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Abstract

We study the problem of reconstructing an unknown matfi>of rankr and di-
mensiond usingO(rd poly log d) Pauli measurements. This has applications in
guantum state tomography, and is a non-commutative analofa well-known
problem in compressed sensing: recovering a sparse vector & few of its
Fourier coefficients.

We show that almost all sets 6f(rd log® d) Pauli measurements satisfy the rank-
r restricted isometry property (RIP). This implies thidtcan be recovered from
a fixed (“universal”) set of Pauli measurements, using rareteorm minimization
(e.g., the matrix Lasso), with nearly-optimal bounds ondfrer. A similar result
holds for any class of measurements that use an orthonopeedior basis whose
elements have small operator norm. Our proof uses Dudlegtpality for Gaus-
sian processes, together with bounds on covering numbéageld via entropy
duality.

1 Introduction

Low-rank matrix recovery is the following problem: 1&éf be some unknown matrix of dimension
d and rankr < d, and letAq, A, ..., A,, be a set of measurement matrices; then can one recon-
struct M from its inner productsr(M* Ay ), tr(M*Az), ..., tr(M*A,,)? This problem has many
applications in machine learning [1, 2], e.g., collabamfiltering (the Netflix problem). Remark-
ably, it turns out that for many useful choices of measurdmmtrices, low-rank matrix recovery
is possible, and can even be done efficiently. For examplenwie A, are Gaussian random ma-
trices, then it is known that: = O(rd) measurements are sufficient to uniquely determiiheand
furthermore, M can be reconstructed by solving a convex program (minirgitie nuclear norm)
[3L14,[5]. Another example is the “matrix completion” protsiewhere the measurements return a
random subset of matrix elementsf; in this casem = O(rd poly log d) measurements suffice,
provided thatV/ satisfies some “incoherence” conditions|g, [7,/8, 9, 10].

The focus of this paper is on a different class of measuresnkenbwn as Pauli measurements. Here,
the A, are randomly chosen elements of the Pauli basis, a partmutonormal basis af%*¢. The
Pauli basis is a non-commutative analogue of the Fouries ba€?; thus, low-rank matrix recovery
using Pauli measurements can be viewed as a generalizdtiba mlea of compressed sensing of
sparse vectors using their Fourier coefficieqts [11, 12]addition, this problem has applications
in quantum state tomography, the task of learning an unkrgpyamtum state by performing mea-
surements [13]. This is because most quantum states ofqahirsierest are accurately described by
density matrices that have low rank; and Pauli measurenagatsspecially easy to carry out in an
experiment (due to the tensor product structure of the Pasis).
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In this paper we show stronger results on low-rank matriovecy from Pauli measurements. Pre-
viously [13,[8], it was known that, for every rankmatrix M < C%*4, almost all choices of
m = O(rdpoly logd) random Pauli measurements will lead to successful recovey. Here
we show a stronger statement: there is a fixed (“universat’&mn = O(rd poly log d) Pauli mea-
surements, such that for all ramkmatricesM € C?*¢, we have successful recovéryVe do this
by showing that the random Pauli sampling operator obeys#stricted isometry property” (RIP).
Intuitively, RIP says that the sampling operator is an apipnate isometry, acting on the set of all
low-rank matrices. In geometric terms, it says that the dengperator embeds the manifold of
low-rank matrices int@(rd poly log d) dimensions, with low distortion in the 2-norm.

RIP for low-rank matrices is a very strong property, andpiachis work, it was only known to hold
for very unstructured types of random measurements, su@aassian measurements [3], which
are unsuitable for most applications. RIP was known to faithe matrix completion case, and
whether it held for Pauli measurements was an open quedilase we have established RIP for
Pauli measurements, we can use known resulis| [3, 4, 5] to kKiwwank matrix recovery from a
universal set of Pauli measurements. In particular, udhgwe can get nearly-optimal universal
bounds on the error of the reconstructed density matrixpmthe data are noisy; and we can even get
bounds on the recovery of arbitrary (not necessarily lomkyanatrices. These RIP-based bounds are
gualitatively stronger than those obtained using “dualiteaites” [14] (though the latter technique
is applicable in some situations where RIP fails).

In the context of quantum state tomography, this implies, thi@en a quantum state that consists
of a low-rank component/,. plus a residual full-rank componenf,., we can reconstruct/,. up

to an error that is not much larger tha#.. In particular, let||-||. denote the nuclear norm, and let
Il » denote the Frobenius norm. Then the error can be bounded imuttlear norm by (|| M.||«)
(assuming noiseless data), and it can be bounded in the riusbeorm byO (|| M. || poly log d)
(which holds even with noisy data This shows that our reconstruction is nearly as good as the
best rankr approximation tal (which is given by the truncated SVD). In addition, a comgliet
arbitrary quantum state can be reconstructed up to an €r@¢1g//r) in Frobenius norm. Lastly,
the RIP gives some insight into the optimal design of tomplgyaexperiments, in particular, the
tradeoff between the number of measurement settings (vidiebsentiallyn), and the number of
repetitions of the experiment at each setting (which detezmthe statistical noise that enters the
data) [15].

These results can be generalized beyond the class of Paatiumsnents. Essentially, one can
replace the Pauli basis with any orthonormal basi€®6f¢ that isincoherenti.e., whose elements
have small operator norm (of ordéx(1/+/d), say); a similar generalization was noted in the earlier
results of [8]. Also, our proof shows that the RIP actuallydsan a slightly stronger sense: it holds
not just for all rank matrices, but for all matriceX that satisfyl| X ||. < /7| X| r.

