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Abstract

After a brief introduction to Probability Bracket Notation (PBN) for discrete 
random variables in time-independent probability spaces, we apply both PBN and 
Dirac notation to investigate probabilistic modeling for information retrieval (IR).
We derive the expressions of relevance of document to query (RDQ) for various
probabilistic models, induced by Term Vector Space (TVS) and by Concept Fock 
Space (CFS). The inference network model (INM) formula is symmetric and can be 
used to evaluate relevance of document to document (RDD); the CFS-induced 
models contain ingredients of all three classical IR models. The relevance formulas
are tested and compared on different scenarios against a famous textbook example.

1. Introduction: From Hilbert Space to Probability Space

Dirac notation is a very powerful tool to manipulate vectors in Hilbert spaces [1]. It has 
been widely used in Quantum Mechanics (QM) and Quantum Field Theories. 

Suppose we have a time-independent discrete observable Ĥ (a Hermitian operator). In 
Dirac notation, its complete set of eigenvectors has the following properties:

ˆ ˆ ˆ| | , | | , | , | |j j j j j j i j ij i i
i

H H I                       (1.1)

The expectation value of Ĥ in a given normalized system state |  can be written as: 
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ˆ ˆ ˆ ˆ| | | | | | |

| | | ( )

i i
i

i i i i i i i
i i i

H H H I H

P

       

         

         

       



  
(1.2)

Hence, the probability of observable Ĥ having exact value i in state |  is given by:

2
( ) |i iP        (1.3)

The unit operator in Eq. (1.1) can be “derived” by using the normalization property:

2
1 ( ) | | | | | | |

1 |

i i i i i i
i i i i

P           

 

 
            

 
  

   
  

(1.4a)

(1.4b)

Compare (1.4a) with (1.4b), we “derive” the unit operator in Hilbert space:

ˆ| |i i
i

I     
(1.4c)

Now let us go to probability space. All possible outcomes of the random variable H form
a sample space Ω, and by definition of conditional probability, we can write:

2
( ) ( | ) | , ( | ) 1, ( | ) 1i i i iP P P P                (1.5)

We call it the induced probability space from Hilbert space (1.1). Moreover:

(1.5)
1 ( ) ( | ) ( | ) ( | ) ( | | ) ( | | )i i i i i i

i i i i

P P P P P P      
         

 
    (1.6)

Compare (1.6) with (1.5), we “derive” the unitary operator in probability space:

| ) ( |i i
i

P I     (1.7)

Let us also propose that:

| ) | )j j jH      (1.8)

Then the expectation value of variable H in a given probability space can be written as:
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(1.7)

(1.8) (1.5) (1.2)

[ ] ( | | ) ( | | ) ( | | ) ( | )

ˆ( | ) ( | ) ( ) | |

i i
i

i i i i i
i i

E H P H P H I P H P

P P P H H

 

      

        

       



 
(1.9)

We see that Dirac notation can be naturally extended to probability space, which we call 
the Probability Bracket Notation (PBN) [3]. It is a new set of symbols for probability 
modeling. 

In next section, we will introduce it for time-independent discrete random variables. Then 
we will apply both PBN and Dirac notation to discuss various probabilistic IR models, 
induced by Term Vector Space (TVS) and Concept Fock Space (CFS). The symmetric 
INM model is used to derive RDQ and RDD formulas, which also contain the ingredients 
of all three classical IR models. We will test and compare our models by using a famous 
textbook example on a mixture of scenarios.

2. PBN for Discrete Random Variables and Bayesian Inference

Discrete random variable: We define a probability space (Ω, X, P) of a discrete random 
variable (observable) X as follows: the set of all elementary events ω, associated with a 
discrete random variable X, is the sample space Ω, and

For , ( ) , : ( ) ( ) 0, ( ) 1i i i i i i ii
X x P P m P            (2.1)

Proposition 1 (Probability event-bra and evidence-ket):  Let A  and B   , 

1. The symbol ( |P A represents a probability event bra, or P-bra;
2. The symbol |B) represents a probability evidence ket, or P-ket.

Proposition 2 (Probability Event-Evidence Bracket):  The conditional probability of 
event A given evidence B in the sample space Ω is also called P-bracket, and it can be 
split into a P-bra and a P-ket, similar to a Dirac bracket:

( ) | | | |
( | ) ,  if 0 1

( ) | | | |

P A B A B B
P A B

P B B

 
   


(2.2a)

-braket ( | ) -bra : ( |, P-ket : | )P P A B P P A B (2.2b)
( | ) ( | | ), where  is a unit operatorP A B P A I B I (2.2c)

By definition, the P-bracket has the following properties for discrete sample space Ω: 

( | ) 1 if P A B A B     (2.3)
( | ) 0 if ,  andP A B A B A B       (2.4)
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We can see that P-bracket is not the inner product of two vectors. For any event E   , the 
absolute probability P(E) now can be written as:

( ) ( | )P E P E  (2.5)

Here |Ω) is called the system P-ket. The P-bracket defined in (2.2a) now becomes:

( ) ( | )
( | )

( ) ( | )

P A B P A B
P A B

P B P B

  
 


(2.6)

Properties in Eq. (2.3-4) can be easily verified by using this definition.

