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Abstract

We consider the Chalker-Coddington network model for the Integer Quantum Hall Effect, and
examine the possibility of solving it exactly. In the supersymmetric path integral framework, we
introduce a truncation procedure, leading to a series of well-defined two-dimensional loop models,
with two loop flavours. In the phase diagram of the first-order truncated model, we identify four
integrable branches related to the dilute Birman-Wenzl-Murakami braid-monoid algebra, and
parameterised by the loop fugacity n. In the continuum limit, two of these branches (1,2)
are described by a pair of decoupled copies of a Coulomb-Gas theory, whereas the other two
branches (3,4) couple the two loop flavours, and relate to an SU(2)r × SU(2)r/SU(2)2r Wess-
Zumino-Witten (WZW) coset model for the particular values n = −2 cos[π/(r+2)] where r is a
positive integer. The truncated Chalker-Coddington model is the n = 0 point of branch 4. By
numerical diagonalisation, we find that its universality class is neither an analytic continuation
of the WZW coset, nor the universality class of the original Chalker-Coddington model. It
constitutes rather an integrable, critical approximation to the latter.

1 Introduction

The transition between plateaux in the Integer Quantum Hall Effect (IQHE) is a quantum critical
phenomenon, which was predicted theoretically [1, 2] and observed experimentally [3] a few decades
ago. Although experimentally there is no a priori reason to neglect electron-electron interactions,
it is usually modelled theoretically by noninteracting particles in two dimensions (2d), in a perpen-
dicular magnetic field and a random potential. Despite the apparent simplicity of this conceptual
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setup, it turns out to be very difficult to derive analytically the critical exponents of this transition.
Important progress was achieved by the introduction of a simple network model which retains the
salient features of guiding centre motion and quantum tunnelling in the presence of disorder: the
Chalker-Coddington (CC) model [4]. Extensive numerical studies based on the CC model or other
approaches have led to good estimates for the critical exponents, notably the correlation-length
exponent ν = 2.37 ± 0.02 [6] (a larger value ν = 2.593 ± 0.006 has also been reported [7]). Also, a
semi-classical argument [8] yields the prediction ν = 7/3.

The CC model is also the starting point for several analytical approaches, like the description
by a σ-model [9], or a mapping to a one-dimensional (1d) quantum many-body system [10, 11].
However, from the point of view of critical lattice models, no exact solution of the CC model has
been found so far.

The situation is very different for the spin Quantum Hall Effect (SQHE): the generalisation
of the CC model to SQHE [12] (which we shall call Sp(2)-CC) maps exactly to classical bond
percolation, where a large class of exponents are known [13]. This mapping of Sp(2)-CC to classical
percolation was first observed by Gruzberg et al. [14], who used a supersymmetric (SUSY) spin-
chain formulation. Later on, it was realised [15, 16] that the SUSY lattice path integral maps
Sp(2)-CC to a statistical model of lattice paths, which are exactly the hulls of bond-percolation
clusters. Moreover, a number of SQHE physical observables are expressed in terms of percolation
correlation functions, and this mapping is valid even at the level of lattice models.

In this paper, we propose a treatment of the original CC model based on the lattice path
integral. Since the corresponding statistical model involves paths which may pass through a given
edge infinitely many times, the number of configurations per unit surface is infinite, and the model is
not directly tractable by exact-solution methods such as Yang-Baxter integrability and Conformal
Field Theory (CFT). We therefore introduce a truncation procedure, leading to a series of finite
statistical models, and focus on the first order of truncation. The arising model is a two-colour loop
model including vacancies, and with loop fugacity n = 0.

Integrable multi-colour loop models have been known for a long time [17]. They were originally
defined through multi-dimensional height models, but they may as well describe coupled copies of
classical magnetism models, such as the Potts or O(n) models, and also the ground state of quantum
loop models. More specifically, in a two-colour, completely packed (i.e. without vacancies) loop
model [18, 19], new integrable points were identified through a mapping to a braid-monoid algebra:
the Birman-Wenzl-Murakami (BWM) algebra [20]. In the present paper, we use a similar approach
on the loop model arising from our truncation procedure, which is a two-colour loop model including
vacancies. Generalising to arbitrary loop fugacity n, we obtain four critical branches in the phase
diagram of this loop model. We then study the critical properties of these branches.

We find that two of these regimes (denoted 1 and 2) correspond to a pair of decoupled Coulomb-
Gas (CG) theories, whereas the other two (3 and 4) relate to the SU(2)r × SU(2)r/SU(2)2r Wess-
Zumino-Witten coset model, for values n = ±2 cos π

r+2 with r ∈ {1, 2, 3, . . . }. We obtain analytically
two critical exponents: one of them, Xint, corresponds to an elliptic deformation of the integrable
weights, and the other one, X(1,1;adj), is associated to a perturbation of the weight per monomer.
The truncated, modified CC model is realised by the n = 0 point of regime 4, but this point is outside
the validity range for the analytic continuation of the WZW exponents. Our numerical study gives
the estimate ν ≃ 1.1 for the correlation-length exponent, and df ≃ 1.71 for the fractal dimension
of paths. This is clearly incompatible with the IQHE universality class, and hence our integrable
two-colour loop model is only a crude approximation to IQHE. However, the truncation procedure
may be carried out to higher orders, possibly yielding more accurate, solvable approximations.

The plan of the paper is as follows. In Section 2, we recall the definition of the CC model
and its lattice SUSY path-integral formulation, and explain our truncation procedure,resulting in
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a two-colour loop model. This truncation is compared in detail with the one used in [10, 11]. In
Section 3, we use a mapping to a dilute braid-monoid algebra to derive the integrable Boltzmann
weights of the two-colour loop model, as well as the corresponding 1d Hamiltonian. In Section 4, we
identify the four critical regimes of the integrable model and the corresponding CFTs. Numerical
and analytical support for the identification of these CFTs is given. In Section 5, we examine in
more detail regime 4, which contains the truncated, modified CC model at n = 0. We discuss the
analytic continuation of CFT results, and estimate numerically some critical exponents, including
the correlation-length exponent ν.

The paper has three appendices. Appendix A contains the details of the mapping to the di-
lute BWM (dBWM) algebra used in Section 3. In Appendix B, we exhibit a lattice holomorphic
parafermion ψs(z) in the integrable model. In Appendix C, we expose the exact solution of a par-
ticular point in regime 4, which is mapped to free fermions. This mapping provides a valuable check
on our results, and also gives a proof that the O(n = 1) loop model has central charge c = 1

2 .

2 Truncation of the Chalker-Coddington model

2.1 The Chalker-Coddington model

The Chalker-Coddington model [4] is a simple lattice model for the IQHE. The latter consists
of a two-dimensional gas of non-interacting electrons in a disordered medium, subject to a strong
transverse magnetic field. In the presence of the random potential, the Landau levels are broadened,
and eigenenergies are of the form E =

(
k + 1

2

)
~ωc + V0, where k is an integer, ωc is the cyclotron

energy of the electron in the magnetic field, and V0 is a random part. Let us recall briefly the main
ingredients of the CC model.

We consider an electron in the eigenstate of energy E. The spatial trajectories of the electron
over finite time steps ∆t are modelled by paths on the directed square lattice L (see Fig. 1), and
the time-evolution operator over ∆t is denoted U . The operator U reads

U =
⊗

edge e

Ue

⊗

vertex v

Uv , (2.1)

with two types of factors:

• On each directed edge e, the operator Ue takes the particle along e and multiplies the wave-
function by a random Aharonov-Bohm phase exp(iφe), where the φe are independent and
uniformly distributed on the interval [0, 2π].

• At each vertex v, the operator Uv scatters the particle to one of the outgoing edges. In the
bases (1, 2) and (3, 4) of Fig. 1, Uv is represented by the unitary matrix:

S =

(
tanh β 1/cosh β
1/cosh β − tanh β

)
. (2.2)

The parameter β measures the distance to the plateau transition at E = Ec =
(
k + 1

2

)
~ωc. The

critical value is βc = log(1 +
√
2), and the corresponding energy perturbation is assumed to behave

as [4]
(E − Ec) ∝ (β − βc) . (2.3)

No exact solution of the CC model is known, in the sense that the critical exponents have
not been determined analytically. However, very good numerical estimates exist for some of these
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exponents [5, 6, 7]. In particular, the correlation-length exponent νCC, defined by the scaling of the
correlation length

ξ ∝ |E − Ec|−νCC , (2.4)

has been estimated as [6]
νCC ≃ 2.37 ± 0.02 . (2.5)

2 4

3 1

(a) (b)

Figure 1: (a) Oriented square lattice L for the Chalker-Coddington model. (b) Labelling of the
edges adjacent to a vertex of L.

2.2 Path integral representation

The problem of solving the CC model amounts to the diagonalisation of a random time-evolution
operator. We want to perform the average over disorder, in order to turn this into a translationally
invariant 2d classical model. For this purpose, we use the supersymmetric path integral repre-
sentation [21]. The following derivation is very analogous to what was done by one of us for the
SQHE [16], and we use the notations of [16] throughout this Section.

The Green’s function between two edges e1 and e2 is:

G(e2, e1, z) := 〈e2|(1 − zU)−1|e1〉 . (2.6)

Here z is a parameter which plays the role of the energy in the usual Green’s function (E −H)−1:
roughly speaking z ∼ eiE , where E is measured from the filled Landau level. We label eL, eR the
ends of any edge e, with the convention that it is directed in the sense eR → eL, and we introduce
the complex variables bL(e), bR(e). The Gaussian measure is defined as:

∫
[db] (. . . ) :=

1

π

∫
d(Re b) d(Im b) exp(−b∗b)(. . . ) , [Db] :=

∏

e

[dbL(e)][dbR(e)] . (2.7)

The Green’s function can then be written as a Gaussian integral on the bL(e), bR(e):

G(e2, e1, z) =

∫
[Db] bL(e2)b

∗
L(e1) expAb∫

[Db] expAb
, (2.8)

where the action reads

Ab = A
(edge)
b +A

(vertex)
b , (2.9)

A
(edge)
b = z

∑

edge e

b∗L(e) exp(iφe)bR(e) , (2.10)

A
(vertex)
b =

∑

vertex v

∑

i → j
v

b∗R(ei)SijbL(ej) , (2.11)
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and the notation i → j
v

means that i (resp. j) is an incoming (resp. outgoing) edge adjacent to

v. The next step is to express the denominator in (2.8) as the inverse of a Gaussian integral over
Grassmann variables fL,R(e), f̄L,R(e):

G(e2, e1, z) =

∫
[Db][Df ] bL(e2)b

∗
L(e1) exp(Ab +Af ) , (2.12)

with the measure
∫

[df ] (. . . ) :=

∫
df̄ df exp(−f̄ f)(. . . ) , [Df ] :=

∏

e

[dfL(e)][dfR(e)] , (2.13)

and Af is the analog of Ab, with b, b
∗ replaced by f, f̄ .