To prove this result, we combine a number of techniques tiat hppeared elsewhere. RIP results
were previously known for Gaussian measurements and sortteeinfclose relatived [3]. Also,
restricted strong convexity (RSC), a similar but somewhabaker property, was recently shown
in the context of the matrix completion problem (with adulital “non-spikiness” conditions) [10].
These results follow from covering arguments (i.e., usiegrcentration inequality to upper-bound
the failure probability on each individual low-rank mattik, and then taking the union bound over
all suchX). Showing RIP for Pauli measurements seems to be more tiglibawever. Pauli
measurements have more structure and less randomnesscsmtentration of measure phenomena
are weaker, and the union bound no longer gives the desisett.re

Instead, one must take into account the favorable coroglathetween the behavior of the sampling
operator on different matrices — intuitively, if two low+rk matrices)M and M’ have overlapping
supports, then good behavior a1 is positively correlated with good behavior ad’. This can be
done by transforming the problem into a Gaussian procedgajsing Dudley’s entropy bound. This
is the same approach used in classical compressed semssipw RIP for Fourier measurements
[12,[11]. The key difference is that in our case, the Gaugsiacess is indexed by low-rank matrices,
rather than sparse vectors. To bound the correlations $mpitticess, one then needs to bound the
covering numbers of the nuclear norm ball (of matricesheathan the/; ball (of vectors). This

INote that in the universal resuly; is slightly larger, by a factor ooly log d.
2However, this bound is not universal.



requires a different technique, using entropy duality,chtis due to Guédon et al [16]. (See also
the related work in[17].)

As a side note, we remark that matrix recovery can sometiaiebdcause there exist large sets of
up tod Pauli matrices that all commute, i.e., they have a simutiaaeigenbasig, . . ., ¢4. (These

¢, are of interest in quantum information — they are called ity states[[18].) If one were to
measure such a set of Pauli’s, one would gain complete kmigelabout the diagonal elements of
the unknown matri¥\/ in the¢; basis, but one would learn nothing about the off-diagoreaheints.
This is reminiscent of the difficulties that arise in matrbngpletion. However, in our case, these
pathological cases turn out to be rare, since it is unlikedt & random subset of Pauli matrices will
all commute.

Finally, we note that there is a large body of related workgtm&ating a low-rank matrix by solving
a regularized convex program; see, elqa.| [19, 20].

This paper is organized as follows. In section 2, we stateresults precisely, and discuss some
specific applications to quantum state tomography. In@e&iwe prove the RIP for Pauli matrices,

and in section 4 we discuss some directions for future woremé technical details appear in

section§ A anfB.

Notation: For vectors)|-||. denotes thé,; norm. For matrices)-||, denotes the Schattennorm,
X, = (3, 0:(X)P)Y/P, whereo;(X) are the singular values of. In particular,||-|. = |||l1
is the trace or nuclear nornj;|| 7 = ||-||2 is the Frobenius norm, antl|| = |||l is the operator
norm. Finally, for matricesA* is the adjoint ofA4, and(-, -) is the Hilbert-Schmidt inner product,
(A, B) = tr(A*B). Calligraphic letters denote superoperators acting omiceat Also,|A) (4| is
the superoperator that maps every mak¥ixc C?*¢ to the matrixA tr(A*X).

2 Our Results

We will consider the following approach to low-rank matrecovery. LetM € C?<? be an un-
known matrix of rank at most. Let W, ..., W= be an orthonormal basis f@“*¢, with respect
to the inner productA, B) = tr(A*B). We choosen basis elements3, .. ., S,,, iid uniformly

at random from{W7, ..., Wy} (“sampling with replacement”). We then observe the coeffits
(Si;, M). From this data, we want to reconstruidt

For this to be possible, the measurement matriéggsamust be “incoherent” with respect tbf.
Roughly speaking, this means that the inner prod{iéts A/) must be small. Formally, we say that
the basigVy, ..., Wy isincoherentf the W; all have small operator norm,

HWz” SK/\/E, (1)

whereK is a constarfi.(This assumption was also used]in [8].)

Before proceeding further, let us sketch the connectiowéen this problem and quantum state
tomography. Consider a systemrofubits, with Hilbert space dimensieh= 2". We want to learn
the state of the system, which is described by a density xyatei C?*¢; p is positive semidefinite,
has trace 1, and has rank d when the state is nearly pure. There is a class of converaedt (
experimentally feasible) measurements, which are desttrity Pauli matrices (also called Pauli
observables). These are matrices of the fé/h® - - - ® P,, where® denotes the tensor product
(Kronecker product), and eadh is a2 x 2 matrix chosen from the following four possibilities:

10 0 1 0 —i 10
I:(O 1)’ f’w:(1 0)’ %:(i oz)’ UZ:(O —1)' ©)

One can estimate expectation values of Pauli observablteshware given byp, (Py ® --- ® P,,)).
This is a special case of the above measurement model, wieera¢asurement matricék; are
the (scaled) Pauli observablgB, @ --- ® P,)/v/d, and they are incoherent witfiv; || < K/v/d,
K =1.

®Note that||I¥; | is the maximum inner product betwe®¥; and any rank-1 matrid/ (normalized so that
[M]|F = 1).



Now we return to our discussion of the general problem. Weosb§,, ..., S,, iid uniformly at

random from{ W, ..., Wy}, and we define theampling operatord : C?*¢ — C™ as
(A(X)); = %ﬁ tr(S;X), i=1,...,m. (3)

The normalization is chosen so tHat* A = Z. (Note thatd* A = Y™ | [S;) (S| - &)

We assume we are given the data A(M ) + z, wherez € C™ is some (unknown) noise contribu-

tion. We will construct an estimatd¥/ by minimizing the nuclear norm, subject to the constraints
specified byy. (Note that one can view the nuclear norm as a convex retaxafithe rank function
— thus these estimators can be computed efficiently.) Oneoapp is the matrix Dantzig selector:

M = argn}}n [IX || such that]A* (y — A(X))|| < A. 4)
Alternatively, one can solve a regularized least-squaralsiem, also called the matrix Lasso:
M = argmin 3| A(X) = y|l3 + p Xl (6)

Here, the parametepsand . are set according to the strength of the noise componéne will
discuss this later). We will be interested in bounding thereof these estimators. To do this, we
will show that the sampling operatgt satisfies the restricted isometry property (RIP).