The Bayes formula (see [2], §2.1) now can be expressed as:

( | ) ( ) ( | ) ( | )
( | )

( ) ( | )

P B A P A P B A P A
P A B

P B P B


 


(2.7)

The set of all elementary events in Ω forms a complete mutually disjoint basis:

, , ( ) 1
i

i i j ij i ii
P


     


     (2.8)

Proposition 3 (Discrete P-Basis and Unit Operator): Using Eq. (2.1-4), Eq. (1.8) and 
(2.8), we have following properties for basis elements in (Ω, X, P):

| ) | ), ( | ( | , ( | ) 1, ( | ) ( )j j j j j j j i iX x P X P x P P P            (2.9)

The complete mutually-disjoint events in (2.8) form a probability sample basis (or p-
basis) and a unit (or identity) operator:

1
( | ) , | ) ( | | ) ( | .i j ij i ii

P P P I


      
 

    (2.10)

The system P-ket, denoted by |Ω), now can be right-expanded as:

| ) | ) | ) ( | ) ( ) | )i i i ii i
I P P          (2.11)

While for the system P-bra, denoted by ( |P  , has its left-expansion as:

(2.9)

( | ( | ( | ) ( | ( |i i ii i
P P I P P P        (2.12)

The two expansions are quite different, and †( | [| )]   . But their P-bracket is consistent 
with the requirement of normalization:
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, 1 , 1 1
1 ( ) ( | ) ( | ( ) | ) ( ) ( )i j j j ij ii j i j i

P P P P P P     
  

          (2.13)

Proposition 4 (Expectation Value): The expected value of the observable X in Ω now can 
be expressed as:

( ) ( | | ) ( | | ) ( | ) ( )
x x

X X E X P X P X x P x x P x
 

            (2.14)

If F(X) is a continuous function of observable X, then it is easy to show that:

( ) ( ( )) ( | ( ) | ) ( ) ( )
x

F X E F X P F X F x P x


       (2.15)

Joint random variable: Let 1 2, , nN N N be random variables associated with a 

probability space. Suppose that the sample space (i.e., the set of possible outcomes) of Ni

is the set i . Then the joint random variable (or random vector) is denoted as N


= (N1,

N2, . . . , Nn). The sample space of N


is the Cartesian product of the i ’s:

1 2 n     (2.16)

Proposition 5 (Factor Kets): The sample space of joint variable N


now can be written as:





n

i
i

1

)|)| (2.17)

The factor P-ket | )i has the following properties:

( | ) 1, | ) | ) | ) | ), ( | ( | ( | ( |i i i j j i i j j iP P P P P               (2.18)

As an example, in Fock space, we have the following basis from the occupation numbers

, ' , '| ) | ) , ( | ') | ) ( |
i ii i n n n n ni

N n n n P n n n P n I      

     
(2.19)

The expectation value of an occupation number now is given by:

( | | ) ( | | ) ( | )i i i i i ik
N P N P N k P k          (2.20)

If elements in set 1 2{ , ,... )kX X X belong to different factor spaces, then they are mutually 

independent.  Assuming H  , we have [2], 

1 2
1

( | ) ( | )
k

k k
i

P X X X H P X H


    (2.21)
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Bayesian Inference and Unitary Operators: Now we want to use a simple example of 
Bayesian inference [11] to explain the usability of unit operators in probability modeling.

Suppose there are two full bowls of cookies. Bowl #1 (H1) has 10 chocolate chip (F)

and 30 plain cookies (E), while bowl #2 (H2) has 20 of each. Our friend Fred picks a 

bowl at random, and then picks a cookie at random. How probable is it that Fred 

picked a plain cookie out of bowl #1, or P(H1| E )? The bowls are identical, thus P(H1) 

= P(H2) = 0.5. Also we know that:  

P(E | H1) = 30 / 40 = 0.75 and P(E | H2) = 20 / 40 = 0.5. 