We denote by an overbar the quenched average over the variables φe. A useful formula for this
computation is

1

2π

∫ 2π

0
dφ exp

(
ueiφ + v∗e−iφ

)
=

∞∑

m=0

(uv∗)m

(m!)2
. (2.14)

It easy to see, for instance, that G(e2, e1, z) = δ(e1, e2). When studying transport properties, the
main quantity of interest is |G|2. We write

|G(e2, e1, z)|2 =

∫
[Db][Df ] bL(e2)b

∗
L(e1) e

Ab+Af ×
∫

[Db][Df ] b∗L(e2)bL(e1) e
A∗

b
+A∗

f

=

∫
[Db1,2][Df1,2] bL1(e2)b

∗
L1(e1)b

∗
L2(e2)bL2(e1) e

Ab1+Af1+A∗
b2
+A∗

f2 . (2.15)

Using (2.14), we get:

|G(e2, e1, z)|2 =

∫
[Db1,2][Df1,2] bL1(e2)b

∗
L1(e1)b

∗
L2(e2)bL2(e1)×

exp
[
A

(vertex)
b1 +A

(vertex)∗
b2 +A

(vertex)
f1 +A

(vertex)∗
f2

]
×

∏

e

∞∑

me=0

(z∗z)me

(me!)2
{[
b∗L1(e)bR1(e) + f̄L1(e)fR1(e)

] [
b∗R2(e)bL2(e) + f̄R2(e)fL2(e)

]}me .(2.16)

The expression (2.16) for |G|2 can be interpreted graphically as follows. Each term in the
expansion of the product corresponds to a pair of paths (γ1, γ2), where γ1 respects the orientation
of the lattice L (forward path) and γ2 follows the reverse orientation (backward path). The two
paths must use each edge e the same number of times me. Paths configurations are weighted by
the elements of the vertex S-matrix, and an additional factor (z∗z)me . Note that closed loops have
a vanishing weight, because the bosonic and fermionic contributions cancel each other.

2.3 Truncation procedure

In the form (2.16), |G|2 can be viewed as a two-point correlation function in a classical, two-
dimensional statistical model for two-colour path configurations. No approximation has been intro-
duced so far, and thus (2.16) is identical to the value of |G|2 in the original CC model. The main
difficulty in evaluating (2.16) is that the paths γ1, γ2 may go through a given edge an arbitrary
number of times me, and thus the statistical model has an infinite number of degrees of freedom
per edge. This type of problem is not usually tractable by exact solution methods, so we need to
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truncate the statistical model to a finite loop model in order to use these methods. This is very
analogous to what Nienhuis did for the O(n) spin model [22] on the hexagonal lattice: in that
context, the spin model with variables (Sj ∈ Rn,S2

j = 1) was formally mapped to a polygon model

where edges could be used an arbitrary number of times, but the substitution eJSi·Sj → 1+JSi ·Sj

in the edge interaction led to a finite loop model, while preserving the O(n) symmetry of the original
spin model.

The truncation we propose consists in keeping only the terms of (2.16) with me ∈ {0, 1}, i.e.
the configurations where each of the paths γ1, γ2 visits an edge at most once. This preserves
the boson/fermion supersymmetry, ensuring that closed loops still have a vanishing weight in the
truncated model. This can be seen as follows. In the original expression (2.10) for the action on
the edges, we can imagine choosing a different fugacity ze for each edge (so that it now appears
inside the summation over e.) This does not affect the supersymmetry of the action. On expanding
in powers of all the ze, the bosonic contribution to a given edge now enters with a factor (z∗eze )

me .
Thus our truncation to me ∈ {0, 1} amounts to keeping only the terms up to first order in the
expansion of the partition function in powers of z∗eze , and then setting all the ze = z again.. Note
that to this order we have either nothing, or a pair of bosons of different flavours (1 and 2), or
a pair of fermions of different flavours, propagating along each edge. The supersymmetry ensures
that each closed loop is counted with weight 0. At this stage it is simpler to switch to a replica
formulation rather than using supersymmetry explicitly: we have a model with two flavours of
boson, such that each edge is either unoccupied, or occupied by each flavour exactly once. Each
closed loop is counted with a fugacity n, taking then n = 0. The vertices are shown in Fig. 2.

We briefly comment on how higher order truncations would look in this expansion. For example,
at O

(
(z∗eze )

2
)
we would have either 2 pairs of bosons of each flavour, or 1 pair of bosons and 1 pair

of fermions. (We can never have more than one pair of fermions because the Grassmann variables
square to zero.) Note that in such a truncation we could give such a configuration a weight different
from (z∗eze )

2 and still preserve the supersymmetry. This points to the existence of an infinite-
dimensional space of possible supersymmetric truncations. However in this paper we consider only
the simplest.

We denote by |G(e2, e1, z)|2tr the truncated analog of |G(e2, e1, z)|2: |G(e2, e1, z)|2tr is given by

the same expression as (2.16), but with the sum running only over me = 0, 1. Then |G(e2, e1, z)|2tr
is interpreted as a two-point function in the loop model defined by the loop vertices of Fig. 2 and
with loop weight n = 0.

In the original CC model, the parameter β in the S-matrix (2.2) is staggered. It is useful to
consider an anisotropic version of this, where it takes the value β on the even sublattice of L and
β′ on the odd sublattice. In this anisotropic CC model, the critical line is [4]:

sinhβ sinhβ′ = 1 . (2.17)

The Boltzmann weights of the truncated loop model are defined in Fig. 2. For general β, β′ they
take the values:

t , u1, u2, w1, w2, x = 1, a , b , a2 , b2 , −a b (even sublattice),
t′, u′1, u

′
2, w

′
1, w

′
2, x

′ = 1, b′, a′, b′2, a′2, −a′b′ (odd sublattice),
(2.18)

where
a := z2 cosh−2 β , b := z2 tanh2 β ,

a′ := z2 cosh−2 β′ , b′ := z2 tanh2 β′ .
(2.19)

Note that at the isotropic point these weights are

1, z2/2, z2/2, z4/4, z4/4, −z4/4 . (2.20)
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u1

t

x

w1 w2

u2

Figure 2: Vertices of the loop model arising from the truncation of the CC model.

L 4 6 8 10

zc(L,L+ 2) 1.029885 1.030895 1.031454 1.031695

Table 1: Finite-size estimates of the critical monomer fugacity zc in the model of Fig. 2. The value
zc(L,L+2) is defined as the solution of Xt(L, βc, z) = Xt(L+2, βc, z), where Xt(L, β, z) =

L
2π log Λ0

Λ1

is the effective thermal exponent.

2.4 Critical properties

We now discuss the observables of the model. The most important is the mean square Green’s
function between two edges |G(e2, e1, z)|2. At z = 1 in the untruncated model this gives the point
conductance. For a system without any open boundary contacts, this is identically equal to one by
conservation of probability. It is given by the sum over all pairs of Feynman paths going out and
back from e1 to e2, such that each edge is traversed the same number of times in the forward path
as in the return path, and weighted by the appropriate S-matrix elements of the CC model. It has
been argued [23] that the weights for such ‘pictures’ are all positive. For z → 1− and on the critical
line (2.17) we expect a scaling form

|G(e2, e1, z)|2 ∼ r
−2X|G|2 F

[
r(1− z)1/df

]
, (2.21)

where r = |e1− e2|, X|G|2 = 0, and df is the fractal dimension of these pictures (whereby their total

mass M behaves as rdf ). The absence of the prefactor r
−2X|G|2 is a consequence of the fact that

|G(z = 1)|2 = 1 for a closed system.
In the truncated model, we no longer have probability conservation and so the point z = 1 is

no longer special. Instead, in analogy with other loop models, we expect to find a different critical
point, at z = zc, say, such that the average loop length is finite for z < zc and diverges for z ≥ zc.
The point conductance |G(e2, e1, z)|2tr now corresponds to the weighted sum of a pair of black and
grey paths connecting e1 and e2. On the critical line and as z → z−c we expect the same scaling
form as in (2.21) with (1 − z) replaced by (zc − z), but not necessarily with same exponents as in
the full model. In Figure 3 and Table 1, we show the numerical determination of zc using the two
largest eigenvalues Λ0,Λ1 of the transfer matrix. These eigenvalues define the thermal exponent Xt

through the CFT form of the free-energy gap:

log
Λ0

Λ1
≃ 2πXt

L
. (2.22)

More generally, it is possible to consider ‘watermelon’ exponents Xℓ1,ℓ2 corresponding to ℓ1
black and ℓ2 grey paths originating from the vicinity of a given edge. The truncation constraint of
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L = 12
L = 10
L = 8
L = 6
L = 4

z

X
t(

L
,β

c
,z

)

1.11.081.061.041.021

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

Figure 3: Numerical determination of the critical monomer fugacity zc in the model of Fig. 2. On
the y-axis is plotted the effective thermal exponent Xt(L, βc, z) =

L
2π log Λ0

Λ1
.

course implies that these cannot originate on the same edge for ℓ > 1, but we imagine taking the
scaling limit where edges a finite distance apart on the lattice are mapped to the same point. These
operators are well suited for a transfer-matrix-based numerical analysis [24].