2.1 RIP for Pauli M easurements

Fix some constartt < § < 1. Fix d, and some sdt’ C C¢*¢, We say thatA satisfies theestricted
isometry propertyRIP) overU if, for all X € U, we have

(1 =0)IX]r < [AX)l2 < (1 +0)[X][p. (6)

(Here, || A(X)||2 denotes th&y norm of a vector, whilg| X || denotes the Frobenius norm of a
matrix.) WhenU is the set of allX € C¢*¢ with rankr, this is precisely the notion of RIP studied
in [3,5]. We will show that Pauli measurements satisfy thE BVer a slightly larger set (the set of
all X € €% such that| X ||. < /7| X|/r), provided the number of measurementss at least
Q(rdpoly log d). This result generalizes to measurements in any basis mi#il sperator norm.

Theorem 2.1 Fix some constarit < ¢ < 1. Let{W, ..., Wz} be an orthonormal basis fag?*¢
that is incoherent in the sense bf (1). ket= CK? - rdlog® d, for some constan®' that depends
only ond, C = O(1/6%). Let A be defined as ifi{3). Then, with high probability (over theicko
of S1,...,Su), A satisfies the RIP over the set of &l ¢ C%*? such that|| X||. < /7| X]||F.
Furthermore, the failure probability is exponentially siria 62C.

We will prove this theorem in section 3. In the remainder @f 8ection, we discuss its applications
to low-rank matrix recovery, and quantum state tomograplpairticular.

2.2 Applications

By combining Theorer 211 with previous results[[3[ 4, 5], weriediately obtain bounds on the
accuracy of the matrix Dantzig selectbl (4) and the matrissod(®). In particular, for the first time
we can showuniversalrecovery of low-rank matrices via Pauli measurements, aat-optimal
bounds on the accuracy of the reconstruction when the daaisy [5]. (Similar results hold for
measurements in any incoherent operator basis.) Thesbd&d results improve on the earlier
results based on dual certificates|[13, 8, 14]. Seel[3, 4,r5)dtails.

Here, we will sketch a couple of these results that are ofiqudatr interest for quantum state to-
mography. Here)/ is the density matrix describing the state of a quantum mechbobject, and
A(M) is a vector of Pauli expectation values for the stife (M has some additional properties:
it is positive semidefinite, and has trace 1; thtdis\/) is a real vector.) There are two main issues
that arise. First] is not precisely low-rank. In many situations, tideal state has low rank (for
instance, a pure state has rank 1); however, foattieal state observed in an experiment, the den-
sity matrix M is full-rank with decaying eigenvalues. Typically, we vk interested in obtaining a
good low-rank approximation td7, ignoring the tail of the spectrum.



Secondly, the measurements.4{M) are inherently noisy. We do not obserdg ) directly;
rather, we estimate each entty\(11)),; by preparing many copies of the stat€, measuring the
Pauli observablé&; on each copy, and averaging the results. Thus, we obgeeve A(M)); + 2,
wherez; is binomially distributed. When the number of experimergml averaged is large; can

be approximated by Gaussian noise. We will be intereste@titing an estimate af/ that is stable
with respect to this noise. (We remark that one can also eethesstatistical noise by performing
more repetitions of each experiment. This suggests thelplityof a tradeoff between the accuracy
of estimating each parameter, and the number of parametershmoses to measure overall. This
will be discussed elsewhere [15].)

We would like to reconstruct/ up to a small error in the nuclear or Frobenius norm. Lebe
our estimate. Bounding the error in nuclear norm implies, tfea any measurement allowed by

quantum mechanics, the probability of distinguishing tfages\/ from M is small. Bounding the

error in Frobenius norm implies that the differene— M is highly “mixed” (and thus does not
contribute to the coherent or “quantum” behavior of the exygt

We now sketch a few results froml [4, 5] that apply to this sitra Write M = M, + M., where
M, is a rank# approximation taM, corresponding to the largest singular values dff, and M,
is the residual part oM (the “tail” of A). Ideally, our goal is to estimat&/ up to an error that is
not much larger thad/... First, we can bound the error in nuclear norm (assuming &t ldlas no
noise):

Proposition 2.2 (Theorem 5 from[4]) Letd : C?*¢ — C™ be the random Pauli sampling operator,
with m = Crdlog® d, for some absolute consta@t Then, with high probability over the choice of
A, the following holds:

Let M be any matrix inC?*?, and write M = M, + M., as described above. Say we observe
y = A(M), with no noise. Lef/ be the Dantzig selectdrl(4) with= 0. Then

1N = M. < Cg| Ml ©
whereCy is an absolute constant.

We can also bound the error in Frobenius norm, allowing fasyhdata:

Proposition 2.3 (Lemma 3.2 from [5])AAssume the same set-up as above, butsapserve; =
A(M) + z, wherez ~ N(0,0%I). Let M be the Dantzig selectdf}(4) with = 8v/do, or the Lasso
@) with » = 16v/do. Then, with high probability over the noise

M — M||p < CoVrdo + Ch|| M|, /v/7, (8)

whereCy andC; are absolute constants.

This bounds the error d¥/ in terms of the noise strengthand the size of the tail/... Itis universal:
one sampling operato# works for all matrices\/. While this bound may seem unnatural because
it mixes different norms, it can be quite useful. Whihactually is low-rank (with rank:), then

M, = 0, and the bound{8) becomes particularly simple. The depm®den the noise strength

is known to be nearly minimax-optimall[5]. Furthermore, whemme of the singular values &1

fall below the “noise level’/do, one can show a tighter bound, with a nearly-optimal biasanae
tradeoff; see Theorem 2.7 inl[5] for details.

On the other hand, whel is full-rank, then the error ob/ depends on the behavior of the tadl..
We will consider a couple of cases. First, suppose we do soinas anything about/, besides the
fact that it is a density matrix for a quantum state. Thé#||. = 1, hence|M.|[. <1 — %, and we

can usel(8) to geth — M| » < Cov/rdo+ % Thus, even foarbitrary (not necessarily low-rank)

guantum states, the estimatuf gives nontrivial results. Th&(1/,/7) term can be interpreted as
the penalty for only measuring an incomplete subset of théi Baservables.

Finally, consider the case whedd is full-rank, but we do know that the tail/. is small. If we
know that)/, is small in nuclear norm, then we can use equafibn (8). Howyéwee know that)M,.
is small in Frobenius norm, one can give a different bounihguisleas froml[[5], as follows.



