
ar
X

iv
:1

10
3.

34
47

v3
  [

he
p-

th
] 

 8
 O

ct
 2

01
1

(In)finite extensions of algebras from their İnönü-Wigner contractions
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The way to obtain massive non-relativistic states from the Poincaré algebra is twofold. First,
following İnönü and Wigner the Poincaré algebra has to be contracted to the Galilean one. Second,
the Galilean algebra is to be extended to include the central mass operator. We show that the
central extension might be properly encoded in the non-relativistic contraction. In fact, any İnönü-
Wigner contraction of one algebra to another, corresponds to an infinite tower of abelian extensions
of the latter. The proposed method is straightforward and holds for both central and non-central
extensions. Apart from the Bargmann (non-zero mass) extension of the Galilean algebra, our list of
examples includes the Weyl algebra obtained from an extension of the contracted SO(3) algebra, the
Carrollian (ultra-relativistic) contraction of the Poincaré algebra, the exotic Newton-Hooke algebra
and some others.

The paper is dedicated to the memory of Laurent Houart (1967-2011).

1. INTRODUCTION

The İnönü-Wigner contraction (IW) [1] (see [2] for the
generalizations) plays a very important rôle in physics.
To see the most basic example of the contraction, start
with the SO(3) algebra of 3d rotations. The algebra con-
sists of three operators Ji satisfying the commutator re-
lations:

[J2, J3] = iJ1 , [J2, J3] = iJ1 and [J1, J2] = iJ3 . (1)

Rescaling the operators J1 and J2:

Ji=1,2 = J̃i=1,2/σ J3 = J̃3 (2)

and taking the σ → 0 limit one ends up with a new
algebra:

[J̃2, J̃3] = iJ̃1 , [J̃3, J̃1] = iJ̃2 and [J̃1, J̃2] = 0 , (3)

which is the algebra of ISO(2), the group of the R
2

isometries, where J̃1,2 and J̃3 are the translations and
the rotation respectively. One can think of this contrac-
tion as of taking to infinity the radius of the 2-sphere,
while zooming near a point on it.
Probably the most famous physical application of

the IW contraction is the non-relativistic limit of the
Poincaré algebra. As we will briefly review in the paper,
the contraction parameter is the speed of light c and the
rescaled operators are the time translation (the Hamil-
tonian) and the boosts. By the construction, however,
the c → ∞ limit leads to the Galilean algebra, which has
exactly the same number of generators as the original
Poincaré algebra. For physical applications, though, it

is necessarily to centrally extend the non-relativistic al-
gebra by including the mass parameter M . The M 6= 0
version of the Galilean algebra is commonly known as the
Bargmann algebra [3].

In fact, the Poincaré algebra is itself a contraction
of the de Sitter algebra SO(4, 1), where the contrac-
tion parameter now is the cosmological constant Λ. As
was shown [4] by Bacry and Lévy-Leblond in 1967, un-
der some physical assumptions (like parity, time-reversal,
etc.) the full list of possible kinematic groups consists of
the (anti) de Sitter groups and their IW contractions. For
example, one of the possibilities is the (c,Λ) → (∞, 0)
contraction of the de Sitter algebra with the parame-
ter ω = c

√
Λ kept fixed. The contraction produces the

so-called Newton-Hooke (NH) algebra, which further re-
duces to the Galilean algebra for ω = 0. One can also
take the ultra-relativistic (c → 0) limit of the Poincaré
algebra arriving at the Carrollian algebra [5, 6], the much
less studied counterpart of the Galilean algebra.