In particular we see that X1,1 corresponds to X|G|2 in (2.21). Also, since z∗z counts the number
of edges connected to 2 black and 2 grey paths, we have

df = 2−X2,2 . (2.23)

Using transfer-matrix diagonalisation, we obtain the value

X2,2 = Xt ≃ 0.3 . (2.24)

Finally, we evaluate the correlation-length exponent ν associated to a perturbation of the pa-
rameter β away from βc. For the lowest free-energy gap we expect the scaling form

log
Λ0

Λ1
≃ 2π

L
F
[
(β − βc) L

1/ν
]
. (2.25)

The best data collapse is obtained for the value (see Fig. 4):

ν ≃ 1.1 . (2.26)

2.5 Relation to Hilbert-space truncation

We close this Section by comparing our approach to earlier studies [10, 11] of the IQHE problem
based on a different truncation procedure. Our method consists in writing the lattice path integral
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L = 12
L = 10
L = 8
L = 6
L = 4

(β − βc) × L1/ν

X
t(

L
,β

,z
c
)

21.510.50

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Figure 4: Data collapse for the effective thermal exponent Xt(L, β, zc), under a perturbation of the
parameter β. The value used for this plot is 1/ν = 0.9.

representation for the mean conductance using the supersymmetry trick, and then truncating the
infinite sum over the paths, to keep only the self-avoiding paths. This gives us the well-defined loop
model of Fig. 2, where we will tune slightly the Boltzmann weights to obtain an integrable point
(see Section 3).

In contrast, in [10, 11], one starts from a two-dimensional single-particle Hamiltonian including
Gaussian hopping coefficients, and computes its supersymmetric path integral. The resulting action
is then interpreted as the action of a one-dimensional many-body supersymmetric Hamiltonian
HMB, given in Eqs. (3–5) of [11]. This Hamiltonian is expressed in terms of the coefficients Sa of a
superspin matrix. In this model, the Hilbert space for each site is infinite-dimensional (each site can
be occupied by an arbitrary number of bosons). The idea is to truncate this Hilbert space down to
dimension D, and follow the behaviour of the energy gap as D increases. The model is not critical
for finite D, but it becomes critical in the limit D → ∞.

Let us shown how to relate the terms of HMB in the truncated space of dimension D = 5, to the
generators which encode the loop model of Fig. 2. We first get rid of the (−1)j factor in HMB [11].
This is done through the change

c↑j → −c↑j for j ≡ 2 mod 4 or j ≡ 3 mod 4 ,

without affecting the (anti-)commutation relations for the bj, cj . We obtain the Hamiltonian:

HMB =

L∑

j=1

[
16∑

a=1

gaS
a
j S

a
j+1 + η(S1

j + S2
j + S5

j + S6
j )

]
, (2.27)

where the signs ga are given by

ga =

{
1 if a = 1, 2, 10, 12, 14, 16

−1 if a = 3, . . . , 9, 11, 13, 15.
(2.28)
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We decompose HMB as a sum of generators

HMB =

L∑

j=1

{
− ( ⋒ )j − ( ⋓ )j + ej + fj + (1 + η)

[
(〉〉 )j + ( 〈〈)j + 2(〉〉 〈〈)j

]}
, (2.29)

where we have defined

( ⋒ )j := S3
jS

3
j+1 + S7

jS
7
j+1 + S15

j S
15
j+1 − S16

j S
16
j+1

( ⋓ )j := S4
jS

4
j+1 + S8

jS
8
j+1 + S13

j S
13
j+1 − S14

j S
14
j+1

(〉〉 )j + (〉〉 〈〈)j := 1
2

(
S1
j + S2

j + S5
j + S6

j

)

( 〈〈)j + (〉〉 〈〈)j := 1
2

(
S1
j+1 + S2

j+1 + S5
j+1 + S6

j+1

)

ej :=
(
S1
j − 1

2

)(
S1
j+1 − 1

2

)
−
(
S5
j +

1
2

)(
S5
j+1 +

1
2

)
+ S10

j S
10
j+1 + S12

j S
12
j+1

fj :=
(
S2
j − 1

2

)(
S2
j+1 − 1

2

)
−
(
S6
j +

1
2

)(
S6
j+1 +

1
2

)
− S9

jS
9
j+1 − S11

j S
11
j+1 .

(2.30)
In terms of the creation/annihilation operators, the above generators read:

( ⋒ )j = (b†j↑b
†
j+1↑ + c†j↑c

†
j+1↑)(b

†
j↓b

†
j+1↓ − c†j↓c

†
j+1↓)

( ⋓ )j = (bj↑bj+1↑ + cj↑cj+1↑)(bj↓bj+1↓ − cj↓cj+1↓)
ej = (b†j↑b

†
j+1↑ + c†j↑c

†
j+1↑)(bj↑bj+1↑ + cj↑cj+1↑)

fj = (b†j↓b
†
j+1↓ − c†j↓c

†
j+1↓)(bj↓bj+1↓ − cj↓cj+1↓)

(〉〉 )j + (〉〉 〈〈)j = 1
2(b

†
j↑bj↑ + c†j↑cj↑ + b†j↓bj↓ + c†j↓cj↓)

( 〈〈)j + (〉〉 〈〈)j = 1
2(b

†
j+1↑bj+1↑ + c†j+1↑cj+1↑ + b†j+1↓bj+1↓ + c†j+1↓cj+1↓) .

(2.31)

In the D = 5 truncated space, each site is either empty or occupied by two particles of opposite
spins (↑, ↓). If each spin is interpreted as a loop color, the above generators (when restricted to the
D = 5 space) obey a dilute two-color Temperley-Lieb algebra with loop weight n = 0. Hence, they
represent the vertices u1, u2, w1, x of the loop model defined in Section 2.3. In particular, the ej
and fj form two decoupled Temperley-Lieb algebras.

Note that, in this context, the generator for the w2 vertex, Ej = ejfj, cannot be realised by
a linear combination of the Sa

j S
a
j+1, but it may be a linear combination of the (Sa

j S
a
j+1)

2. So
introducing Ej terms in the Hamiltonian leads to higher-order terms in HMB, and most probably it
breaks the invariance with respect to the supersymmetric chargesQ1,2. However, we have shown that
the supersymmetric model HMB, when restricted to the D = 5 space, corresponds to a particular
manifold in the phase diagram of the two-color loop model.

3 Construction of an integrable critical loop model

In the preceding section, we truncated the the Chalker-Coddington network model to yield a two-
color loop model that is simpler to analyze. To make further progress, we modify this model
further. We augment it by allowing the “straight-line” vertices with weight v illustrated in Fig. 5.
We also generalize it by allowing the weight per loop n to not only be zero, but to vary in the range
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n ∈ [−2, 2]. By utilizing the results of [25], we will show in this section that this modified model
for all values of n in this range has an integrable line, and includes several critical points. The
remainder of the paper will be devoted to the study of the critical behaviour.

When the straight-line vertices are allowed, the loop model can no longer be related directly to
electron trajectories in a potential. In the original CC model, the ‘checkerboard’ structure of the
lattice (or, equivalently, the alternation of arrows on the edges of L) is essential to the interpretation
of the paths as electron trajectories along the contour lines of the random potential. However,
several arguments indicate that the truncated but unmodified loop model of Fig. 2 is in the same
universality class as that of the modified model. In other words, one can obtain the unmodified
model by perturbing the critical line with irrelevant operators.

u1

t

u2 x

w1 w2

v

Figure 5: Vertices of the augmented dilute two-color loop model.

One argument for the equivalence of the two stems from the relation of this two-color loop model
to that studied in [19]. There the completely packed version was studied; in the notation used here
this corresponds to setting the Boltzmann weights t = u1 = u2 = v = 0. It was shown that at
least for weight per loop n ≥

√
2, the model has a critical point when x/w2 is tuned appropriately.

Moreover, at this critical point, numerical evidence strongly suggests that dilution (i.e. non-zero t,
u1 and u2) is irrelevant. We will provide additional evidence by finding that for certain discrete
values of n ≥

√
2, the critical point of the completely packed model and that of the modified model

studied here are described by the same conformal field theory. Neither of these arguments applies
when n = 0, but all the critical exponents we have computed (Xt,X2,2, ν) for both the truncated
CC model and the integrable model at n = 0 in regime 4 (see Table 2) agree, up to our numerical
precision. This strongly indicates that the integrable model at n = 0 in regime 4 is in the universality
class of the truncated CC model.

In this section, we give the Boltzmann weights of the integrable critical line in the loop model of
Fig. 5. These weights are expressed in terms of the generators of the dilute Birman-Wenzl-Murakami
(dBWM) algebra, so that the solution of the Yang-Baxter equation found in [25] can be used. In
Appendix A, we review the BWM algebra and its graphical presentation. The braid group can be
represented in terms of the BWM generators, and can then be used to find invariants of knots and
links generalizing the Jones polynomial [20].

An alternate way of obtaining the Boltzmann weights of the integrable critical line is to search
for holomorphic observables on the lattice. These are operators whose expectation values satisfy
the lattice analog of the Cauchy-Riemann equations. This method is described in Appendix B, and
yields the same weights as those found in [25] using the dBWM algebra.

3.1 Critical completely packed loop models

We first review the critical completely packed loop model, arising for example in the Fortuin-
Kasteleyn expansion of the Potts model [26]. Each vertex of this model has the two possible

11



configurations displayed in Fig. 6. The partition function is conveniently written in terms of the

Figure 6: Action of 1 (left) and ej (right) on a pair of strands at positions j and j+1. The transfer
matrix direction is upwards.

generators of the Temperley-Lieb (TL) algebra [27]. This algebra for a system of width L has L
generators ej acting at positions j = 1, 2, . . . , L as well as the identity 1, which obey the relations

e2j = n ej , ejej±1ej = ej , eiej = ejei for |i− j| > 1. (3.1)

The first of the relations encodes the fact that the weight for a closed loop is n, while the second
encodes the fact that the weight does not depend on the length or the shape of the loop.