One can start with Bayes' formula:

1 1
1

( | ) ( )
( | )

( )

P E H P H
P H E

P E
            (2.22)

To evaluate ( ) ( | )P E P E  , we can use following unit operator:

1 2 1 2 1 1 2 2, , | ) ( | | ) ( |H H H H I H P H H P H       

1 1 2 2( | ) ( | | ) ( | ) ( | ) ( | ) ( | )P E P E I P E H P H P E H P H       

1 1 2 2( ) ( | ) ( ) ( | ) ( ) 0.75 0.5 0.5 0.5 0.625P E P E H P H P E H P H       

1 1
1

( | ) ( ) 0.75 0.5
( | ) 0.6

( ) 0.625

P E H P H
P H E

P E


                (2.23)

One can also directly evaluate 1( | )P H E as follows:

1 1 1 2 2 2 1 2 1 2, , , ,i jH E F H E F E F E E F F         

1 1 2 2 1 1 2 2| ) ( | | ) ( | | ) ( | | ) ( |I E P E E P E F P F F P F    

1 1 1 1 1 2 2 1( | ) ( | ) ( | ) ( | ) ( | ) ( | )P H E P H E P E E P H E P E E P E E   

1
1

| | 30
( | ) 0.6

| | 30 20

E
P H E

E
   


            (2.24)

It is identical to what we get from Eq. (2.23).

3. Probabilistic Models Induced by Term Vector Space

In reference [4], we used Dirac notation to describe the three classical IR models: vector 
space model, Boolean model and probabilistic model in their classical ways [5, 6]. Then 
we introduced Fock space as a unified way to represent the above models. But, as readers
may have noticed, the probabilistic model was not well integrated in this framework. The
main reason was that we could not directly apply Dirac notation to probability spaces.  
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This actually was one major motivation of our proposal of PBN [3]. Now we will show 
how PBN would help us to simplify and unify expressions of probabilistic IR models.

Term Vector Space (TVS): First, let us consider the t-dimensional vector space spanned 
by indexed terms, a set 1 2{ , , , }tK k k k  . The terms are assumed to be mutually disjoint, 

so the Hilbert space has the following basis [4]:

1
| , | |

t

i j i j i ii
k k k k I


                           (3.1)

In this space, query q and document d (μ=1, 2…N) can be naturally expanded as:

, .
1 1 1 1

| | | | | ; | | | | .
t t t t

i i q i i i i i i
i i i i

q I q k k q w k d k k d w k  
   

                        (3.2)

Here, ,q iw and ,iw are called term weights of a query or a document with respect to the 

ith term [5, 6]. As vectors in Hilbert space, d and q are normalized as in Eq. (1.4):

2 2
, ,

1 1

| 1; | 1
t t

i q i
i i

d d d d w q q q q w    
 

            
   

             (3.3)

Mapping Eq. (3.1) to the induced sample space V , the set of all elements of K, we have 

the following P-basis, as a special case of Eq. (2.10),

1

( | ) , | ) ( |
t

i j i j i i
i

P k k k P k I


                      (3.4)

Because each document or query represents a normalized state vector in the Hilbert 
space, from Eq. (1.3), we have the following induced probability distribution functions:

2 2 2 2
, ,( | ) | , ( | ) |i i i i i q iP k d k d w P k q k q w                     (3.5)

Term weights are functions of term frequencies [5, 6]. We will introduce some other 
weight formulas (WF) later in this section, but the most natural way is to assume 
documents and query as normalized vectors in a t-dimensional Euclidian space:

WF-1: , , ,
, ,

2
,1

,i i q i
i q it

jj

tf tf tf
w w

W Wtf

 


 

  


            (3.6)

Now we are ready to derive formulas for TVS-induced probabilistic models.
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Inference Network Model (INM, §2.8.2 of [5]): In this model, the relevance of a 
document d with respect to a query q (RDQ) is given by ( )P q d . Based on Eq. (2.6),

we have two ways to evaluate RDQ:

( ) ( | ) ( )P q d P q d P d    (3.7a)

( ) ( | ) ( )P d q P d q P q   (3.7b)

They should produce the same symmetric result. Indeed, from (3.7a):

1(3.7 ) (3.4)
( ) ( | ) ( ) ( | | ) ( ) ( ) ( | ) ( | )

t

i iia
P q d P q d P d P q I d P d P d P q k P k d      

    

From TVS, we have 2
.( | )i iP k d w  and 2

,( | )i q iP k q w .  But ( | )iP q k is not given by

TVS. So we need Bayes formula (2.7), or Bayesian Inference to get it:

(2.7)

( | ) ( )
( | )

( )
i

i
i

P k q P q
P q k

P k


Therefore:

INM RDQ:
1

1
( ) ( ) ( ) ( ) ( | ) ( | )

( )

t

i ii
i

P q d P d q P q P d P k q P k d
P k   

                (3.8)

So far, Eq. (3.8) is an exact expression, derived from first principals. The conditional 
probabilities ( | )iP k d and ( | )iP k q are given by the induced formula, Eq. (3.5). But there 

are no induced expressions for absolute probabilities ( )P d , ( )P q and ( )iP k (APDQK). 