In quantum mechanics we are interested in general in
projective representations of groups. On the other hand,
a projective representation of a group G is essentially
equivalent to a regular representation of the central ex-
tension of G. For this reason central extensions are of
special importance in quantum physics. The canonical
(and the simplest) example is the Weyl algebra:

[q, p] = i~ . (4)

Unlike the Galilean group, both the Poincaré algebra
has no central extensions except for the two dimensional
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case.1 This can be seen from the group cohomology ar-
guments (see [8] for a detailed review). These groups, al-
though, still have plenty of non-central extensions, some
of which are interesting from the physical point of view,
e.g. the Maxwell algebra [9, 10], a specific non-central
extension of the Poincaré algebra.
The main goal of this paper is to show that starting

from an IW contraction one can straightforwardly find an
extension of the contracted algebra. Although the pro-
posed procedure explicitly yields an infinite extension, it
can be easily truncated at any level. It works both for
central and non-central extensions, and we find a crite-
rion for an extension to be central.
Our first example is a IW contraction of SO(3) given

by the rescaling:

J1,2 = J̃1,2/σ
2 J3 = J̃3/σ

3 . (5)

For σ → 0 we find an abelian algebra (all the commuta-
tors vanish), but as we demonstrate in the paper the first
level extension dictated by this contraction reproduces
the central extension of the Weyl algebra. The higher
level extensions, however, are not anymore central.
The organization of the paper is as follows. In the next

section we present our method for constructing algebra
extensions from its İnönü-Wigner contraction. We then
describe various applications, like the non-central exten-
sion of the Poincaré algebra from the de Sitter algebra
contraction, the Galilean and the Carrollian contractions
of the Poincaré algebra and the exotic extension of the
Galilean and the NH algebra. We end up with a short
list of open questions.

2. THE METHOD

2.1. Lie algebra bundles

For our construction we will need the notion of bundles
of Lie algebras [11] (see also [12] for a pedagogical intro-
duction). A Lie algebra bundle (Lie bundle for short)
is a vector bundle for which each fiber has a smoothly
varying Lie algebra structure.2 More explicitly, the vec-
tor bundle (E , π,S) should be equipped with a morphism
θ : E ⊗ E → E , which induces a Lie algebra structure on
each fiber Eσ. Here E is the total space, π is the projec-
tion map and σ is a point on the base S. This definition
is sometimes called in the literature a weak Lie algebra

1 The Galilean and the NH algebra have an additional, the so
called exotic, central extension in 2+ 1 dimensions [7] as we will
describe in the paper.

2 We will deal exclusively with Lie algebras and not with Lie
groups. Let us only notice here that every bundle of Lie groups
defines a bundle of Lie algebras, and every bundle of algebras can
be integrated to a bundle of groups. The group bundle, however,
is not necessarily Hausdorf (see [12]).

bundle, in contrast to the strong one which requires also
local triviality of the Lie structure. It means that for any
σ ∈ S there exists a neighborhood Uσ of σ, a Lie alge-
bra g and a morphism φ : g × Uσ → π−1(Uσ) such that
φ|σ′ : g → π−1(σ′) is a Lie algebra isomorphism for each
σ′ ∈ Uσ. We will refer to φ as a Lie bundle trivialization.
If φ extends to the entire base, the Lie algebra bundle
will be called trivial.
Next, let us restrict our attention to weak Lie bundles,

where the base S is just an affine line3 R
1. In this case

any Lie algebra bundle will be trivial as a vector bundle,
but not necessarily so from the Lie algebra point of view.
The Lie algebra g at any fiber is the same as a vector
space, but its brackets are in general σ-dependent. If ai

are the generators of g and aσi = (ai, σ) denotes a point
on the Lie bundle, then the most general form of the
commutators is:

[
aσi , a

σ
j

]
= fk

ij(σ)a
σ
k , (6)

where fk
ij(σ) are some smooth functions.