Proposition 2.4 Let M be any matrix ifC?*<, with singular values; (M) > --- > g4(M).

Choose a random Pauli sampling operatdr: C?*?¢ — C™, withm = Crd}ogG d, for some
absolute constar®. Say we observg = A(M) + z, wherez ~ N(0,0%I). Let M be the Dantzig
selector [#) with\ = 16v/do, or the Lasso[{5) with, = 321/do. Then, with high probability over
the choice of4 and the noise,
T d
INT — M3 < Co > min(0?(M),do®) + Ca(log®d) > o?(M), ©)

=1 1=r+1
whereCy andC5 are absolute constants.

This bound can be interpreted as follows. The first term esggethe bias-variance tradeoff for esti-
matingM/,., while the second term depends on the Frobenius nothi.o{Note that théog® d factor
may not be tight.) In particular, this implies\ — M|z < +/Cov'rdo + +/Cs(log® d)|| M. || .
This can be compared with equatidd (8) (involviid/.||.). This bound will be better when
|M|lF < || M|« i.e., when the tailM. has slowly-decaying eigenvalues (in physical terms, it
is highly mixed).

Propositio 2.1 is an adaptation of Theorem 2.87in [5]. Wettk¢he proof in sectiof]B. Note
that this bound is not universal: it shows that for all masid¢/, a random choice of the sampling
operatorA is likely to work.

3 Proof of the RIP for Pauli M easurements

We now prove Theorein 2.1. The general approach involving&tslentropy bound is similar to
[12], while the technical part of the proof (bounding camtedvering numbers) uses ideas fromi[16].
We summarize the argument here; the details are given iloa&8t

3.1 Overview

LetU; = {X € C™4 | || X||r <1, || X||« < 7| X]|F}. Let B be the set of all self-adjoint linear
operators fronC?*? to C4*¢, and define the following norm of:

M|y = sup [(X, MX)]. (10)
XeUs

(Suppose- > 2, which is sufficient for our purposes. Itis straightforwaodshow that- ||, is a
norm, and thaB3 is a Banach space with respect to this norm.) Then let us define

er(A) = [[A"A = I| (). (11)

By an elementary argument, in order to prove RIP, it sufficeshiow that,.(A) < 25 — §2. We
will proceed as follows: we will first bountle,.(A), then show that,.(.A) is concentrated around
its mean.

("’
where thes; are Rademacher (it 1) random variables. Here the round ket notatjsn) means
we view the matrixS; as an element of the vector spei(éé2 with Hilbert-Schmidt inner product;

the round bra(Sj\ denotes the adjoint element in the (dual) vector space.

Using a standard symmetrization argument, we haveRhatA) < 2EHZ}”:1 e;]85) (S;]4%

Now we use the following lemma, which we will prove later. $tiounds the expected magnitude
in (r)-norm of a Rademacher sum of a fixed collection of operalgrs. ., V,, that have small
operator norm.

Lemma3.1l Letm < d2. Fix someVy,...,V,, € C** that have uniformly bounded operator
norm,||V;|| < K (for all 7). Leteq, ..., e, be iid uniform+1 random variables. Then
m m 1/2
ESav) (] <o [ (12)
=1 =1

whereCs = /7 - C4K log®? dlog'/? m and C, is some universal constant.



After some algebra, one gets tHat, (4) < 2(Ee,(A) + 1)V/2 - C5 - /L, whereCs = /-

C4K log® d. By finding the roots of this quadratic equation, we get tHe#dng bound orie,.(A).

Let\ > 1. Assume thatn > \d(2C5)? = \-4C3 - dr - K2 log® d. Then we have the desired result:
Ee,(A) < 5 + - (13)

It remains to show that, (A) is concentrated around its expectation. For this we use eetdration

inequality from [22] for sums of independent symmetric ramdvariables that take values in some

Banach space. See sectioh A for details.

3.2 Proof of Lemma[Bdl (bounding a Rademacher sum in (r)-norm)

LetLo = E. ||}, gi]%) (%]H(T); this is the quantity we want to bound. Using a standard com-
parison principle, we can replace the random variables; with iid N (0, 1) Gaussian random
variablesy;; then we get

Lo <Ey sup \/51G(X)], G(X) = 3 gil(Vi, X)P (14)
2 i=1

The random variable&/(X) (indexed byX < Us) form a Gaussian process, atig is upper-
bounded by the expected supremum of this process. UsingatteifatG(0) = 0 andG() is
symmetric, and Dudley’s inequality (Theorem 11.17n [22]¢ have

Lo < V27E, sup G(X) < 2427 / log'/? N(Us, dg, €)de, (15)
XeUy 0

whereN (Us, dg, €) is a covering number (the number of ballsGfi*¢ of radiuse in the metricdg
that are needed to cover the &), and the metriels is given by

9 1/2
da(X,Y) = (E[(G(X) - 6))?]) (16)

Define a new norm (actually a semi-norfi) x onC?*4, as follows:
[M]lx = max [(V;, M)]. 17)

We use this to upper-bound the metidg. An elementary calculation shows thét(X,Y) <
2R|| X — Y||x, whereR = |37 |V;) (V4| ||ér/)2. This lets us upper-bound the covering numbers in
d¢ with covering numbers iff-|| x:

N(Us, dg.,€) < N(Us, |, 57) = N(L=Us, [l x: 57577). (18)
We will now bound these covering numbers. First, we intredsmme notation: g} ||, denote the

Schatterp-norm onC%*¢, and letB,, be the unit ball in this norm. Also, €8x be the unit ball in
the||-|| x norm.

Observe that%UQ C By € K- Bx. (The second inclusion follows becau§@/||x <

mVillllM]« < K||M||..) This gives a simple bound on the covering numbers:
N(Z=Us, | lx,€) < N(By, [I-llx,€) < N(K - Bx, |||l x. €)- (19)

Thisis 1 where > K. So, in Dudley’s inequality, we can restrict the integratte intervall0, K.