The Boltzmann weights of the integrable critical loop model are then

Řj(u) = sin(2θ − u)1− sinu ej , (3.2)

where n = −2 cos 2θ and |n| ≤ 2. The transfer matrix for an even number of sites L is then

T = Ř1Ř3 . . . ŘL−1Ř2Ř4 . . . ŘL . (3.3)

It is straightforward to use the TL algebra to verify that these Boltzmann weights satisfy the
Yang-Baxter equation

Řj(u)Řj+1(u+ v)Řj(v) = Řj+1(v)Řj(u+ v)Řj+1(u) (3.4)

and the inversion relation

Řj(u)Řj(−u) = sin(2θ − u) sin(2θ + u) 1 . (3.5)

Braid group generators bj and b−1
j are found by taking u→ ±i∞:

Řj(i∞) ∝ bj = e−iθ 1+ eiθ ej , Řj(−i∞) ∝ b−1
j = eiθ 1+ e−iθ ej .

These satisfy the braid-group relations (A.1) and (A.2) as a consequence of the Yang-Baxter equation
and the inversion relation respectively.

The critical completely packed loop model on the square lattice is in the same universality class
as what is usually known as the O(n) model in its dense phase. Well-established results on the
dense O(n) model [22] give the central charge of the CFT describing the scaling limit to be

cO(n) = 1− 3(π − 2θ)2

πθ
. (3.6)

The Boltzmann weights of the completely packed doubled loop model studied in [19, 18] can
be written in terms of the generators ei and fi of two independent TL algebras. This model is
displayed in Fig. 5 with t = u1 = u2 = v = 0. In this picture, the ej acts on black loops while the
fj act on grey loops, while the transfer matrix goes to the northeast. Thus the vertex with weight
w1 corresponds to the generator 1, the vertex with weight w2 corresponds to ejfj, while those with
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weight x are ej and fj. Since the ej ’s and the fj’s commute, we have immediately that the Bj, B
−1
j

defined by
Bj :=

(
e−iθ 1+ eiθ ej

) (
e−iθ 1+ eiθ fj

)

B−1
j :=

(
eiθ 1+ e−iθ ej

) (
eiθ 1+ e−iθ fj

) (3.7)

also generate a braid group. Similarly, TL generators with loop weight N = n2 may be constructed
as

Ej := ej fj . (3.8)

Using the relations (3.1) for the ej ’s and fj’s, it is straightforward to show that the Bj, B
−1
j , Ej

generate the BWM algebra described in Appendix A with parameters N = n2 = (−2 cos 2θ)2,
ω = ei6θ [19]. The doubled lines here correspond to the single lines displayed in Appendix A, as
is apparent by comparing Figs. 5 and 14. Writing the Boltzmann weights in terms of this algebra
is useful because solutions of the Yang-Baxter equation involving the BWM generators have long
been known [28]. From this solution, a critical point for the coupled completely packed loop models
for n ≥

√
2 was found [19, 18]. With the parameterisation

n = 2cos
π

r + 2
,

in the isotropic case w1 = w2, the critical point is at x/w1 = λc, where

λc = −
√
2 sin

[
π(r − 2)

4(r + 2)

]
. (3.9)

At integer values r = 2, 3, 4 . . . , this critical point was identified with a particular conformal field
theory, the WZW coset model SU(2)r × SU(2)r/SU(2)2r. This conformal field theory has central
charge

cr =
3r2

(r + 1)(r + 2)
. (3.10)

For 1/λc < x/w1 < λc, the doubled loop model has a critical phase corresponding to two decoupled
completely packed loop models. The central charge is thus twice (3.6).

3.2 The integrable critical line

We now can use the results of Grimm and Warnaar [25] to find an integrable model involving all
the vertices in Fig. 5. We are interested mainly in the critical points, which can be written in
terms of the dilute BWM algebra. The dilute BWM algebra extends the BWM algebra described
in Appendix A to include edges of the lattice uncovered by strands. In the two-color loop model,
these amount to allowing vertices to be empty of both colors. The dilute generators act identically
on the two colors, and so include the remaining vertices in Fig. 5. In an obvious notation, we then
can write the Ř-matrix as

Řj(ϕ) = t(ϕ)( )j + u1(ϕ)
[
(〉〉 )j + ( 〈〈)j

]
+ u2(ϕ)

[
( ⋒ )j + ( ⋓ )j

]

+v(ϕ)
[
(��)j + (��)j

]
+ w1(ϕ)Ij + w2(ϕ)Ej + x(ϕ)Xj . (3.11)

In terms of the TL generators introduced in the previous section, Ej = ejfj and Xj ≡ ej +fj, while
Ij takes value 0 on the dilute configurations and 1 otherwise.

Since the non-dilute vertices satisfy the BWM algebra, it is simple to show that the operators

Bj, Ej , Ij , ( )j , (〉〉 )j, ( 〈〈)j , ( ⋒ )j , ( ⋓ )j , (��)j , (��)j
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constructed from the two-color loop model satisfy a dilute BWM algebra. Namely, with doubled
lines here corresponding to single lines in Appendix A, and the Bj defined in (3.7), these operators
generate the dilute BWM algebra with parameters (N = (q + q−1)2, ω = q3), where q = e2iθ.

In [25], an integrable model based on the dBWM algebra was derived. With n = −2 cos 2θ as
before, its Boltzmann weights are given by

t(ϕ) = − cos(2ϕ− 3θ)− cos 5θ + cos 3θ + cos θ
u1(ϕ) = −2 sin 2θ sin(ϕ− 3θ)
u2(ϕ) = 2 sin 2θ sinϕ
v(ϕ) = −2 sinϕ sin(ϕ− 3θ)
w1(ϕ) = 2 sin(ϕ− 2θ) sin(ϕ− 3θ)
w2(ϕ) = 2 sinϕ sin(ϕ− θ)
x(ϕ) = 2 sinϕ sin(ϕ− 3θ) .

(3.12)

We denote by ϕ0 the isotropic value which is closest to zero:

ϕ0 =

{
3θ
2 if 0 < θ < π

3
3θ
2 − π if π

3 < θ < π.
(3.13)

The universal properties are independent of the anisotropy parameter ϕ (as long as ϕ lies between
0 and ϕ0), but depend very strongly on θ, as we shall see. At the isotropic point ϕ = 3θ/2, the
weights can be rescaled to

t = 2cos 3θ + 2cos 2θ + 1

u1 = u2 = 4cos θ
2 cos θ

v = 2cos θ + 1
w1 = w2 = 1
x = −(2 cos θ + 1) .

(3.14)

The integrable model defined by (3.11)–(3.12) obeys the following properties:

• The isotropic weights are invariant under the transformations θ → 2π + θ, and θ → −θ, so
the range of inequivalent couplings is θ ∈ [0, π]. Each value of n ∈ [−2, 2] appears twice in
this interval.

• Since there are no loop ends, the number of loops mod 2 is the same as the number of x
vertices mod 2. This allows us to change the sign of n by absorbing the sign in the weight
x: (n, x) → (−n,−x). Thus there are four distinct critical points for each value of n ∈ (0, 2),
while there are two for n = 0 and n = 2.

• The weights satisfy the inversion relation

Ř(ϕ)Ř(−ϕ) = 4 sin(2θ − ϕ) sin(2θ + ϕ) sin(3θ − ϕ) sin(3θ + ϕ) 1 . (3.15)

• Rotating by 90o is equivalent to sending ϕ→ 3θ − ϕ.

• The weights are trivial when u = 0: Ř(0) = 2 sin 2θ sin 3θ 1 .

• The eigenvalues of the transfer matrix are preserved under (u1, u2) → (−u1,−u2) and v → −v.
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3.3 The quantum Hamiltonian

To gain intuition into this doubled loop model, it is useful to find the equivalent 1d quantum
Hamiltonian by taking the very anisotropic limit ϕ → 0. The Hamiltonian is found from the
transfer matrix TL(ϕ) for L sites by

H := 2 sin 2θ sin 3θ
d log TL(ϕ)

dϕ

∣∣∣∣
ϕ=0

+ 2L sin 5θ 1 ,

yielding

H =

L∑

j=1

{
4 cos 4θ sin θ ( )j + 2cos 2θ sin 3θ [(〉〉 )j + ( 〈〈)j ] + 2 sin 2θ [( ⋒ )j + ( ⋓ )j ]

+2 sin 3θ [(��)j + (��)j ]− 2 sin θ Ej − 2 sin 3θ Xj

}
. (3.16)

To find the Fermi velocity vf , we assume that in the scaling limit this Hamiltonian is that of
a conformal field theory. In the next Section, we will present much evidence in support of this
assumption. In a conformal field theory, the ground-state energy (the lowest eigenvalue of H) is
[29]

E0
L ≃ Le∞ − πc

6L
vf . (3.17)

where c is the central charge. Let Λ0
L(ϕ) be the dominant eigenvalue of the transfer matrix. The

analysis of Appendix B indicates that the free energy of the loop model on a rhombic lattice with
angle α is given by

[
− log Λ0

L(ϕ)
]
, where α = πϕ/(2ϕ0) and ϕ0 is the isotropic value, as defined in

(3.13). In a conformal field theory, one expects [29]

− log Λ0
L(ϕ) ≃ Lf∞(α)− πc

6L
sinα . (3.18)

Differentiating (3.18) around ϕ = 0 and comparing with (3.17) yields

vf =

∣∣∣∣
2π sin 2θ sin 3θ

2ϕ0

∣∣∣∣ , ϕ0 =

{
3θ
2 if 0 < θ < π

3
3θ
2 − π if π

3 < θ < π.
(3.19)

4 Identifying the critical theories

In this Section, we present what we believe is convincing evidence that the doubled loop model
with Boltzmann weights (3.12) is critical. We find the presumably exact central charge of the
conformal field theories describing the scaling limit, and also give some of the dimensions of fields.
We do this by a combination of calculations exploiting the integrability, comparison to a similar
integrable model, and exact diagonalization of the transfer matrix and the Hamiltonian for widths
up to L = 14 sites.