Let us consider the following example. Assume that i
runs from 1 to 3 and:

fk
ij(σ) =

1

2
ǫkij · f(σ) . (7)

If f(σ) 6= 0 for any σ ∈ R
1, then the Lie bundle is trivial

(namely strong) with the trivialization φ given by:

φ(ai, σ) =
aσi
f(σ)

(8)

and ai’s identified with the SO(3) generators Ji’s. On
the other hand, the Lie bundle will be non-trivial4 (weak
but not strong) if f(σ0) = 0 for some σ0 ∈ R

1, since in
this case φ is ill-defined for σ = σ0. We still, however,
can claim that the Lie bundle is trivial everywhere except
at σ = σ0.
Similarly we can see the rescaling (2) as a trivialization

map for the Lie algebra bundle given by:

[J̃2, J̃3] = iJ̃1 , [J̃3, J̃1] = iJ̃2 and [J̃1, J̃2] = σ2J̃3 .
(9)

At σ = 0 the trivialization map is singular and the Lie
algebra structure reduces to (3), but at any other point
the algebra is isomorphic to SO(3).

2.2. The İnönü-Wigner bundle

We are now in a position to define the main ingredient
of our construction.
Definition. The İnönü-Wigner (IW) bundle of a Lie

algebra g is a (weak) Lie algebra bundle over an affine

3 Our discussion can be easily generalized to complex numbers.
4 If the base space is R1 local triviality implies also global triviality.
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line R
1, such that its restriction to R

1 \{0} is a trivial
bundle g × R

1\{0}.
From the above discussion the Lie bundle defined by

(9) and (7) are examples of IW bundles. The latter is
non-trivial if and only if f(0) = 0.
As yet another example consider the following IW Lie

algebra bundle5:

[Jσ
2 , J

σ
3 ] = iσ3Jσ

1 , [J
σ
3 , J

σ
1 ] = iσ3Jσ

2 , [J
σ
1 , J

σ
2 ] = iσJσ

3 .
(10)

Upon using the trivialization map:

φ(J1,2, σ) =
Jσ
1,2

σ2
and φ(J3, σ) =

Jσ
3

σ3
. (11)

we find that for σ 6= 0 the algebra is isomorphic to SO(3).
We see that the trivialization morphism φ is actually the
rescaling of the generators in (5). The fact that φ fails
to be an isomorphism at σ = 0 indicates that we find a
new algebra at this point.

2.3. The extensions

Our goal in this subsection is to explore the σ → 0
limit.
Let g̃ stand for a vector space of smooth sections of an

IW bundle of an algebra g. Again, as a vector space g is
the same all over the base (and so we drop here the σ-
index), but its commutators are not. The (infinite) vector
space of smooth sections g̃ is spanned by the vectors σnai,
where ai ∈ g and n > 0. Moreover, this vector space is
a Lie algebra by its own right, since we can multiply the
sections pointwise. Sections vanishing at σ = 0 is an
ideal of this algebra. This ideal is σg̃.
The classical IW algebra is the quotient:

g0 ≡ g̃/σg̃ . (12)

To arrive at this algebra it is enough to directly take the
σ → 0 limit. Notice that g0 and g are identical as vector
spaces, but not as Lie algebras. For (10) the algebra g0 is
an abelian algebra of J1, J2 and J3. Similarly, the scaling
(3) leads to the ISO(2) algebra.
Up to this point, the σ → 0 contraction is identical to

the original İnönü and Wigner prescription. We, how-
ever, don’t want to stop here. Notice that σn

g̃ is an ideal
of g̃ for any n > 1. The semi-classical IW algebra is
defined by:

g1 ≡ g̃/σ2
g̃ . (13)

5 The form of the commutators in (10) suggests an analogy with
loop algebras. The similarity is, however, illusive, since the pa-
rameter σ takes values in R1 and not in S1, and, even more
importantly, for the loop algebra construction, the Lie algebra
necessarily remains the same all over the loop, while in our case,
a new algebra emerges at σ = 0.

The algebra g1 has twice more generators than g0, but
it might happen that some of these new generators form
an ideal and can be quotiented out. For the IW bundle

defined by (10) let us introduce J
(0)
i ≡ Ji and J

(1)
i ≡ σJi.

We find that the semi-classical algebra g1 has only one
non-trivial commutator:

[
J
(0)
1 , J

(0)
2

]
= iJ

(1)
3 . (14)

As was announced in Introduction this is the central ex-
tension of the Weyl algebra. To be more precise, in order
to identify g1 with the Weyl algebra we have to quotient

the algebra by its abelian ideal
{
J
(0)
3 , J

(1)
1 , J

(1)
2

}
.