They can be evaluated in various ways. Here are two of them:

APDQK- I: According to the tf-idf ranking strategies (pp. 54-55, [5]):

, ,1 1

1 1 1 1
( ) ( | ) , ( ) ( | )

| | | |V Vt t

i q ii i

P d P d P q P q
d qtf tf

 
  

       
 

  (3.9a)

Furthermore, we may presuppose that the probability to find a term ik is proportional 

to iN , the number of documents containing it. To avoid possible singularity, we assume:

1
( ) ( | )

1
i

i i V

N
P k P k

N


  


               (3.9b)

APDQK- II: By using Boolean Term Occupancy Number Representation (BTON) in 
Boolean Term Vector Space (BT-Space) ,in and ,q in (see §1.3 of [4]):
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, , ,1

1,   if   1,   if   
, ,

0,   otherwise 0,   otherwise

Ni i
i q i i i

k d k q
n n N n
 

  
   
 

                  (3.10a)

As concepts, d and q can be expressed as subsets of BT-Space V by using TB-ONR:

1 , 1 , 1( ), ( ), ( )t t t
i i i i q i i V i id n k q n k k          

Then, by definition, we can obtain following expressions:

, ,1 1
| | | || | 1

( ) , ( ) , ( )
| | | | | |

t t

q i ii i i
i

V V V

n nd kq
P q P d P k

t t t



      

  
 

               (3.10b)

Now we have the RDQ expression for TVS-INM based on term frequencies:

2 2
, ,

1
INM:  ( ) ( ) ( )

( )

t q i i

i
i

w w
P q d C P q P d

P k


  


    (3.11)

In Belief Network Model (BNM, §2.8.3 of [5] and [8]), the ranking of document d with 

respect to query q is given by ( | )P d q . We can easily derive its expression from (3.11):

2 2
, ,

1(3.11)

( )
BNM:  ( | ) ( )

( ) ( )

t q i i

i
i

w wP d q
P d q C P d

P q P k


  


           (3.12)

Because only a q-dependent factor is removed, Eq. (3.12) will produce the same results 
as Eq. (3.11) when calculating RDQ. Therefore, we will not use it in our test.

According to Ponte and Croft (P&C, [9]), conditional probability ( | )P q d is adopted as 

the rank of document d with respect to query q. From (3.11), its expression reads:

2 2
, ,

1(3.11)

( )
P&C:  ( | ) ( )

( ) ( )

t q i i

i
i

w wP q d
P q d C P q

P d P k








                  (3.13)

Furthermore, because Eq. (3.11) is symmetric, it can be used to calculate RDD:

INM: 
2 2

, ,

1
( ) ( ) ( )

( )

t i i

i
i

w w
P d d C P d P d

P k
 

    


    (3.14)
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Reduction to vector space model (VSM): If we forget the relation in Eq. (3.5) and 
assume that ( | )P q d and ( | )P d q are evaluated as inner vector products |q d 

and |d q  , then they both lead to the same result as in classical VSM (§2.5.3 of [5]):

VSM-RDQ: , ,1
( | ) | ( | )

t

i q ii
P d q d q P q d w w   

               (3.15)

VSM-RDD: , ,1
( | ) |

t

i ii
P d d d d w w     

            (3.16)

More on weight formulas (FS): In classical vector models, in addition to Eq. (3.6), term
weights may be calculated in other ways [5, 6]. They may use following definitions:

Inverse document frequency (IDF): logi
i

N
idf

N
        (3.17)

, ,
, ,

, ,

Normalized frequency: ;
max max

i q i
i q i

k k k q k

tf tf
f f

tf tf





         (3.18)

Ref [6] (pp.14-18) provides us with two more ways to calculate weights. The simple one 
(after normalization) is:

WF-2: 

   
, ,

, ,2 2

, ,1 1

,i i q i i
i q i

t t

i i i ii i

tf idf tf idf
w w

tf idf tf idf




  

 
 

  
           (3.19)

A better one is from pp. 17-18 of [6], by replacing log( ) 1tf  with log( 1)tf  :

WF-3: , ,
, ,2 2

, ,1 1

log(1 ) log(1 )
,

log(1 ) log(1 )

i i q i
i q i

t t

i i i ii i

tf idf tf
w w

tf idf tf idf




  

  
 

          
     (3.20)

On the other hand, the best known term-weighing schemes use the following modified 
formulas (see §2.5.3 of [5]):

WF-4: 
 
 

,,
, , 22

, ,1 1

1
,

( ) (1 )

q ii
i q it t

i i q i ii i

f idff idf
w w

f idf f idf




 

 
 

   
                  (3.21)

We will use all four weight formulas, Eq. (3.6) and Eq. (3.19-21), to test the relevance 
expressions of our models. The weights for the GF-example (see App A) are listed in 
App B. Our test results (see §5) show that weights from Eq. (3.19) seem to produce the 
best ranking, while results using weights from (3.21) seem not to be consistent with 
others.
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4. Models Induced by Concept Fock Space and Unified IR Modeling

Based on our discussion in [4], if we have t indexed terms 1 2{ , , , }tK k k k  , then we 

have t2 elementary disjoint concepts, the same number of outcomes as we toss coin t-
times. These elementary disjoint concepts form the sample space Ω of the probabilistic
concept space (PCS) [7]. The t2 -dimensional basis for PCS has following properties:

, ' , '1
ˆ( | ') | ) ( |

i i

t

n n n n ni
P n n n P n I 


    

   
(4.1a)

But, if we use this basis, then the flowing conditional probability almost always vanishes:

, , ,( | ) ( | ) ( | ) 0, if :
qn n q i in n

P q d P q n P n d i n n
          

    
(4.1b)

That means, it vanishes unless the query and the document contain the same terms.