4.1 The four regimes

This critical line is parametrized by the value of θ ∈ [0, π], related the weight per loop by n =
−2 cos 2θ. Since the Fermi velocity vanishes at θ = π

3 ,
π
2 , and has a discontinuity at θ = 2π

3 , it is
natural to expect that the physics is discontinuous if θ is varied across these values. We thus divide
the critical line into four regimes, as described in Table 2.
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regime θ-range parameterisation central charge

1 0 < θ < π
3 n = −2 cos π

r+2 c = 2
[
1− 6

(r+1)(r+2)

]
+ 1

2

2 π
3 < θ < π

2 n = 2cos π
r+2 c = 2

[
1− 6

(r+1)(r+2)

]

3 π
2 < θ < 2π

3 n = 2cos π
r+2 c = 3r2

(r+1)(r+2) +
1
2

4 2π
3 < θ < π n = −2 cos π

r+2 c = 3r2

(r+1)(r+2)

Table 2: The four regimes of the integrable loop model.

All known integrable models with Boltzmann weights parameterized by trigonometric functions
of the anisotropy parameter ϕ are critical, and this is no exception. One argument for this is the
existence of the lattice holomorphic operator described in Appendix B. Another is the inversion-
relation calculation done below, which shows that with standard assumptions about holomorphicity
in ϕ, the free energy is singular as this critical point. A numerical check is to use exact diagonal-
ization to find the largest eigenvalue of T and/or the ground-state energy of H, and then fit the
results to (3.17) or (3.18). To extract the central charge c, we use two different-length systems to
get rid of the extensive piece Le∞. Doing this, we find the results given in Fig. 7. We see a very
nice convergence to the critical behavior as expected.

We combine these results with other arguments to conjecture exact formulae for the central
charge for all θ. We can also identify precisely which conformal field theories describe some critical
lines. There are two types of conformal field theories known to describe doubled loop models, and
both occur along this critical line. Unfortunately, the value of n = 0 at θ = 3π

4 of interest for
the truncated CC model lies in one of the regions where we do not understand the conformal field
theory. As is apparent from Fig. 7, we do know that c = 0 as required there.

At several special values of θ, the model simplifies. Namely, when n = ±1, all loop configurations
receive the same weight (if n = −1, we transform (n, x) → (−n,−x) as explained in Sec. 3.2). Thus
when computing the partition function, we can sum up the four completely packed vertices to give
a single one with weight w1 + w2 + 2nx.

For θ = 2π
3 at the isotropic point, x = v = 0, so this reduces to a six-vertex model with no

staggering. Here the usual parameter [30] has value

∆ =
a2 + b2 − c2

2ab
= −1 ,

so this is in the same universality class as the antiferromagnetic Heisenberg model. Thus the central
charge is c = 1 and the first thermal exponent is Xt =

1
2 , in agreement with the numerical results

in Figs. 7–8.
At θ = π

6 and θ = 5π
6 , we obtain a staggered version of the eight-vertex model. Ordinarily

the staggered eight-vertex model is not solvable, but as we detail in Appendix C, this one is not
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Figure 7: Numerical estimates for the central charge in the four critical regimes. Different symbols
represent data points for consecutive system sizes: L = 4, 6 (+), L = 6, 8 (×), L = 8, 10 (∗), L =
10, 12 (�), L = 12, 14 (�). Full lines represent the predicted exact values from Table 2.

only solvable, but can be mapped onto a free-fermion theory. There we show that there are two
Majorana fermions present, but only one of the two is critical. Thus the central charge is c = 1

2
here, again consistent with the numerics.

4.2 Computation of an exact scaling dimension

Since the model is integrable, it is possible to derive some quantities exactly. Here we extract
the dimension of an operator in the critical theory as a function of θ. This is possible because at
certain discrete values of θ, there exists a deformation away from the critical point preserving the
integrability [25]. The inversion-relation method [30] yields the free energy along this deformation,
and by analyzing its expansion around the critical point, we extract the value of the exponent
νint. This then yields the dimension of the operator which when added to the action causes the
deformation.

It is convenient to parameterize the loop weight n within each of the four regimes by a param-
eter r,

n = 2ǫ cos
π

r + 2
, (4.1)

where ǫ = −1 in regimes 1 and 4, and ǫ = 1 in regimes 2 and 3 (see Table 2).
The integrable deformations resulting in unitary field theories occur at integer values of r in

all four regimes. Here the dilute BWM algebra admits a “height” or “Restricted Solid-On-Solid”
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(RSOS) realization [25]. Instead of treating the loops as the degrees of freedom, on the dual lattice
one places height variables, which are integers restricted to a certain interval. The loops then play
the role of domain walls separating regions of different heights.

The inversion-relation method is a way of computing the free energy exactly after making as-
sumptions about its holomorphicity properties as a function of ϕ. The free energy satisfies con-
straints following from the inversion relation (4.2) below, and the fact that sending ϕ → 3θ − ϕ
rotates the lattice by 90o. The holomorphicity assumptions then give a unique solution to these
constraints. Parameterizing the deformation in our case by p, the inversion relation becomes [25]

Ř(ϕ, p)Ř(−ϕ, p) = (4p)−1 θ1(2θ − ϕ, p) θ1(2θ + ϕ, p) θ1(3θ − ϕ, p) θ1(3θ + ϕ, p) 1 , (4.2)

where θ1(u, p) is the standard elliptic theta function. This indeed reduces to (3.15) in the critical
limit p → 0. From this, it is simple to show that the inverse of the transfer matrix in the diagonal
direction is given by forming a transfer matrix out of products of Řj(−ϕ, p).

Conveniently, both (4.2) and the behavior under rotational symmetry are identical to that of the
model studied in [31], so we utilize these results. The singular part of the free energy approaching
the critical point depends on p as fsing ∼ p2−νint , so the operator perturbing the critical theory in
the integrable direction has scaling dimension Xint = 2− 2/νint. Then we find

Xint =





r−1
r+2 + 1 in regime 1,
r−1
r+2 in regime 2,
3

r+2 + 1 in regime 3,
3

r+2 in regime 4.

(4.3)

We have written these results in terms of r instead of θ to emphasize that the derivation only applies
to r integer, since this is where (4.2) can be derived. However, we expect that the results can be
continued to all r within a given regime, since the equations themselves depend on r as a continuous
parameter.

A good check of the validity of (4.3) for generic θ is that it corresponds exactly to Xint = 2s,
where s is the spin of the discretely holomorphic parafermion ψs(z) described in Appendix B:
see (B.6).

4.3 Description by conformal field theory

Here we give formulae for the central charges in all four regimes that are presumably exact. All
are related to those occurring in completely packed models. However, the doubled loop models are
not identical to completely packed models: we have checked that the doubled loops have non-trivial
fractal dimension in regime 4 (see Section 5.3).

One type of critical behavior possible for a doubled loop model is simply to have the two
colors decouple in the scaling limit. This occurs in the isotropic completely packed version when
x = −w1 = −w2, and is argued to persist in a region around this point [19]. The central charge
is simply twice cO(n) given in (3.6). Examining our numerical results for c, we see that in regime
2, the central charge indeed is converging nicely to 2cO(n) with the appropriate dependence on n.
When r is an integer, this is twice the central charge of the conformal minimal models, and so the
corresponding height model should scale to two decoupled minimal models. An additional check on
this comes from the fact that the dimension of the integrable perturbing operator in (4.3) is twice
that of an operator in a minimal model. Namely, we have Xint = 2X1,2, where X1,2 =

r−1
2(r+2) is the

scaling dimension of the Φ1,2 operator in the minimal model with central charge c = 1− 6
(r+1)(r+2) .
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It is thus natural to conjecture that in regime 2, the scaling limit of our integrable loop model is
indeed that of two decoupled completely packed loop models. These conformal field theories have
been extensively studied [32].

In regime 1, the numerics for the central charge are apparently converging to 2cO(n) +
1
2 . Thus

here the loops apparently decouple as well, but additional critical Ising degrees of freedom appear.
This is consistent with the mapping to the Ising model at θ = π

6 described in Appendix C. The
scaling dimension Xint here is 2X1,2 + 1, leading to the natural interpretation that the operator is
a product of the Φ1,2 operators in the two minimal models with the energy operator in the Ising
model, the latter having dimension 1. These extra Ising degrees of freedom, which also occur in
a certain regime of the square-lattice O(n) model [33], appear through the following mechanism.
The vertices of the loop model obey a Z2 symmetry, in the sense that any vertex is surrounded
by an even number of empty edges. Thus empty edges form polygons where each node has even
degree, and so they respect the geometry of Ising domain walls for Ising variables σ lying on the
dual lattice. Depending on the values of the Boltzmann weights, these Ising variables may become
critical in the continuum limit. This is evidently what happens in regime 1.

The critical behavior in regimes 3 and 4 is not that of two decoupled models. As mentioned
above in Sec. 3.1, in the completely packed version of the doubled loop model, there occurs a coupled
critical point corresponding to the SUr(2)×SUr(2)/SU2r(2) WZW coset model, with central charge
cr (3.10). The numerical analysis in Fig. 7 nicely fits to cr in regime 4, and agrees with the Ising
value c = 1

2 at θ = 5π
6 , derived in Appendix C. Moreover, when r is an integer, the exponent Xint

in (4.3) belongs to the above coset theory. Thus it is natural to conjecture that the central charge
throughout regime 4 is cr. As we see from our numerics at n = 0 (see Sec. 5.3), the fractal dimension
of a single loop is df < 2, so regime 4 represents a “dilute branch” of the coset theory.

Likewise, in regime 3 the data seem to be converging to cr +
1
2 , agreeing with the six-vertex

value c = 1 at θ = 2π
3 . The exponent Xint is 1 greater than the value in regime 4, so it is natural to

interpret that the operator is multiplied by the Ising energy operator of dimension of 1. Thus like
in regime 1, the critical theory presumably includes an extra Ising piece.

Outside r integer, the conformal field theory in regimes 3 and 4 is not understood. Moreover, we
will see in the subsequent section that even though the formula for the central charge is applicable
for all r, it is not even clear whether dimensions of exponents can be continued to values of |n| < 1.