We can easily repeat this procedure for any n. Clearly,
the new algebra will have n times more generators than
the original algebra. For the IW bundle in (10) the n

level algebra gn ≡ g̃/σn+1
g̃ is (here J

(n)
i stands for σnJi

and J
(n)
i = 0 for negative n):

[
J
(n)
2 , J

(m)
3

]
= iJ

(n+m−3)
1 ,

[
J
(n)
3 , J

(m)
1

]
= iJ

(n+m−3)
2 ,

[
J
(n)
1 , J

(m)
2

]
= iJ

(n+m−1)
3 (15)

with all the other commutators vanishing. One may ar-
gue that the output algebra is not particularly interest-
ing. The situation changes drastically, however, for a
more sophisticated trivialization (rescaling) φ than the
one in (11).
Before concluding this section, let us discuss how our

semi-classical extension g1 may lead to a central exten-
sion of the g0 algebra. To this end it is worth recalling
the rigorous definition of a (not necessarily central) ex-
tension. An algebra a

′ is called an extension of a by
an ideal n, if a is isomorphic to the quotient a

′/n. This
definition can be shortly summarized with the following
short exact sequence:

0 → n → a
′ → a → 0 . (16)

If n is also inside the center of a′, then the extension is
called central.
Consider the quotient n ≡ σg̃/σ2

g̃ = σg1. Obviously,
n is an ideal of g1. Moreover, n is an abelian ideal and
is isomorphic6 to (g0)abelian. Our first level extension is
actually given by the following exact sequence:

0 → n → g1
π−→ g0 → 0 . (17)

Since n is by construction abelian, our g1 extension is
always abelian. The ideal n is, however, not necessarily
inside the center of g1. In fact, n consists of elements
of the form σai and becomes central if and only if g0 is

6 A Lie algebra gabelian is isomorphic to the algebra g as a vector
space but all its commutators are vanishing.
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abelian. This was exactly the case for the IW bundle
defined by (5), which led to the Weyl algebra (14).
It seems, therefore, that our construction produces

central extensions only upon very restricting conditions.
In particular, it rules out the Bargmann (non-zero mass)
extension of the Galilean algebra. Luckily, we can slightly
modify the extension described by (17).
Assume that m0 is an ideal of g0. It automatically im-

plies that π−1 (m0) is an ideal of g1, where π is the projec-
tion map from (17). Furthermore, m1 ≡ σπ−1 (m0) is an
abelian ideal of g1 and the quotient n/m1 = σg1/m1 is iso-
morphic to (g0/m0)abelian. We get the following abelian
extension of g0:

0 → n/m1 → g1/m1
π−→ g0 → 0 . (18)

The above extension is central if and only if g0/m0 is
abelian. Indeed, the latter requirement is equivalent to
the statement that [g0, g0] ⊂ m0. But that means that
[g1, g1] ⊂ π−1 (m0) and so [σg1, g1] ⊂ m1. The latter
immediately implies that n/m1 is central.
This way the number of the new generators in the ex-

tended algebra will be smaller than total number of gen-
erators in g. We will see in the next section that (18)
naturally leads to the central (mass) extension of the
Galilean algebra.

3. EXAMPLES

We have already seen how the central extension of the
Weyl algebra emerges from the SO(3) contraction. In
the rest of the paper we will see other applications of the
proposed extension method.