Concept Fock space (CFS): Now let us look at the basis in the Occupation Number 
Representation ([1], page 566) as a fermions Fock space (or Boolean Fock space [4]):

1 2 11
| | , , | , | |1,0,...,0 , ..., | | 0,0,...,1

t

t i i ti
n n n n n n n n


             

 (4.2a)

ˆ | | , {0,1}, 1i i in n n n n i t     
 

                                                              (4.2b)

Here in is the Boolean Term Occupancy Number (BTON) as defined in Eq. (3.9c). A 

vector in Boolean Fock space represent a concept, therefore, it is also called Concept 
Fock Space (CFS) [4]. The t-dimensional basis for CFS-induced sample space F has 

following properties:

, 1
ˆ| | |

t

i j i j i ii
n n n n I


       

(4.3)

In CFS, the documents and the query in the GF-example (see App A) are represented as:

1 1 1,1
| | | | 1, 0,1, 0,1,1,1,1,1, 0, 0

t

i ii
d d n n


      

 
         (4.4a)

2 2 2 ,1
| | | | 1,1, 0,1, 0, 0,1,1, 0,1,1

t

i ii
d d n n


      

 
         (4.4b)

3 3 3,1
| | | | 1,1, 0, 0, 0,1,1,1,1, 0,1

t

i ii
d d n n


      

 
         (4.4c)

,1
| | | | 0, 0, 0, 0, 0,1, 0, 0, 0,1,1

t

q i ii
q q n n


       

    (4.4d)

In some models (Hiemstra [8]), it is assumed that the terms existing in documents but not 
in the query have no effect on RDQ; therefore, mapping Eq. (4.3) to single-term 
concepts, we have the following basis:
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,| | ) | 0,.., ,...,0) : ( | ) , | ) ( |i i i i j i j i ii
n k k P k k k P k I    

    
(4.5a)

Using map (4.5a), we have the following conditional probabilities:

( | ) ( | ), ( | ) ( | )i i i iP k d P k d P k q P k q  
 

(4.6a)

In other models [7, 9], the terms not in the query are also taken into account, and the map 
in (4.5a) is modified to:

,| | ) | 0,.., ,...,0) | ) : ( | ) , | ) ( |i i i j i j i j i iij i
n k k k P k k k P k I


    

    
(4.5b)

Using map (4.5b), we have the following conditional probabilities:

( | ) ( | ) ( | ), ( | ) ( | ) ( | )i i j i i jj i j i
P k d P k d P k d P k q P k q P k q   

  
 

(4.6b)

Here we have used negation of a term:

i ik k                                                              (4.7)

Now we derive formulas for some probabilistic models induced by CFS.

Inference Network Model (INM, §2.8.2 of [5]): The ranking of a document d with 

respect to a query q is given by:

1(2.6) (4.5)
( ) ( | ) ( ) ( | | ) ( ) ( | ) ( | ) ( )

t

i ii
P q d P q d P d P q I d P d P q k P k d P d      

    
 

(4.8)

Now let us apply Eq. (4.6b) into Eq. (4.8), we get: 

1
( ) ( | ) ( | ) ( | ) ( )

t

i i ji
j i

P q d P q k P k d P k d P d   


 
   

 
 


  (4.9)

This looks like the Eq. (2.7) of [5]. But, in our formula, t- dimensional basis from (4.2) is 
used, while in [5], the t2 -dimensional basis from Eq. (4.1) is used first, and then it is 
changed to basis similar to (4.5b) for tf-idf ranking strategies (pp. 54-55, [5]).

As in §3, we are interested in a symmetric formula. From Bayes’ formula (2.7), we have:

( | )
( | ) ( )

( )
i

i

i

P k q
P q k P q

P k






  

(4.10)
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Applying it to Eq. (4.8), we obtain:

1

1
( ) ( ) ( ) ( | ) ( | )

( )

t

i ii
i

P q d P q P d P k q P k q
P k

  
  

 
 (4.11)

If we use expansion (4.6b) to Eq. (4.11), we have:

1
1

( ) ( ) ( )

1
( | ) ( | ) ( | ) ( | )

( )
i

t

i j i ji
j i n j ii

P q d P q P d

P k q P k q P k d P k d
P k

 

 
  

  

  
     

   
(4.12)

Eq. (4.12) is an extension of Eq. (3.8). The extra factors can be calculated as follows:

2
,

2
,

( | ) 1 ( | ) 1

( | ) 1 ( | ) 1

j j q j

j j j

P k q P k q w

P k d P k d w  

   

   
(4.13)

The symmetric ranking formula for CFS-INM now reads:

INM: 
2 2
, , 2 2

, ,1
( ) ( ) ( ) (1 ) (1 )

( )

t q i i
q j ji

j ii

w w
P q d C P q P d w w

P k


  



       (4.14)

If we use expansion (4.6a) (Hiemstra [8]) to Eq. (4.8), then Eq. (4.12) is reduced to Eq. 
(3.8) and is evaluated just as in Eq. (3.11). This means that Eq. (4.11) and (4.14) of CFS-
INM are natural extensions of Eq. (3.8) and (3.11) of TVS-INM.

For Belief Network Model (BNM, [5] and [8]), the RDQ formula becomes:

BNM: 
2 2
, , 2 2

, ,1(4.14)

( )
( | ) ( ) (1 ) (1 )

( ) ( )

t q i i
q j ji

j ii

w wP d q
P d q C P d w w

P q P k


  



       (4.15)

As mentioned in Eq. (3.12), Eq. (4.15) will produce the same result as Eq. (4.14).

Following P&C [9], the RDQ formula now reads

P&C: 
2 2
, , 2 2

, ,1(4.14)

( )
( | ) ( ) (1 ) (1 )

( ) ( )

t q i i
q j ji

j ii

w wP q d
P q d C P q w w

P d P k


 






       (4.16)

Eq. (4.14) is symmetric and can be used to calculate RDD:

INM: 
2 2

, , 2 2
, ,1

( ) ( ) ( ) (1 ) (1 )
( )

t i i
j ji

j ii

w w
P d d C P d P d w w

P k
 

     



       (4.17)
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According to Fuhr [10], in probabilistic concept space (PCS) model, a query reads:

, ,1

1
| ( | ( {[ ] [ ] } |q i q i

t n n

i ii
q P q P k k 


                    (4.18)

For example, the query in our GF-example, Eq. (4.4d), now maps to:

1 2 3 4 5 6 7 8 9 10 11( | ( |P q P k k k k k k k k k k k                           (4.19)

Then the ranking formula for PCS-INM-Fuhr reads:

, ,1 0
( ) ( | ) ( ) ( ) ( | ) ( | )

q i q j
i jn n

P q d P q d P d P d P k d P k d      
     (4.20)

, ,12 2
, ,1

( ) ( ) ( ) (1 )q i q i
t n n

i ii
P q d P d w w   




         (4.21)

Unfortunately, Eq. (4.20-21) may not be useful, because:

, ,0 ( ), if : 0 but 0q i iP q d i n w          (4.22)

TVS vs. CFS: CFS is by nature a product of 2D-factor spaces. The occupancy of one 
term is independent of the occupancy of another term in a concept, so different terms are
independent events in CFS, as in Eq. (2.21), although they are disjoint events in Term 
Vector Space, as in Eq. (3.4). 

1 2 1 2In Term Vector Space:  ( | ) 0 ( | ) 0VP k k P k k                      (4.23)

1 2 1 2In Concept Fock  Space:  ( | ) ( | ) ( | )F F FP k k P k P k    
   

                    (4.24)

Hence, we don’t see the inconsistency raised by Fuhr in Ref [10]. 

Moreover, our CFS-induced models actually contain all the ingredients of the three 
classical IR models: the weights from vector space model (VSM), the conditional 
probabilities from Probabilistic models and CFS (or Boolean Fock Space [4]) from
Boolean models. Therefore, armed with Dirac notation, PBN and CFS, we now have a 
platform to represent unified IR modeling.

5. Numerical Test Results Using Grossman-Frieder Example

The GF-Example ([6], or Table A.1 in Appendix A) has a query (q) and 3 documents 
( 1 1 1{ , , }d d d ). We now test our formulas using this example. 

As already explained in the text, we will not use Eq. (3.12) and (4.15) for BIM models.
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For comparison, results of Eq. (3.13) for VSM are listed. Because Eq. (3.13) does not 
have any unknown constant, we adjust all our models to have the same highest rank as 
given by VSM (the middle column in the following tables). 

In addition, the results from SVD metric model, Eq. (3.3.4) of Ref. [4], are also listed.
Using the metric tensor defined in Eq. (3.4.2) of [4], the relevance is given by:

SVDM: ,

ˆ| |
ˆcos( ) | |

ˆ ˆ| | | |

d g d
g

d g d d g d
 

   
   

  
 

   
  

   (5.1)

Note there is no adjustable constant in Eq. (5.1).

There are two test cases, the first uses Eq. (3.9) and the second uses (3.10). Each case will 
use four different weight formulas, given by Eq. (3.6), (3.19), (3.20) and (3.21), listed in 
Table B.1-4 in Appendix B, respectively.