5 Critical behaviour in regime 4

The main motivation of this paper is to explore a doubled loop model arising in the truncation of
the Chalker-Coddington network model. For a connection to disordered systems, the weight per
loop n and the central charge c must be zero. We have two n = 0 points, but for θ = π

4 inside
regime 1, the corresponding critical field theory seems to have nothing to do with the CC model.
Not only do the different colors of loop decouple, but the extra Ising degree of freedom makes c 6= 0.
We thus in this section focus on the behavior in regime 4, which contains the other n = 0 point at
θ = 3π

4 .
As noted above, we do not have a conformal field theory description valid in regime 4 outside of

integer r. It therefore seems a good idea to exploit the fact that the associated height description
at these points is described by the coset conformal field theory SU(2)r × SU(2)r/SU(2)2r .

5.1 Integrable perturbations

This coset theory is known to have two integrable perturbations. One of them, found by using
level-rank duality on the results of [34], is by the operator with dimension Xint = 3

r+2 discussed
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above. This perturbation describes the scaling limit of the height model with elliptic Boltzmann
weights [25]. In terms of the loop model, we have found that the discrete parafermion ψs(z) of
Appendix B is the chiral part of the corresponding operator. This parafermion consists of the
insertion of a one-leg defect for each loop flavour.

The other integrable perturbation also has a very natural meaning in terms of loops. This
perturbing operator corresponds to the (1,1;adjoint) operator of dimension X(1,1;adj) =

2r
r+1 . Several

arguments imply that this perturbation corresponds to changing the weight per unit length of the
loops [35]. This integrable field theory describes the scaling limit of an integrable height model
[36], and using the BWM algebra, it is described in [35] how to relate this height model to a
dilute doubled loop model very similar to the one we study here. Moving away from the critical
point in this similar model turns out to be effectively changing the weight per unit length. The
second argument implying this result involves the S matrices for this integrable field theory, which
decompose into the tensor product of S matrices of two minimal models Sr × Sr [37]. It is natural
to interpret the worldlines of a particle in a single minimal model as a loop in the O(n) model [38].
Thus when the S matrix is given by this tensor product, it is natural to interpret the worldlines of
such particles as doubled loops; when two particles scatter they obey one of the four processes in
the vertices w1, w2 and x pictured in Fig. 5. In such an interpretation, the weight per unit length
of the loop is related to the mass of the particle. In the field theory, moving along this integrable
line corresponds precisely to varying the mass of the particle.

We denote Xt the thermal exponent, defined as the conformal dimension for the first excited
state in the zero-leg sector. The numerical calculation of Xt (see Fig. 8) brings two observations.
In the region 5π

6 . θ < π, the thermal exponent Xt converges to X(1,1;adj) =
2r
r+1 even for generic

values of θ, whereas X(1,1;adj) was derived only for integer values of r. This indicates that the results

from the SU(2)r × SU(2)r/SU(2)2r coset WZW model may be continued to arbitrary 5π
6 . θ < π.

However, in the region 2π
3 < θ . 5π

6 , Xt clearly deviates from the continued value 2r
r+1 : this shows

that not all exponents of the loop model are given by analytic continuation of the WZW coset model
in this region, including our point of interest θ = 3π

4 .

5.2 Correlation length exponent ν

The correlation length exponent ν is defined as the analog for the loop model of νCC (2.4). In the
CC model, the effect of perturbing the energy level E away from the transition value Ec amounts
to taking β, β′ out of the critical line (2.17). The analog of this perturbation in the integrable loop
model is to introduce a staggering of the spectral parameter between the even and odd sublattices,
with symmetric values around the isotropic spectral parameter ϕ0 (3.19): ϕ = (1 ± λ)ϕ0, in the
range −1 ≤ λ ≤ 1.

The parameter λ acts in a similar way to (β − βc) in the original CC model. At λ = −1, the
only allowed loops are those with minimal length, winding around the vertices of one sublattice
(say, the even one). At λ = 1 loops also have minimal length, but wind around the odd sublattice.
The critical transition takes place at λ = 0, where the two sublattices become equivalent, and loops
may be very long. In the limit λ→ 0, we expect this perturbation to develop a correlation length,
scaling as

ξ ∼ |λ|−ν . (5.1)

Since this staggering does not respect the rapidity lines of the square lattice, it breaks integrability.
Let us first discuss the point θ = 5π

6 , where the model maps to free fermions and remains solvable
when the λ perturbation is included (see Appendix C). At this point, we get the analytical result
ν = 2, whereas the energy operator of the free-fermion theory is Xt = 1. In Appendix C, we show
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Figure 8: Thermal exponent Xt in regime 4. Data points were obtained by transfer-matrix diago-
nalisation, and the solid line represents the exact result for the integrable perturbation dimension
X(1,1;adj) =

2r
r+1 .

that the effective theory is a massive Majorana fermion with mass proportional to λ2 and not λ.
Thus, at θ = 5π

6 , we have the relation between ν and the dimension of the perturbing operator:

Xt = 2− 2

ν
. (5.2)

It is natural to assume that both ν and Xt are continuous in θ, so the effective mass term should
still be proportional to λ2 outside θ = 5π

6 , and the relation (5.2) holds all along regime 4.
For θ 6= 5π

6 , exponent ν is only accessible numerically, through finite-size scaling. The correlation-
length exponent ν is obtained by assuming a one-parameter scaling law for the energy gap in the
presence of the staggered perturbation λ. For λ ≃ 0, we expect the behaviour:

log
Λ0(λ)

Λ1(λ)
≃ 2π

L
F
(
λ L1/ν

)
, (5.3)

where F is a scaling function. Since eigenvalues are unchanged under λ→ −λ, F must be an even
function. In particular, at θ = 3π

4 , like for the truncated CC model (see Sec. 2.4), we get the best
data collapse (see Fig. 9) for the value

ν ≃ 1.1 . (5.4)

To our numerical precision, this value may be related through (5.2) to the thermal exponent Xt ≃
1.71. This is an indication that the relation (5.2) should hold throughout regime 4.

5.3 Other exponents

A finite-size scaling plot of the gap corresponding to ℓ1 = ℓ2 = 1 is shown in Fig. 10. The fact that
it scales to zero faster than 1/L indicates that X1,1 is consistent with zero. This agrees with the
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Figure 9: Data collapse for the effective thermal exponent Xt(L, λ) in the presence of a λ pertur-
bation. The value used for this plot is 1/ν = 0.9.

value X|G|2 = 0 expected for the untruncated model in (2.21), but as far as we know there is no
fundamental reason for them to agree, and it would be interesting to investigate this further. The
observed slope in Fig. 10 suggests existence of an irrelevant operator with scaling dimension ≈ 3.2.

Moreover, we observe numerically that Xt = X2,2. Hence, like for usual dilute polymers, this
means that Xt is associated to a perturbation of the monomer fugacity (but different from the
coset-model continuation to r = 0, which would yield X(1,1;adj) = 0), and the fractal dimension of a
path is

df = 2−X2,2 ≃ 1.71 . (5.5)

6 Discussion

Regimes 3 and 4 of the integrable model are particularly interesting, as the two loop colours re-
main coupled in the continuum limit. They are described by the “dilute branch” of the SU(2)r ×
SU(2)r/SU(2)2r WZW coset CFT (the same CFT as for the completely packed case [19]), with
an additional Ising degree of freedom in regime 3. Strictly speaking, this theory is only valid at
the RSOS points, but some critical properties (including the central charge) extend to the loop
model for generic fugacity n. However, differences between the loop and RSOS spectra exist, as
shown by our results on the thermal exponent Xt. An analytic study of the loop model through the
Bethe Ansatz Equations is considered for future work. One also needs to understand if a Coulomb-
Gas construction (most probably with a three-dimensional target space) could reproduce the coset
results for generic n.

The original motivation for the present work was to propose an exactly solvable approximation
to the IQHE transition. Unfortunately, our results for the correlation-length exponent ν clearly
indicate that the point n = 0 of the integrable model is not in the universality class of IQHE.
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Figure 10: Log-log plot of the energy gap for the watermelon (1, 1) sector. Data points are fitted
by a line of slope ≃ −2.2, and hence the conformal dimension is X1,1 = 0.

However, this model is a critical, integrable point in the phase diagram of our modified CC model.
It should really be considered as the first order in a hierarchy of truncated models, converging to
the IQHE universality class. Higher-order truncated models should also contain integrable points,
which may be built by “fusing” the edges of the first-order model, following [36] or a more recent
approach based on additional ZN symmetry [39].

From the numerical point of view, we used the only known efficient method to study a generic
loop model: transfer-matrix diagonalisation. However, the inherent limitations on the system size
prevent us from obtaining sharp estimates for the exponents, especially for ν. Recently, new Monte-
Carlo algorithms have been proposed to simulate 2d loop models [40]. We hope to adapt this new
approach to two-colour models, and get more precise estimates for the exponents of our truncated
CC model.

Acknowledgments The work of P.F. was supported in part by NSF grants DMR/MPS 1006549
and 0704666.

Appendix A: The BWM algebra

In this Appendix, we recall the motivation and definition of the BWM algebra in a graphical
language.

The BWM algebra [20] is a braid-monoid algebra, an object relevant to knot theory. It was
originally designed to compute a certain link invariant, and later it was realised that it could be
represented by RSOS models related to affine Lie algebras [28]. In [25], a dilute version of the BWM
algebra was constructed, together with the corresponding R-matrix.

In the context of knot theory, the basic objects under consideration are braids. Let (p1, . . . , pL)
be L distinct points in the complex plane, and define two copies of each point in three-dimensional
space, p′j = pj×{0}, p′′j = pj×{1}, so that the points {p′j} and {p′′j} lie in two parallel planes. For all
j = 1, . . . , L, take a curve Γj enclosed between the two planes, and connecting p′j to p

′′
j . Furthermore,

impose that the Γj ’s do not intersect each other. Denote the multiplet Γ = (Γ1, . . . ,ΓL): a braid β
is then an equivalence class of Γ’s, modulo continuous deformations of the curves. A typical braid
is depicted in Fig. 11.
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Figure 11: An element of the braid group (left) and a word of the braid-monoid algebra (right) for
L = 4.