3.1. The non-central extensions of the Poincaré

algebra from the de Sitter algebra contraction

In d space-time dimensions the commutators of the
de Sitter and the anti de Sitter algebras (SO(d, 1) and
SO(d− 1, 2)) are:

[Mµν ,Mλρ] = ηµλMνρ + ηνρMµλ − (λ ↔ ρ) ,

[Mλρ, Pµ] = ηµλPρ + ηµρPλ ,

[Pµ, Pν ] = εMµν . (19)

Here η = diag (−1, 1, . . . , 1) and ε = 1,−1 for the de
Sitter and the anti de Sitter algebra respectively.
We are interested in the zero cosmological constant

limit, Λ → 0, of the (anti) de Sitter algebra. As such the
algebra (19) is Λ-independent, so we have to properly
rescale the operators introducing Λ into the commuta-
tors. The new Λ-dependent algebra will be isomorphic
to the original one for any Λ except for Λ = 0, where it
should reduce to the Poincaré algebra. The right rescal-
ing of the generators is, in fact, well known in the liter-
ature. The metric on the (anti) de Sitter space can be

written as:

ds2(a)dS = R2 · ηµνdy
µdyν

1 + εy2/4
, (20)

where y2 ≡ ηµνy
µyν and R = Λ−1/2 is the (anti) de

Sitter radius. In terms of these coordinates the isometry
generators are:

Mµν = ηνλy
λ ∂

∂yµ
− ηµλy

λ ∂

∂yν
,

Pµ =

(
ε− y2

4

)
∂

∂yµ
+

1

2
ηµλy

λyρ
∂

∂yρ
. (21)

In the limit (R, yµ) → (∞, 0) with xµ = R ·yµ kept fixed,
the metric (20) reduces to the Minkowski metric, while
the leading scaling behavior of the generators (32) is:

Mµν → Mµν , Pµ → R · Pµ . (22)

It may be also interesting to see the limit in terms of the(
ξµ, ξd

)
coordinates used for the (anti) de Sitter space

embedding in R
d,1:

ξµξµ + ε
(
ξd
)2

= εR2 . (23)

These coordinates are related to yµ’s by:

ξµ

R
=

yµ

1 + εy2/4
,

ξd

R
=

1− εy2/4

1 + εy2/4
. (24)

In the Poincaré limit this reduces to
(
ξµ, ξd

)
= (xµ, R)

and so, analogously to the SO(3) example in the first
paragraph of Introduction, the limit corresponds to the
zooming around the ξd = R point of the (anti) de Sitter
space.
With this rescaling we find the following IW bundle:

[
P σ
µ , P

σ
ν

]
= σ · εMσ

µν , (25)

where the affine parameter σ is just the cosmological con-
stant σ = R−2 = Λ and we left out the commutators from
the first two lines in (19) since they remain completely
σ-independent.
As expected, the “classical” g0 algebra is precisely the

Poincaré algebra:

[
M (0)

µν ,M
(0)

λρ

]
= ηµλM

(0)

νρ + permutations ,
[
M (0)

λρ , P
(0)

µ

]
= ηµλP

(0)

ρ + ηµρP
(0)

λ ,
[
P (0)

µ , P (0)

ν

]
= 0 . (26)

The next level “semi-classical” algebra g1 includes also
the operators M (1)

µν = σMµν and P (1)
µ = σPµ. Notice,

however, that the translations P (0)
µ form an ideal of the

Poincaré algebra g0. We therefore can use the modi-
fied exact sequence (18) with m0 being the subalgebra of
translations P (0)

µ , so that the extension will include only
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theM (1)
µν generators and not P (1)

µ ’s. Defining Zµν = εM (1)
µν

we arrive at the Maxwell algebra:

[
M (0)

µν , Zλρ

]
= ηµλZνρ + ηνρZµλ − ηµρZνλ − ηνλZµρ ,[

P (0)

µ , P (0)

ν

]
= Zµν , (27)

with the first two commutators in (26) remaining intact.
The extension is non-central since Zµν does not commute
with the Lorentz generators. It becomes a scalar only for
d = 2. Following the recipe from the previous section we
can extend the algebra to higher levels. The commuta-
tors between Zµν ’s become non-trivial already at the g2

algebra:

[Zµν , Zλρ] = ηµλYνρ + ηνρYµλ − ηµρYνλ − ηνλYµρ , (28)

where Yµν ≡ M (2)
µν = σ2Mµν and:

[
P (0)

µ , P (1)

ν

]
= Yµν . (29)

For similar extensions of the Maxwell algebra recently
studied in the literature see [13], [14], [15] and [16].
Before ending this section let us remark that the de

Sitter algebra (19) permits an additional, infinite cosmo-
logical constant limit [17]. For fixed xµ = R ·yµ but with
(R, yµ) → (0,∞) the momenta scale like Pµ → Pµ/R.
The contracted algebra is equivalent to the Poincaré but
its physical meaning is different, since the P (0)

µ ’s now are
special conformal transformations and not translations.