5.1-Test case I: Using APDQK-I or Eq. (3.9)

APDQK-I, or Eq. (3.9), evaluates absolute probabilities as follows:

, ,1 1

11 1
( ) , ( ) , ( )

1
i

it t

q i q ii i

N
P q P q P k

Ntf tf
 


  

 
      (5.2)

Case I-1: Test results with WF-1 defined in Eq. (3.6)

Table 5.1A: The Relevance of Documents Related to the Query (weights in Table B.1)
Formula used

1d 2d 3d
Eq. (3.11): TVS-INM, C=169 0.1277 0.5477 0.2555
Eq. (3.13): TVS-P&C, C=21.1 0.1118 0.5477 0.2235
Eq. (4.14): CFS-INM, C=751 0.1001 0.5477 0.2002
Eq. (4.16): CFS-P&C, C=10.6 0.0876 0.5477 0.1751
Eq. (3.15): VSM 0.2182 0.5477 0.4364
Eq. (3.3.4) of [4]: SVDM -0.0552 0.9912 0.4480

Table 5.1B: The Closeness (Relevance Ranking) of Documents (weights in Table B.1)
Formula used

1 2d d 1 3d d 2 3d d
Eq. (3.14): TVS-INM, C=519 0.2647 0.7143 0.4375
Eq. (4.17): CFS-INM, C=7698 0.2072 0.7143 0.3901
Eq. (3.16): VSM 0.3585 0.7143 0.5976
Eq. (5.1): SVDM -0.1892 0.8678 0.3228
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We see that all formulas produce consistent and comparable results; Except Eq. (3.22), 
they all give the same order of relevancies, although the relative ratio changes:

RDQ: 2 3 1( , ) ( , ) ( , )R d q R d q R d q                                                                (5.3)

RDD: 1 3 2 3 1 2( , ) ( , ) ( , )R d d R d d R d d                                                              (5.4)

Note that the ranking order in Eq. (5.3) is consistent with most results obtained for the 
same example using various IR models in Ref [6] (see Table C.1 & C.2).

If we believe that the better the model if the bigger the difference in relevancies, then we 
see that the efficiency of models is in following order:

RDQ: CFS SVDM TVS VSM                                                              (5.5a)
RDD: SVDM CFS TVS VSM                                                              (5.5b)

Case I-2: Test results with WF-2 defined in Eq. (3.19).

Table 5.2A: The Relevance of Documents Related to the Query (weights in Table B.2)
Formula used

1d 2d 3d
Eq. (3.11): TVS-INM, C=66.19 0.0067 0.8249 0.0562
Eq. (3.13): TVS-P&C, C=12.63 0.0059 0.8249 0.0492
Eq. (4.14): CFS-INM, C=234.0 0.0006213 0.8249 0.0209
Eq. (4.16): CFS-P&C, C=30.00 0.0005436 0.8249 0.0074
Eq. (3.15): VSM 0.0801 0.8249 0.3272
Eq. (3.3.4) of [4]: SVDM -0.0552 0.9912 0.4480

Table 5.2B: The Closeness (Relevance Ranking) of Documents (weights in Table B.2)
Formula used

1 2d d 1 3d d 2 3d d
Eq. (3.14): TVS-INM, C=534 0.0 0.2448 0.0923
Eq. (4.17): CFS-INM, C=9986 0.0 0.2448 0.0596
Eq. (3.16): VSM 0.0 0.2448 0.1607
Eq. (5.1): SVDM -0.1892 0.8678 0.3228

We see all models give the same ranking order as in Eq. (5.3-4) and their efficiency order 
for both RDQ and RDD are:

CFS TVS SVDM VSM                                                                 (5.6)

Case I-3: Test results with WF-3 defined in Eq. (3.20).  We see all models, except Eq. 
(3.22), give the same ranking order as in Eq. (5.3-4) and they have the same efficiency 
order as Eq. (5.6).
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Table 5.3A: The Relevance of Documents Related to the Query (weights in Table B.3)
Formula used

1d 2d 3d
Eq. (3.11): TVS-INM, C=121.4 0.0385 0.5799 0.3212
Eq. (3.13): TVS-P&C, C=15.17 0.0337 0.5799 0.2810
Eq. (4.14): CFS-INM, C=408.8 0.0170 0.5799 0.2028
Eq. (4.16): CFS-P&C, C=30.00 0.0149 0.5799 0.1774
Eq. (3.15): VSM 0.1413 0.5799 0.5773
Eq. (3.3.4) of [4]: SVDM -0.0552 0.9912 0.4480

Table 5.3B: The Closeness (Relevance Ranking) of Documents (weights in Table B.3)
Formula used

1 2d d 1 3d d 2 3d d
Eq. (3.14): TVS-INM, C=534 0.0 0.2448 0.1286
Eq. (4.17): CFS-INM, C=9986 0.0 0.2448 0.1040
Eq. (3.16): VSM 0.0 0.2448 0.1897
Eq. (5.1): SVDM -0.1892 0.8678 0.3228

Case I-4: Test results with WF-4 defined in Eq. (3.21).  This time, for VMS and all our 
models, the order of relevance of document to query is changed to:

RDQ: 2 1 2( , ) ( , ) ( , )R d q R d q R d q                                                                 (5.7)

It shows that weight formula (3.21) may not be a good choice for RDQ.