Whene is small, we will use the following simple bound (equation7(gn [23]):
N(K - Bx, ||| x,¢) < (1 + 22, (20)

Whene is large, we will use a more sophisticated bound based on &f&uempirical method and
entropy duality, which is due t0 [16] (see al501[17]):

N(By, ||lx,¢) < exp(cifz log® dlogm), for some constan®). (21)
We defer the proof of(21) to the next section.
Using [20) and[{21), we can bound the integral in Dudley’sjiradity. We get
Lo < C4RVrK log®? dlog'/? m, (22)
where(C} is some universal constant. This proves the lemma.




3.3 Proof of Equation (2I) (covering numbers of the nuclear-norm ball)

Our result will follow easily from a bound on covering numbartroduced in[[16] (where it appears
as Lemma 1):

Lemma 3.2 Let F be a Banach space, having modulus of convexity of power tygithZonstant
A(E). Let E* be the dual space, and I1&:(E™*) denote its type 2 constant. LBfy denote the unit
ballin E.

LetVi,...,V,, € E*, suchthal|V;|| g~ < K (for all j). Define the norm ot,
IMx = max |(V;, M), (23)

J=5...,m

Then, for any > 0,
elog'/? N(Bg, ||| x,¢) < CoA(E)?To(E*)K log'/? m, (24)
whereC, is some universal constant.

The proof uses entropy duality to reduce the problem to bimgrithe “dual” covering number. The
basic idea is as follows. Létf" denote the complex vector spaCeé® with the £, norm. Consider
the mapS : ¢ — E* that takes thg’th coordinate vector td/;. Let N (S) denote the number of
balls in E* needed to cover the image (under the s3pf the unit ball inf}*. We can bounadV(.5)
using Maurey’s empirical method. Also define the dual §ép E — ¢7}, and the associated dual
covering numbelN (S*). ThenN (Bg, ||-||x, ) is related taV (S*). Finally, N(S) and N (S*) are
related via entropy duality inequalities. Seel[16] for dsta

We will apply this lemma as follows, using the same approac[iz]. LetS, denote the Banach
space consisting of all matrices @*¢ with the Schatterp-norm. Intuitively, we want to set
E = 5 andE* = S, but this won't work becausg(S:) is infinite. Instead, we leE = S,
p = (logd)/(logd — 1), andE* = S, ¢ = log d. Note that|| M ||, < || M]||., henceB; C B, and
Elogl/z N(Blv H”Xv E) < alogl/Q N(pr H”Xv E)' (25)

Also, we haveA(E) < 1/y/p—1 = logd—1 andT>(E*) < A(E) < /logd —1 (see the
Appendix in [17]). Note that|M ||, < e|| M|, thus we have|V;||, < eK (for all ). Then, using
the lemma, we have

€ 1og1/2 N(Bp, |I'llx,e) < Co 1og3/2 d (eK) 1og1/2 m, (26)
which proves the claim.

4 Outlook

We have showed that random Pauli measurements obey thetesstsometry property (RIP), which
implies strong error bounds for low-rank matrix recoverhelkey technical tool was a bound on
covering numbers of the nuclear norm ball, due to Guédoh[&6h

An interesting question is whether this method can be agppdiether problems, such as matrix com-
pletion, or constructing embeddings of low-dimensionahiftdds into linear spaces with slightly
higher dimension. For matrix completion, one can compatk thie work of Negahban and Wain-
wright [10], where the sampling operator satisfies regtdstrong convexity (RSC) over a certain set
of “non-spiky” low-rank matrices. For manifold embeddingae could try to generalize the results
of [24], which use the sparse-vector RIP to construct Jomisedenstrauss metric embeddings.

There are also many questions pertaining to low-rank quarsiate tomography. For example,
how does the matrix Lasso compare to the traditional appraamg maximum likelihood estima-
tion? Also, there are several variations on the basic toapgy problem, and alternative notions of
sparsity (e.g., elementwise sparsity in a known basis), [Bjch have not been fully explored.
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Universal low-rank matrix recovery from Pauli measurements:
Supplementary material

A Proof of the RIP for Pauli M easurements

A.1 Overview

We now prove Theorefn 2.1. In this section we give an overvimanfs of the technical claims are
deferred to later sections. The general approach invo®imdjey’s entropy bound is similar to [12],
while the technical part of the proof (bounding certain egsngnumbers) uses ideas from [16].

Recall the definition of the restricted isometry propertighveonstant < ¢ < 1. Let

U={XeC™||X|.<VrIX|r}. (27)
Let us define
Uy ={X e C™[|X|p <1, | X[« <VFIX|F}, (28)
er(A) = sup |(X, (A" A —T)X)|. (29)
X€eUs

Also, defines = 2§ — §2. We claim that, to show RIP, it suffices to shew(A) < ¢. To see this,
note that the RIP condition is equivalent to the statement

forall X e U, (1-6)2*X,X)<(X,A*AX) < (1+6)?*(X,X), (30)
which is equivalent to
forall X e U, (—26+6*)(X,X) < (X,(A*"A-T)X) < (26+6*)(X,X), (31)
which is implied by
forall X e Uy, |(X,(A*A—17)X)| < min{20 + 6%,26 — 6°} = 26 — §°. (32)
Thus our goal is to show,.(A) < . (Note that ford in the rangd0, 1], we have that > §.)

Let B be the set of all self-adjoint linear operators fr@if*? to C¢*<, and define the following
norm onB:
My = sup [(X, MX)]. (33)
X€eUs

Suppose that > 2 (this will suffice for our purposes, since RIP with= 2 implies RIP withr = 1).
We claim that|-|| .y is @ norm, and tha is a Banach space with respect to this norm.