3.2. The Galilean contraction of the Poincaré

algebra

Our next example is the non-relativistic contraction of
the Poincaré algebra.
In d space-time dimensions the Poincaré algebra con-

sists of7 (d − 1)(d − 2)/2 space-space rotations J, d − 1
boosts B, d− 1 space translations P and the time trans-
lation H . In all of the remaining examples but the last
one we will explicitly consider the d = 4 case, with a
straightforward generalization for other dimensions. The
commutators are8:

[J, H ] = 0, [J,J] = J, [J,B] = B, [J,P] = P (30)

and:

[H,B] = P, [B,B] = −J, [P,B] = H , (31)

with all other commutators vanishing. The first set of
the commutators (30) simply implies that B, P and J

transform as vectors under space rotations, while H is a

7 We will use bold font to indicate 3-dimensional space vectors.
8 Here [A,B] = C is a shorthand notation for [Ai, Bj ] = ǫijkCk

and [A,B] = C stands for [Ai, Bj ] = δijCk.

scalar. The differential representation of the operators in
terms of the Minkowskian coordinates is:

Ji = −ǫ k
ij xj ∂

∂xk
, Bi = δijx

j ∂

∂x0
+ x0 ∂

∂xi
,

Pi =
∂

∂xi
, H =

∂

∂x0
. (32)

The non-relativistic limit corresponds to c, x0 → ∞ with
t = x0/c held fixed. The Poincaré algebra generators
scale in this limit as:

J → J , B → cB , P → P , H → H

c
. (33)

This rescaling leads to the following IW bundle:

[H,B] = P, [B,B] = −σJ, [P,B] = σH , (34)

where σ = c−2 and for simplicity we dropped the σ-
indices. We also left out the σ-independent part of the
algebra (30). Putting σ = 0 in (34) we of course find the
Galilean algebra g0:

[H (0),B(0)] = P
(0), [B(0),B(0)] = 0, [P(0),B(0)] = 0

(35)
together with the regular transformations of H (0), B(0)

and P
(0) under the J

(0) rotations.
As we have already emphasized before the g1 extension

has by construction twice more operators than g0. The
new operators are J

(1), B(1), P(1) and H (1). In order to
get the central non-zero mass extension of (35) we have
to use (18), where the ideal m0 is the subalgebra of all
Galilean rotations, boosts and space translations, namely
J

(0), B(0) and P
(0). This allows us to mode out J(1), B(1)

and P
(1) from the extended algebra. Denoting M = H (1)

we find that g1/m1 is exactly the Bargmann algebra:

[H (0),B(0)] = P
(0), [B(0),B(0)] = 0, [P(0),B(0)] = M .

(36)
It is noteworthy that one can formally derive the
Bargmann algebra by pluggingH = M/σ+H (0) into (34)
and matching the σ-expansion from the both sides. This
approach is, however, not rigorously defined and unlike
our method cannot be used for the next order extension.

3.3. The Carrollian contraction of the Poincaré

algebra

The Carrollian contraction of the Poincaré algebra (30,
31) is given by:

J → J , B → B

c
, P → P , H → H

c
. (37)

It naturally follows from the c → 0 limit of (32). The IW
bundle is:

[H,B] = σP, [B,B] = −σJ, [P,B] = H , (38)
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where this time σ = c2. For σ = 0 we find the Carrollian
algebra:

[H (0),B(0)] = 0, [B(0),B(0)] = 0, [P(0),B(0)] = H (0) .
(39)

By analogy with the Galilean case we can mode out some
operators from the next level g1 extension. Notice that
, J

(0), B
(0) and H (0) form an ideal m0 and so we can

exclude J
(1), B(1) and H (1) from the g1 extension. With

Z = P
(1) the g1/m1 algebra takes the following form:

[H (0),B(0)] = Z, [B(0),B(0)] = 0, [P(0),B(0)] = H (0) .
(40)

This extension is central only for d = 2 when Z becomes
a scalar.