Multiplication of two braids β, β′ is defined by the concatenation of the two corresponding
diagrams, with the convention that diagrams act from bottom to top: the product ββ′ corresponds
to β above β′. The β’s form the braid group, generated by the elementary braids Bj, B

−1
j , which

satisfy the relations:

BjB
−1
j = B−1

j Bj = 1 (A.1)

BjBj+1Bj = Bj+1BjBj+1 (A.2)

BjBℓ = BℓBj if |j − ℓ| ≥ 2. (A.3)

Consider now multiplets Γ = (Γ1, . . . ,ΓL) of non-intersecting curves connecting all the elements
of {p′j} ∪ {p′′j}, without the restriction that a curve should go from a p′j to a p′′k. The corresponding

diagrams are then words on the alphabet {Bj , B
−1
j , Ej , j = 1, . . . , (L − 1)}, where the meaning

of the letters Bj, B
−1
j , Ej is given in Fig. 12. The algebra on these words is called a braid-monoid

algebra. It has two parameters (N,ω), and is defined by the braid-group relations (A.1)–(A.2),
together with the additional relations (see Fig. 13):

E2
j = N Ej (A.4)

EjEj±1Ej = Ej (A.5)

BjEj = EjBj = ω Ej (A.6)

BjBj±1Ej = Ej±1BjBj±1 = Ej±1Ej . (A.7)

Equations (A.4)–(A.5) mean that the Ej form a Temperley-Lieb algebra with loop weight N .

Bj B−1

j Ej

j j + 1 j j + 1 j j + 1

. . .. . . . . . . . . . . . . . .

Figure 12: Generators of a braid-monoid algebra.

The BWM algebra is a braid-monoid algebra (A.1)–(A.7) where one imposes a linear relation
between Bj, B

−1
j and Ej:

Ej = 1+
Bj −B−1

j

q − q−1
, where N = 1 +

ω − ω−1

q − q−1
. (A.8)

24



= N = =

= == =

= = ω

Figure 13: Algebraic rules in the braid-monoid algebra with parameters (N,ω).

The reason for introducing such a constraint is that the resulting algebra supports a linear form
(the Markov trace) which is identical to a geometric invariant of the diagrams Γ (the Kauffman
polynomial) [20].

The dBWM algebra [25] is obtained by allowing vacancies, or equivalently by taking multiplets
of curves Γ = (Γ1, . . . ,Γℓ) with 0 ≤ ℓ ≤ L. This amounts to adding the generators

Ij , ( )j , (〉 )j , ( 〈)j , ( ∪ )j , ( ∩ )j , (�)j , (�)j ,

whose action is depicted in Fig. 14. In equations (A.1) and (A.8), 1 is replaced by Ij, so that the
Bj, B

−1
j , Ej still form a BWM algebra on the set of occupied sites. Additional relations for the

dilute generators should be included, to implement invariance under continuous deformation of the
curves in the presence of vacancies. The full set of dBWM relations is given in [25].

( )j

j j + 1 j j + 1

( 〈)j

j j + 1

j j + 1

(�)j (�)j

j j + 1

Ij

j j + 1

Ej

j j + 1

Bj

j j + 1

B−1

j

j j + 1

(〉 )j

j j + 1 j j + 1

( ∪ )j (
∩

)j

Figure 14: The generators of the dilute BWM algebra.
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Appendix B: Discretely holomorphic parafermion in the loop model

In this Appendix, we show that the two-colour loop model admits a discretely holomorphic para-
fermion ψs(z) [41, 42, 43] exactly on the integrable manifold (3.12). The parafermion ψs(z) is
defined on the midpoints of the dual lattice L∗, and inserts a one-leg defect for each color at point
z. In the two-point function 〈ψs(0)ψs(z)〉, there is a black (resp. grey) path γ1 (resp. γ2) connecting
0 and z, and one includes a phase factor involving the winding angles W of the paths γ1, γ2:

〈ψs(0)ψs(z)〉 =
1

Z

∑

(γ1,γ2)0→z

∑

C|(γ1,γ2)
Π(C) e

is
2
[W (γ1)+W (γ2)] , (B.1)

where the first sum is over all possible pairs of paths from 0 to z, the second sum is over the
loop configurations C compatible with γ1 and γ2, and Π(C) is the Boltzmann weight for a loop
configuration C.

0

z

Figure 15: A loop configuration contributing to 〈ψs(0)ψs(z)〉.

We impose discrete Cauchy-Riemann (CR) on 〈ψs(0)ψs(z)〉:
∑

z∈�
〈ψs(0)ψs(z)〉 δz = 0 , (B.2)

where the sum is over the edges of an elementary plaquette of L∗, and the δz’s are the corresponding
elementary displacements. For the discrete CR equations (B.2) to hold, it is sufficient to fix the
external loop configuration outside a given plaquette, and ask the total contribution of internal
configurations to vanish [41, 43]. This determines a linear system of equations for the Boltzmann
weights. To get anisotropic solutions, we consider the analog problem on a rhombic lattice of angle
α [42, 43]. Setting

λ := e
iπs
2 , µ := eiα(1+s) , (B.3)

we get the 7× 7 linear system for the unknowns (t, u1, u2, v, w1, w2, x):

t+ µλ−2u1 − µu2 − v = 0
n2u1 − λ−2u2 − µλ2v + µλ−2(n2w1 + w2 + 2nx) = 0
−λ2u1 + n2u2 + µλ−4v − µ(w1 + n2w2 + 2nx) = 0
−µλ2u1 + µλ−4u2 + n2v − λ4w1 − λ−4w2 − 2x = 0

nλu1 − nλ−1u2 − µλ−1v + µλ−1[n(w1 + w2) + (n2 + 1)x] = 0
nλ−1u1 − λu2 − nµλv + µλ−3(nw1 + x) + µλ(w2 + nx) = 0

−u1 + nλ2u2 + nµλ−2v − µλ−2(w1 + nx)− µλ2(nw2 + x) = 0 ,

(B.4)
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As a first step, we need determine the spin s by going back to the isotropic case α = π/2. Imposing
u1 = u2 and w1 = w2, (B.4) reduces to a 5× 5 system, whose determinant is:

D(n, λ) = −λ−4(λ2 + 1)(nλ4 − 1)2(λ4 + λ−4 + n3 − 3n) . (B.5)

Using the parameterisation n = −2 cos 2θ, this determinant vanishes when:

exp(2iπs) = exp(±6iθ) . (B.6)

For a general angle α, the solution of (B.4) is a set of α-dependent weights t(α), . . . x(α). If we
apply the substitution:

α→ ϕ

1 + s
, (B.7)

we observe that the solution of (B.4) is identical to the integrable weights (3.12). This is analogous
to what was found for various other integrable models with a discrete holomorphic parafermion [41,
42, 43]. Note that the relation (B.7) is consistent with the discussion on the Fermi velocity in
Section 3.3.

Moreover, at the Ising points θ = π
6 ,

5π
6 (see Appendix C), the spin s = 1

2 is consistent with (B.6).

(1) (2) (3) (4) (5) (6) (7)

Figure 16: External loop connectivities outside an elementary plaquette.

Appendix C: Free fermions at θ = π
6 ,

5π
6

C.1 Mapping to a staggered 8V model

At θ = π
6 and θ = 5π

6 , the model maps to a free fermion Hamiltonian through the mapping sequence:

two-color loop → square-lattice O(n = 1) → staggered 8V → free fermions.

In both cases, we start from the two-color loop model and do the sign change (n, x) → (−n,−x)
to get n = 1. With this value of n, one may discard loop connectivities, and the model is simply
local, with occupied and empty edges. After the exchange of occupied/empty edges, we get a
square-lattice O(n) model [33] with n = 1 and weights :

t̃ = w1 + w2 − 2x, ũ1 = u1, ũ2 = u2, ṽ = v, w̃1 + w̃2 = t . (C.1)

(The tilde is here to avoid confusion between the O(n) and two-colour loop model Boltzmann
weights). For θ = π

6 , we have the specific values

t̃ = sin 2ϕ−
√
3

ũ1 =
√
3 cosϕ

ũ2 = −
√
3 sinϕ

ṽ = sin 2ϕ

w̃1 = − cos(π6 − 2ϕ) −
√
3
2

w̃2 = cos(π6 + 2ϕ) −
√
3
2 ,

(C.2)
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which are exactly those of the integrable square-lattice O(n) model [33] with n = 1 at the dilute
critical point. The O(n = 1) model maps in turn to an eight-vertex model (see Fig. 17) with
staggered weights

ω1 = ω2 =
√
3 cosϕ

ω3 = ω4 = −
√
3 sinϕ

(ω5, ω6) =

{
(− sin 2ϕ−

√
3, sin 2ϕ−

√
3) on even sites

( sin 2ϕ−
√
3,− sin 2ϕ−

√
3) on odd sites

ω7 = ω8 = sin 2ϕ .

(C.3)

At θ = 5π
6 , one gets the same 8V model, up to irrelevant signs.

ω1 ω2 ω3 ω4 ω6ω5 ω7 ω8

Figure 17: Correspondence between the 8V model and the O(n = 1) model. The mapping depicted
here is valid on one sublattice, say even sites. On odd sites, all arrows must be reversed.

C.2 Very anisotropic limit: the XY chain in a magnetic field

In terms of the Pauli matrices σj , the 8V Ř-matrix reads:

Ř8V
j =

1

4
(ω1 + ω2 + ω5 + ω6)1+

1

4
(ω1 + ω2 − ω5 − ω6)σ

z
jσ

z
j+1

+(ω3 σ
−
j σ

+
j+1 + ω4 σ

+
j σ

−
j+1 + ω7 σ

−
j σ

−
j+1 + ω8 σ

+
j σ

+
j+1)

+
1

4
(ω1 − ω2)(σ

z
j + σzj+1) +

1

4
(ω5 − ω6)(σ

z
j − σzj+1) . (C.4)

We can now take the very anisotropic limit ϕ→ 0. Denoting by a prime the derivative with respect
to ϕ at ϕ = 0, and using the weights (C.3), we obtain:

Ř
′8V
j = −

√
3(σ−j σ

+
j+1 + σ+j σ

−
j+1) + 2(σ−j σ

−
j+1 + σ+j σ

+
j+1)− (−1)j(σzj − σzj+1) . (C.5)

The critical Hamiltonian is given by

H0 = −1

2

L∑

j=1

Ř
′8V
j = −1

4

L∑

j=1

[
Jx σ

x
j σ

x
j+1 − Jy σ

y
jσ

y
j+1 + 2h (−1)jσzj

]
, (C.6)

where Jx = (2−
√
3), Jy = (2 +

√
3) and h = 2. The alternating sign of the last term in (C.6) can

be eliminated by the unitary change of basis:

H0 → U †H0U , where U :=

L/2∏

ℓ=1

σx2ℓ−1 . (C.7)
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This maps H0 to an XY chain in a magnetic field [44, 45]:

HXY = U †H0U = −1

2

L∑

j=1

[
(1 + γ) σxj σ

x
j+1 + (1− γ) σyj σ

y
j+1 + h σzj

]
, (C.8)

where γ = −
√
3
2 and h = 2. In particular, we have learnt that this particular point of the XY spin

chain is exactly equivalent to the integrable dilute O(n = 1) model.