To show these claims, we will consider the Frobenius nipta on B, which is defined by viewing
each element o8 as a “matrix” acting on “vectors” that are elementsy*<. Then we will bound
[|-l¢ry in terms off|-|| ». More precisely, le€, (a € {0,1,...,d — 1}) be the standard basis vectors
in C¢, and letE,;, = €,¢; (a,b € {0,1,...,d — 1}) be the standard basis vectorsGfi*¢. Then
the Frobenius norm oB can be written as

2\ 1/2
IMIp = (32| (Beal M| Ea)| ) (34)
abed
We claim that, for allM € B, )
> ) 35
Ml 2 5 Ml (35)

To see this, suppose thgiM || > u; then there must exist, b,¢,d € {0,1,...,d — 1} such
that |(Ec|M|Ea)| > Zzpt. If Eqp = Ecq, then we havélM||(,) > 4;u. Otherwise, we have

(Eap|Ecq) = 0. Now at least one of the following must be true:

|Re(Ecg| M|Ea) | > ﬁu (case 1) (36)

Im(Eca| M|Ea)| > (case 2) (37)

1
\/§d2 M
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_ 1
Incase 1, lefX = W(

Re(Eca|M|Eaw) = (X|M|X) — 2 (Eap| M| Eap) — 3 (Eca| M| Ecq). (38)
One of the three terms on the right hand side must have abscdlite at Ieas%u. Since

X,.Eab,E e are inUs, it follows that|| M|,y > 3fd2“ In case 2, lefX = %(Eab +iF.q), and
write

IM(Eea| M| Eay) = i(X[M|X) = 5i(Eap| M|Eap) = 5i(Eeal M| Eca). (39)
By a similar argument, we get thg\ |,y > 3ﬁd2“‘ This shows[]315).

Eu + Ecq), and write

In addition, it is straightforward to see that
[Mllgy < sup [(X,MX)] < [[M]lop < [[M]|F (40)
X[ X)r<t

Finally, using [35) and(40), we see thaf|,) is a norm, and3 is a Banach space with respect
to [|||»). (This follows since these same properties already hold {os.) In particular,-|| . is
nondegenerate{(\||,, = 0 impliesM = 0), andB3 is complete with respect to|| ).

Returning to our main proof, we can now writg(A) = || A* A — Z||,y. The strategy of the proof
will be to first boundEe . (A), then show that,.(A) is concentrated around its mean.

We claim that
(41)

Ee,.(A) < 2EHZ EBICHE= -
j=1

where the:; are Rademacher (ii¢t1) random variables. Here the round ket notatisn) means we

view the matrixS; as an element of the vector spe(éé2 with Hilbert-Schmidt inner product; the
round bra(Sj] denotes the adjoint element in the (dual) vector space. Btnesbound follows from
a standard symmetrization argument: wtite A — 7 = Z 1 & whereX; = |S )(S; £ _ I

m m

then letX’! be independent copies of the random variabf;z,sand use equation (2. 5) and Lemma
6.3in [221 to write:

Ee,(A) =E|> X,

<E|> —EHZeJ (X — XD
’ (42)

:Ezfj(\sj Sj\—lsﬁ‘ Sﬂ)d—;
j

< 2E“Z€j‘sj)(sj‘%2 -
j

(r)

(r)

Now we use the following lemma, which we will prove later. $iounds the expected magnitude
in (r)-norm of a Rademacher sum of a fixed collection of operatgrs. ., V,, that have small
operator norm.

LemmaA.l (restatement of Lemnia B.1) Let < d>. Fix someV;,...,V,, € C¥* that have
uniformly bounded operator normiy;|| < K (for all 7). Leteq, ..., &, be iid uniform+1 random
variables. Then

E sl <o HZ]V willl” " (43)
=1 r
whereCs = /7 - C4K log®? dlog'/? m andC, is some universal constant.
We apply the lemma as follows. L& = {Si,...,S,,} be the multiset of all the measurement
operators that appear in the sampling operatorhen we have
Ee,.(A) < (44)

11



Using the lemma on the set of operatefdJ (J € Q), we get

Ee,(A) < 2BaCs - || V] J) J\\FH

JeQ

< 2(EgH§)\/ﬁ‘J)(J|\/EH(T))1 P

2Bl Al ) G2

2(Be,(A) +1)%- C5 [,

A

(45)

IN

whereCs = /7 - C4K log® d.

To make the notation more concise, defffie= Ee,.(A) andCy = 2C54/ %. Then, squaring both
sides and rearranging, we have
—C2E, - C2<0. (46)

This quadratic equation has two roots, which are givervby= %(C’g + Cp/Cg +4), and we
know thatFy is bounded by

a_ <0< Ey < ay. 47
Also, we can simplify the bound by writing. < £(C3 + Co(Cy + 2)) = C¢ + Co.
Now we use the fact that is large. Let\ > 1 (we will choose a precise value farlater). Assume

that
m > /\d(205)2 =\-4C? - dr - K?log® d. (48)

ThenCy < 1/V/\, anday < 1 1+ \/—, and we have the desired result:

Ee,(A) < L+ (49)

L
R

It remains to show that, (A) is concentrated around its expectation. We will use a canaton
inequality from [22] for sums of independent symmetric ramdvariables that take values in some
Banach space. Defin& = Y7, X; whereX; = £15,)(S;| — Z; then we haved* A — T = X
ande,(A) = || X||()

We showed above tha x|, < + + f In addition, we can bound eactj as follows, using
the fact that, forX € Uy, (57, X)| < [|S; [ Xl < (K/Va)VF|IX|lr < (K/VA) .

drK? +1 1
%oy = sup [ 11053, X0 = HIXIF < (50)

< .
- om T X403

We use a standard symmetrization argumentietenote an independent copy &f, and define
YV = & !, which is symmetric £); has the same distribution a%). Also define) =
Z;.”Zl yj = X X’. Using the triangle inequality, we have

EV|l(ry < 2E[| X[y < 2(F + =

1Villey < 20 jllery < (52)

1
A 202
Using equation (6.1) in [22], we have, for any> 0,

Pr[| Xl > 203 + &) +u] < Pr[| Xy > 2B Xy + u] < 2Pr[|Vllry > u].  (53)

We will use the following concentration inequality of Ledoand Talagrand [22]. This is a special
case of Theorem 6.17 in[22], where we set R/ and use equation (6.19) in[22]. This is the same
bound used in[12].