3.4. The exotic Newton-Hooke algebra

In our discussion of the Galilean algebra extension we
excluded the operator J(1) from the “semi-classical” alge-
bra. We did so because this operator is not central in the
extended 4d Galilean algebra, for it does not commute
with the J

(0) rotations. The situation changes for d = 3,
since in this case J is a scalar. The d = 3 Galilean algebra
with the J central extension is known in the literature as
the exotic Galilean algebra.9

Instead of focusing our attention on this algebra let us
make the discussion a bit more general by starting with
the Newton-Hooke (NH) contraction. The NH algebra is
the non-relativistic limit of the de Sitter algebra. To be
more precisely, one sends both c and R to infinity with
the parameter ω = c/R held fixed.
For d = 3 the de Sitter algebra is:

[J,H ] = 0 , [J,Bi] = ǫijBj , [J, Pi] = ǫijPj (41)

and:

[H,Bi] = Pi , [Bi, Bj ] = −ǫijJ , [Pi, Bj ] = δijH ,

[Pi, H ] = Bi , [Pi, Pj ] = ǫijJ , (42)

where (H,Pi) = Pµ, Bi = M0i and J = M12. Combining
the rescalings (22) and (33):

J → J , Bi → cBi , Pi →
Pi

R
, H → H

cR
(43)

we obtain a new IW bundle with the σ = c−2 affine
parameter:

[H,Bi] = Pi , [Bi, Bj ] = −σ · ǫijJ , [Pi, Bj ] = σ · δijH ,

[Pi, H ] = ω2Bi , [Pi, Pj ] = σ · ǫijω2J , (44)

where we omitted again all the commutators with J , be-
cause they are σ-independent.
Obviously the boosts B(0)

i and the momenta P (0)

i will
form an ideal of g0. Using this ideal for (18) we arrive at

the exotic 3d Newton-Hooke algebra:

[
H (0), B(0)

i

]
= Pi ,

[
B(0)

i , B(0)

j

]
= −ǫijZ̃ ,

[
P (0)

i , B(0)

j

]
= δijM ,

[
P (0)

i , H (0)
]
= ω2B(0)

i ,
[
P (0)

i , P (0)

j

]
= ǫijω

2Z̃ , (45)

where Z̃ ≡ J (1) andM ≡ H (1). For ω = 0 (45) transforms
into the exotic Galilean algebra.

4. OPEN QUESTIONS

In our paper we have shown that given an İnönü-
Wigner contraction of one algebra to another, one can
easily find an infinite extension of the latter. The method
works for both central and non-central extensions and the
extension may be truncated at any level.
There are plenty of open problems to be explored. Let

us list some of them:

• It is will be interesting to establish a connection
between our extension approach and the expansion
method presented in [18]. This method is some-
what similar in spirit to ours. It is based on the
Maurer-Cartan one-forms expansion in powers of a
real parameter which is related to the rescaling of
the Lie group coordinates. Our results should also
be compared to those of [15].

• It is not clear what is the physical meaning of the
new (in)finite algebras. In some cases the answer is
already known. For example, the Maxwell algebra
(27) corresponds to a charged relativistic particle
moving in a constant electromagnetic field. The
meaning of the second level extension (28,29) is
yet to be understood.

• Finding irreducible representations of the infinitely
extended algebras and their truncated versions
might be a challenging problem.
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[4] H. Bacry, J. Lévy-Leblond, “Possible kinematics”, J.

Math. Phys. 9 (1968) 1605-1614.
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