C.3 Staggered perturbation associated to ν

The setting of the 8V model also allows us to consider a staggered perturbation like the one defining
exponent ν (see Sec. 5.2). To do this, we introduce staggered spectral parameters (1 ± λ)ϕ on the
even/odd sites. We take the very anisotropic limit ϕ→ 0, with λ fixed. This way, the parameter λ
controls the strength of the perturbation. The resulting Hamiltonian has the form

H(λ) = H0 + λH1

where

H1 = −1

2

L∑

j=1

(−1)jŘ
′8V
j = −1

4

L∑

j=1

(−1)j
(
Jx σ

x
j σ

x
j+1 − Jy σ

y
j σ

y
j+1

)
, (C.9)

and Jx, Jy are the same as for H0. After the unitary change of basis defined by U , we get the
perturbing term:

Hp = U †H1U = −λ
2

L∑

j=1

(−1)j
[
(1 + γ) σxj σ

x
j+1 + (1− γ) σyj σ

y
j+1

]
. (C.10)

C.4 Exact free-fermion solution

In this paragraph, we expose the exact solution of H(λ) for general values of γ, h, λ. Following [44],
we can solve the model H(λ) by a Jordan-Wigner transformation, mapping the Pauli matrices σj
to fermion operators

cj :=

(
j−1∏

ℓ=1

σzℓ

)
σ+j , c†j :=

(
j−1∏

ℓ=1

σzℓ

)
σ−j , c†jcj =

1

2
(1− σzj ) , (C.11)

obeying anti-commutation relations:

{cj , cℓ} = 0 , {cj , c†ℓ} = δjℓ . (C.12)

In this language, the perturbed Hamiltonian reads

H(λ) = −
L∑

j=1

{
[
1 + (−1)jλ

] [
c†jcj+1 + c†j+1cj + γ(c†jc

†
j+1 + cj+1cj)

]
+ h

(
1

2
− c†jcj

)}
. (C.13)

We introduce two species of fermions

c1,ℓ := c2ℓ , c2,ℓ := c2ℓ−1 , (C.14)
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and their Fourier modes

cµ,q :=
1√
L/2

L/2∑

ℓ=1

eiℓqcµ,ℓ , q =
2πm

L/2
− π , m = 1, . . . ,

L

2
. (C.15)

We can now rewrite H(λ) as

H(λ) =
∑

−π<q≤π

∑

µ,ν

[
c†µ,qAµν,qcν,q +

1

2

(
c†µ,qBµν,qc

†
ν,−q − cµ,−qBµν,qcν,q

)]
, (C.16)

where the matrices Aq and Bq read

Aq =

(
h α∗

q

αq h

)
, Bq =

(
0 −β∗q
βq 0

)
,

αq := −[(1 + λ)eiq + (1− λ)] ,
βq := γ[(1 + λ)eiq − (1− λ)] .

(C.17)

Like in [44], the energies ǫµ(q) are the square roots of the eigenvalues of (Aq +Bq)(Aq −Bq):

ǫ1,2(q) = 2

√
h2

4
+ (1 + γ2λ2) cos2

q

2
+ (γ2 + λ2) sin2

q

2
∓
√

4γ2λ2 + h2
∣∣∣cos

q

2
+ iλ sin2

q

2

∣∣∣
2
. (C.18)

This is the two-branch dispersion relation for arbitrary γ, h, λ.
To express the corresponding eigenmodes, we need the unitary 2× 2 matrices Wq, Vq defined by

the linear relations

(Aq −Bq)Wq = VqDq , (Aq +Bq)Vq =WqDq , Dq :=

(
ǫ1(q) 0
0 ǫ2(q)

)
. (C.19)

The Bogoliubov transformation diagonalising H(λ) is

ηµ,q :=
1

2

∑

ν

[
(W + V )†µν,q cν,q − (W − V )†µν,q c

†
ν,−q

]
. (C.20)

Unitarity of Vq and Wq ensures the canonical anticommutation relations

{ηµ,q, ηµ′,q′} = 0 , {ηµ,q, η†µ′,q′} = δµµ′δqq′ . (C.21)

In terms of the η’s, the Hamiltonian reads

H(λ) =
∑

−π<q≤π

∑

µ=1,2

ǫµ(q) η
†
µ,qηµ,q . (C.22)

Note that there are L/2 distinct momenta q, and that each momentum corresponds to two modes
µ = 1, 2. Thus, we recover L independent modes ηµ,q.

As a final step, we perform the change

ηµ,q → η̃µ,q =

{
ηµ,q if q ≥ 0,

η†µ,q if q < 0,
(C.23)

so that the modes with q < 0 are now considered as holes. the Hamiltonian becomes

H(λ) =
∑

−π<q≤π

∑

µ=1,2

ǫ̃µ(q) η̃
†
µ,q η̃µ,q , where ǫ̃µ(q) := sgn(q) ǫµ(q) . (C.24)
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C.5 Critical Majorana fermion at h = 2, λ = 0

The dispersion relation of the XY chain in a magnetic field is obtained by setting λ = 0 in (C.18):

ǫ1,2(q) = 2

√(
h

2
∓ cos

q

2

)2

+ γ2 sin2
q

2
(λ = 0) . (C.25)

For h = 2, ǫ1 is critical at q = 0, whereas ǫ2 is not critical1:

ǫ̃1(q) = 4 sin
q

4

√
sin2

q

4
+ γ2 cos2

q

4
(C.26)

ǫ̃2(q) = 4 sgn(q) cos
q

4

√
cos2

q

4
+ γ2 sin2

q

4
. (C.27)

The dispersion relation ǫ̃1(q) is approximately linear at q = 0 (see Fig. 18). In the ground state, all
levels with −π < q < 0 are filled: this is a Fermi sea with only one Fermi level qf = 0, and thus it
corresponds to a Majorana fermion with central charge c = 1

2 . The critical eigenmodes are obtained
from (C.20): {

η1,q = cos
θ1,q
2 (c1,q + c2,q) + i sin

θ1,q
2 (c†1,−q + c†2,−q) ,

η2,q = cos
θ2,q
2 (c1,q − c2,q) + i sin

θ2,q
2 (c†1,−q − c†2,−q) ,

(C.28)

where {
θ1,q := Arg

(
1− cos q

2 − i sin q
2

)
,

θ2,q := Arg
(
1 + cos q

2 + i sin q
2

)
.

(C.29)

After the change η → η̃ (C.23), the continuum limit is described by the effective Hamiltonian

H0 ≃ ivf

∫
dx η̃†1∂xη̃1 . (C.30)

q

ǫ̃(
q
)

π0−π

4

3

2

1

0

-1

-2

-3

-4

q

ǫ̃(
q
)

π0−π

5
4
3
2
1
0

-1
-2
-3
-4
-5

Figure 18: The dispersion relation for h = 2, γ = −
√
3
2 . Left: critical case λ = 0. Right: λ = 1

2 .
The full (resp. dotted) lines represent ǫ̃1 (resp. ǫ̃2).

1 In the case h = γ = 0, both modes ǫ1, ǫ2 are critical at q = π, and the corresponding field theory is a critical

Dirac fermion.
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C.6 Gapped theory at h = 2, λ > 0

When the λ perturbation is turned on, an energy gap opens at q = 0 (see Fig. 18):

∆E := 2ǫ1(q = 0) = 2
∣∣∣
√

1 + γ2λ2 − 1
∣∣∣ ∼ γ2λν , ν = 2 . (C.31)

To understand this value of ν, we shall analyse the perturbing term Hp in terms of the critical
modes η̃1,q (C.28). The relations (C.28) can be inversed, to give:

{
c1,q + c2,q = cos

θ1,q
2 η1,q − i sin

θ1,q
2 η†1,−q := a1,q ,

c1,q − c2,q = cos
θ2,q
2 η2,q − i sin

θ2,q
2 η†2,−q := a2,q .

(C.32)

The perturbing term has the expression

Hp =
1

2

∑

−π<q≤π

{
(1− cos q) (a†1,qa1,q − a†2,qa2,q)

+i sin q
[
a†2,qa1,q +

γ

2
(a†1,qa

†
1,−q − a†2,qa

†
2,−q)− h.c.

]

−γ(1 + cos q) (a†2,qa
†
1,−q + a1,−qa2,q)

}
. (C.33)

In the region q ≃ 0, the first term in (C.33) is of order q2, and thus it generates irrelevant terms

of the form η̃†1∂
2
xη̃1 in the continuum limit. The second term is of order q, and corresponds to

η̃†1∂xη̃1, which renormalises the Fermi velocity. At first order in λ, the third term has no effect on
the continuum theory. However, in second-order perturbation in λ, it generates terms of the form
(η̃†2η̃2)(η̃

†
1η̃1), which are non-vanishing since the lowest η̃2 modes are occupied in the ground state.

From this analysis, we obtain the effective Hamiltonian in the continuum limit

Heff(λ) ∝
∫

dx
(
i η̃†1∂xη̃1 + const× γ2λ2 η̃†1η̃1

)
. (C.34)

The “mass term” has dimension Xt = 1, and the energy gap thus scales as

∆E ∝
(
λ2
) 1

2−Xt .

Comparing with (C.31), we get the scaling relation

Xt = 2− 2

ν
. (C.35)
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