12



Theorem A.2 Let)), ..., YV, be independent symmetric random variables taking valussine
Banach space. Assume thHat;|| < Rforall j. Lety = ij:l Y;. Then, for any integeré > ¢,
and anyt > 0,

Pr||| V|| > 8¢E| Y| + 2Rt + tE||Y||| < (C7/q)" + 2exp(—t*/256q), (54)
whereC'; is some universal constant.

Now setq = [eC7]. Introduce a new parameter> /g + 1, and set = |s?| andt = s. We get
that the failure probability is exponentially small4n

Pf“\yﬂ(r) > 8¢+ s)E[ Yl + 2R52} < e 4 9ems"/2560, (55)
Then, using[(51)[(32) an@(b3), we get
Pr{HXH(T) > (1+8g+s)-2(5 +o5) + %gsﬂ < 2le "t 4 27 /2560] (56)

Now let A > (1 + 8¢)? - Qg (note that\ > 1, as required). Then set= % (note thats >
1+ 8¢ > /q + 1, as required). Then we can write

S S 2
(1+8q+8)'2(%+%§)+Ac25 <% tozx =3 T mecz S € (57)

Plugging into the previous inequality, we have

Pr[[| X[y > €] < e = e~ AN, (58)
Therefore, we have,.(A) < ¢, with a failure probability that decreases exponentiallpi This
completes the proof.

A.2 Proof of Lemmal3.d (bounding a Rademacher sum in (r)-norm)

Let Lo = E.||>°", | Vi) (Vi|ll(+); this is the quantity we want to bound. We can upper-bound
it by replacing thet1 random variables, ..., e,, with iid N(0,1) Gaussian random variables
g1, - - -, gm (S€€ Lemma 4.5 and equation (4.8)[in/[22]); then we get

Ly < (59)

Using the definition of the norrf|| -y (equation[(3B)), we have
Ly <E, s TG(X)], G(X)= i (Vi X 12 60
0 <Ey sup (RG] G = 3 ad (VX)) (60)

The random variable&/(X) (indexed byX < Us) form a Gaussian process, atig is upper-
bounded by the expected supremum of this process. In paricsing the fact that’(0) = 0 and
G(-) is symmetric (se€ [22], pp.298), we have

Lo < [}Eg sup |G(X 0)| < \ﬁE sup  |G(X) — G(Y)]
XeUs XY€U2 (61)
= \/7E sup G(X)—-G(Y)=V2rE,; sup G(X).
X, YeUsz XeUz
Using Dudley’s inequality (Theorem 11.17 [n22]), we have
Lo < 2427 / g2 N(Us, dg, €)de, (62)

whereN (Us, dg, €) is a covering number (the number of ballsGfi*¢ of radiuse in the metricdg
that are needed to cover the &), and the metriels is given by

d6(x.¥) = (BlG(X) - ) (63)

13



We can simplify the metrid, using the fact thaE[g;¢;] = 1 wheni = j and O otherwise:

da X, ( [(Zgz Vi, X)|? |(Vi’Y)|2))2DU2

m 2\ 1/2 (64)
- (> x)r - 1m)E))
Define a new norm (actually a semi-norfi) x onC?*4, as follows:
[M]lx = max [(V;, M)]. (65)
Note thaf]
10V, X0 = 10 V)R] < (107 X) 1+ 10 Y1) < 1V, X) = (V, V) .
< (I X1+ 10, )] ) - 1X = Y.
This lets us give a simpler upper bound on the mefgic
m 2 1/2
da(X,Y) < (3 (1V X) + (v V)I) - 1X = VI
=1
m 1/2 m 1/2
<[(Cmxr) "+ (Z Vi) ] IX = Yk
i=1 =1 (67)
<2 su (Vi, X) X -Y
Xe& (D 12)" X = Vil
: HX —Ylx.
(r)
Note that the last step holds for ak,Y € U,. To simplify the notation, letR =
IS0, | Va) (V] I3, then we havelg (X, Y) < 2R X — Y.
This lets us upper-bound the covering numberédrwith covering numbers iff-|| x:
N(U27dG7€)SN(U%”'HXa%) ( UQ,” HX’QRf) (68)
Plugging into[(6R) and changing variables, we get
Lo < 48V Rf/ g2 N(LUs, |1 x. ) de. (69)

We will now bound these covering numbers. First, we intredsmeme notation: g} ||, denote the
Schatterp-norm onC%*¢, and letB,, be the unit ball in this norm. Also, lg8x be the unit ball in
the||-||x norm.

Observe that
1U,C B CK-By. (70)

Jr
(The second inclusion follows becaug®/ || x < max;—1,... m|Villl|M]« < K| M]..) This gives

a simple bound on the covering numbers:
N(%UQ’ ”'HX’E) < N(Bh H'”ng) < N(K - Bx, ”'HX’E)' (71)

.....

This equals 1 when > K. So, in equatiori{89), we can restrict the integral to therirdl [0, K.

Whene is small, we will use the following simple bound (equation/(an [23]): (this is equation

(20)) ]
N(K - Bx,|I]lx,e) < (14 2£)* (72)

*Note that, for any complex numbetsndb, [a|>—[b|* = & (a@+b)(a—b)+3 (a+b)(a—b) < |a+b|-|a—b].
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Whene is large, we will use a more sophisticated bound based on &f&uempirical method and
entropy duality, which is due t6 [16] (see al5o][17]): (teguation[(21))

Cifz log® dlogm), for some constant). (73)

N(By, |-|lx, &) < exp(
We defer the proof of(21) to the next section. Here, we pra¢edound the integral in (69).
Let A = K/d. For the integral ovej0, A], we write

A A
Ll = /O 1Og1/2 N(%Uba H||X7E)d5 S /0 \/§d10g1/2(1 + %)d&—

A (74)
< \/id/ (1+log(1 + 25))de = V3d - A+ v2d - L
0
where
A [e'S)
L= / log(1 + 28 )de = / log(1 4+ 2Ky)%
0 1/A (75)
S/ log((A + 2K)y)% :/ log(A + 2K)% —|—/ logy%.
1/A Y 1/A Y 1/A Y
Integrating by parts, we get
Ly < Alog(A+2K) + Alog & + A = Alog(1 + 25) + 4, (76)
and substituting back in,
Ly < V2dA(2 + log(1 + 2£)) = V2K (2 + log(1 + 2d)). (77)
For the integral ovefA, K], we write
® 1/2 K C1K 3/2 1/2
L ::/ lo N(LU,, |- ,adag/ ==1o dlo m de
2= [ 1082 N(G:Us [, e < [ - € 1og? dlog 78)
= C’lKlog?’/2 dlogl/2 mlog % =C1K 10g5/2 dlogl/2 m.
Finally, substituting into[(69), we get
Lo < 48V27 R/ (L1 + L) < C4RVTK log®? dlog'/? m, (79)

where(C} is some universal constant. This proves the lemma.

