual
covering numberN(S∗). ThenN(BE , ‖·‖X , ε) is related toN(S∗). Finally,N(S) andN(S∗) are
related via entropy duality inequalities. See [16] for details.

We will apply this lemma as follows, using the same approach as [17]. LetSp denote the Banach
space consisting of all matrices inCd×d with the Schattenp-norm. Intuitively, we want to set
E = S1 andE∗ = S∞, but this won’t work becauseλ(S1) is infinite. Instead, we letE = Sp,
p = (log d)/(log d− 1), andE∗ = Sq, q = log d. Note that‖M‖p ≤ ‖M‖∗, henceB1 ⊆ Bp and

ε log1/2 N(B1, ‖·‖X , ε) ≤ ε log1/2 N(Bp, ‖·‖X , ε). (82)

Also, we haveλ(E) ≤ 1/
√
p− 1 =

√
log d− 1 andT2(E

∗) ≤ λ(E) ≤
√
log d− 1 (see the

Appendix in [17]). Note that‖M‖q ≤ e‖M‖, thus we have‖Vj‖q ≤ eK (for all j). Then, using
the lemma, we have

ε log1/2 N(Bp, ‖·‖X , ε) ≤ C2 log
3/2 d (eK) log1/2 m, (83)

which proves the claim.

B Proof of Proposition 2.4 (recovery of a full-rank matrix)

In this section we will sketch the proof of Proposition 2.4. We use the same argument as Theorem
2.8 in [5], adapted for Pauli (rather than Gaussian) measurements.

A crucial ingredient is the NNQ (“nuclear norm quotient”) property of a sampling operatorA, which
was introduced in [5] and is analogous to the LQ (“ℓ1-quotient”) property in compressed sensing
[26]. We say that a sampling operatorA : Cd×d → Cm satisfies the NNQ(α) property if

A(B1) ⊇ αB2, (84)

whereB1 is the unit ball of the nuclear norm inCd×d, andB2 is the unit ball of theℓ2 (Euclidean)
norm inCm.

It is easy to see that the Pauli sampling operatorA defined in (3) satisfies NNQ(α) with α =
√

d/m.
(Without loss of generality, suppose that the Pauli matrices S1, . . . , Sm used to constructA are
all distinct. Letα =

√

d/m and choose anyy ∈ αB2. Let X =
√
m
d

∑m
i=1 yiSi, so we have

A(X) = y. Observe that‖X‖∗ ≤
√
d‖X‖F =

√

m
d ‖y‖2 ≤ 1, as desired.) We remark that this

value ofα is probably not optimal; if one could prove thatA satisfies NNQ(α) with largerα, it
would improve the bound in Proposition 2.4.

We will need one more property ofA. We want the following to hold: for any fixed matrixM ∈
Cd×d (which is not necessarily low-rank), almost all random choices ofA will satisfy

‖A(M)‖22 ≤ 1.5‖M‖2F . (85)

(Note that this inequality is required to hold only for this one particular matrixM .) In our case
(random Pauli measurements), it is easy to check thatA obeys this property as well.

The proof of Theorem 2.8 in [5] actually implies the following more general statement, about low-
rank matrix recovery whenA satisfies both RIP and NNQ:

Theorem B.1 LetM be any matrix inCd×d, and letσ1(M) ≥ σ2(M) ≥ · · · ≥ σd(M) ≥ 0 be its
singular values. WriteM = Mr +Mc, whereMr contains ther largest singular values ofM . Also
writeM = M0+Me, whereM0 contains only those singular values ofM that exceedλ = 16

√
dσ.

Suppose the sampling operatorA : Cd×d → Cm satisfies RIP (for rank-r matrices inCd×d), and
NNQ(α) with α = µ

√

d/m. Furthermore, suppose thatA satisfies‖A(Mc)‖22 ≤ 1.5‖Mc‖2F and
‖A(Me)‖22 ≤ 1.5‖Me‖2F .
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Say we observey = A(M) + z, wherez ∼ N(0, σ2I). Let M̂ be the Dantzig selector (4) with
λ = 16

√
dσ, or the Lasso (5) withµ = 32

√
dσ. Then, with high probability over the choice ofA

and the noisez,

‖M̂ −M‖2F ≤ C0

r
∑

i=1

min(σ2
i (M), dσ2) +

(

C1 +
C2m

µ2rd

)

d
∑

i=r+1

σ2
i (M), (86)

whereC0, C1 andC2 are absolute constants.

To prove Theorem B.1, one follows the proof of Theorem 2.8 in [5]. There is a slight modification
to Lemma 3.10 in [5]: one gets the more general bound,

‖M̂ −M‖F ≤ C0λ
√
r +

(

C1 +
C2

µ

√

m
rd

)

‖A(Mc)‖2 + ‖Mc‖F . (87)

Combining Theorem B.1 with the preceding facts gives us Proposition 2.4.
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