A.3 Proof of Equation (2I) (covering numbers of the nuclear-norm ball)

Our result will follow easily from a bound on covering numbartroduced in[[16] (where it appears
as Lemma 1):

Lemma A.3 Let F be a Banach space, having modulus of convexity of power tyyithZonstant
A(E). Let E* be the dual space, and I8, (E*) denote its type 2 constant. LBfz denote the unit
ballin E.

LetVi,...,V,, € E*, suchthat|V}|
IM]lx = max |(V;,M). (80)

g+ < K (for all j). Define the norm o,

Then, for any > 0,
elog’? N(Bg, ||| x,€) < Col(E)*To(E*)K log'/? m, (81)

where(C5 is some universal constant.

15



The proof uses entropy duality to reduce the problem to bimgrithe “dual” covering number. The
basic idea is as follows. Léf" denote the complex vector spaCe&® with the £, norm. Consider
the mapS : ¢ — E* that takes thg’th coordinate vector td/;. Let N (.S) denote the number of
balls in E* needed to cover the image (under the nSqpf the unit ball inf}*. We can boundv (S)
using Maurey’s empirical method. Also define the dual ap E — ¢, and the associated dual
covering numbelN (S*). ThenN (Bg, ||-||x, €) is related taV (S*). Finally, N(S) and N (S*) are
related via entropy duality inequalities. Seel[16] for dsta

We will apply this lemma as follows, using the same approacfig]. LetS, denote the Banach
space consisting of all matrices @*¢ with the Schatterp-norm. Intuitively, we want to set
E = S andE* = S, but this won't work becausg(5,) is infinite. Instead, we lef = S,
p = (logd)/(logd — 1), andE* = S;, ¢ = log d. Note that|| M ||, < ||M]||., henceB; C B, and

<€10g1/2 N(By, ||lx,¢) < Elogl/2 N(Bp, |I'llx,¢€)- (82)

Also, we haveA(E) < 1/y/p—1 = logd—1 andT»(E*) < A(E) < /logd —1 (see the

Appendix in [17]). Note thatiM ||, < e/ M]|, thus we havélV; ||, < eK (for all j). Then, using
the lemma, we have

Elogl/2 N(Bp, |I'llx,€) < Co 10g3/2 d (eK) logl/2 m, (83)

which proves the claim.

B Proof of Proposition[2.4 (recovery of a full-rank matrix)

In this section we will sketch the proof of Propositlon]2.4e Wise the same argument as Theorem
2.8in [B], adapted for Pauli (rather than Gaussian) measeings.

A crucial ingredientis the NNQ (“nuclear norm quotient”pperty of a sampling operatot, which
was introduced in[[5] and is analogous to the L@, (fuotient”) property in compressed sensing
[26]. We say that a sampling operatdr: C?*¢ — C™ satisfies the NNQ{) property if

A(B1) 2 aBs, (84)

whereB; is the unit ball of the nuclear norm i@?*¢, and B, is the unit ball of the/, (Euclidean)
norminC™,

It is easy to see that the Pauli sampling operataiefined in[[B) satisfies NN@J with o = /d/m.
(Without loss of generality, suppose that the Pauli madri€g . .., S,, used to constructl are
all distinct. Letaw = y/d/m and choose any € aB,. LetX = \/Tf > yiSi, so we have
A(X) = y. Observe thatf X||.. < Vd||X|lr = \/Z|yll2 < 1, as desired.) We remark that this
value of« is probably not optimal; if one could prove thdt satisfies NNQ4¢) with largerq, it
would improve the bound in Propositibn 2.4.

We will need one more property of. We want the following to hold: for any fixed matrix/ €
C?*4 (which is not necessarily low-rank), almost all random clesiof.4 will satisfy

IAM)|I3 < 1.5] M][% (85)

(Note that this inequality is required to hold only for thiseoparticular matrix\/.) In our case
(random Pauli measurements), it is easy to checkhalbeys this property as well.

The proof of Theorem 2.8 in [5] actually implies the followimore general statement, about low-
rank matrix recovery whepl satisfies both RIP and NNQ:

Theorem B.1 Let M be any matrix inC?*4, and letoy (M) > oo(M) > --- > 04(M) > 0 be its
singular values. Writéd/ = M,. + M., whereM,. contains the- largest singular values af/. Also

write M = My + M., whereM, contains only those singular valuesiaf that exceedh = 16+v/do.

Suppose the sampling operatdr: C¢*¢ — C™ satisfies RIP (for rank-matrices inC?*?), and
NNQ() with o = u+/d/m. Furthermore, suppose that satisfies||.A(M.)||3 < 1.5 M.||% and
[A(Me)|13 < 1.5]| Mel|%
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Say we observg = A(M) + z, wherez ~ N(0,02I). Let M be the Dantzig selectoE](4) with

A\ = 16v/do, or the Lasso[{5) with: = 32v/do. Then, with high probability over the choice 4f
and the noise,

~ - . sz
2 2 2 2
10 = M < Co Yominot01).do”) + (Cuot 355) 3 oD, (@9)

whereCy, C1 andC, are absolute constants.

To prove Theorem Bl1, one follows the proof of Theorem 2.8&in There is a slight modification
to Lemma 3.10 in[5]: one gets the more general bound,

1N = M| < Corv/T + (C1 + 2\ /1) || AM )|z + | M| . (87)

Combining Theorerm Bl1 with the preceding facts gives us &sitipn[2.4.
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