Table 5.4A: The Relevance of Documents Related to the Query (weights in Table B.4)
Formula used

1d 2d 3d
Eq. (3.11): TVS-INM, C=101.1 0.2610 0.8146 0.0653
Eq. (3.13): TVS-P&C, C=12.63 0.2284 0.8146 0.0571
Eq. (4.14): CFS-INM, C=234.0 0.1035 0.8146 0.0209
Eq. (4.16): CFS-P&C, C=30.00 0.0905 0.8146 0.0183
Eq. (3.15): VSM 0.5525 0.8146 0.3829

But weight formula (3.21) gives the same RDD order as in Eq. (5.4).

Table 5.4B: The Closeness (Relevance Ranking) of Documents (weights in Table B.4)
Formula used

1 2d d 1 3d d 2 3d d
Eq. (3.14): TVS-INM, C=534 0.0 0.2448 0.0923
Eq. (4.17): CFS-INM, C=9986 0.0 0.2448 0.0583
Eq. (3.16): VSM 0.0 0.2448 0.1607

From the above test results, we can conclude that:
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1. WF-2, Eq. (3.19) is our best weight formula for VMS and our models.
2. CFS- P&C model, Eq. (4.16), is the best for RDQ. 
3. CFS- INM model, Eq. (4.15), is the best for RDD. 
4. WF-4, Eq. (3.21) produces inconsistent results of RDQ for VMS and our models.

5.2-Test case II: Using APDQK-II or Eq. (3.10)

APDQK-II, or Eq. (3.10), evaluates absolute probabilities as follows:

, ,1 1
| | | || | 1

( ) , ( ) , ( )
| | | | | |

t t

q i ii i i
i

V V V

n nd kq
P q P d P k

t t t



      

  
 

                  (5.8)

We will not use Eq. (3.13) and (4.16) for P&C models, since they will give relative 
ranking identical to INM models, due to fact that all three documents happen to have the 
same absolute probability based on Eq. (5.8):

1 2 3
7( ) ( ) ( ) 11P d P d P d     (5.9)

Comparing all test results in Test Case II, we can make the same conclusion as for Test 
Case I, except there is no difference between P&C and INM when ranking RDQ. Hence
we need only show the results for its best scenario (Case II-2):

Case II-2: Test results with weights defined in Eq. (3.19). 

Table 5.5A: The Relevance of Documents Related to the Query (weights in Table B.2)
Formula used

1d 2d 3d
Eq. (3.11): TVS-INM, C=0.005001 0.008835 0.8248 0.07368
Eq. (4.14): CFS-INM, C=1.1813 0.0008155 0.8248 0.009736
Eq. (3.15): VSM 0.0801 0.8248 0.3272

Table 5.5B: The Closeness (Relevance Ranking) of Documents (weights in Table B.2)
Formula used

1 2d d 1 3d d 2 3d d
Eq. (3.14): TVS-INM, C=1.8338 0.0 0.2448 0.1055
Eq. (4.17): CFS-INM, C=34.285 0.0 0.2448 0.1055
Eq. (3.16): VSM 0.0 0.2448 0.1607

Compare Case II-2 with Case I-2, we see that their results do not have any significant 
difference. Therefore, ( )P d , ( )P q and ( )iP k can be estimated either from APDQK-1, 

Eq. (3.9), or from APDQK-2, Eq. (3.10). 
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Our RDD ranking results are consistent with Diffusion map [12-13]. For t > 0, the 
distance between the three documents are in the same order (see Eq. (3.4.12) of [14]):

)3,1()3,2()2,1( 222
ttt DDD                           (5.10)

Our RDQ raking results are also consistent with almost all the results given by Ref. [6]. 
The best outcomes in Ref [6] are from VMS model (bold row in Table C.2), but the
results from our CFS-induced models using weight formula Eq. (3.19) seem to be better
(see Table 5.2A or 5.4A). The worst outcomes in Ref [6] are from INM model, which are 
inconsistent with other results, as shown in Eq. (C.2) or the red row in Table C.2. 

6. Summary

In this paper, we exposed the close relations between Dirac notation and our PBN in 
time-independent systems with discrete observable:

2| ) | , ( ) ( | ) | | |i i iP x P x x         (6.1)
21 ( | ) | | | | 1ii

P x           (6.2)

Applying to Term Vector Space (TVS), we obtained probability distribution functions for 
documents and query, based on their term weights as used in classical VSM.

Next, we discussed various probabilistic models induced by TVS and by Concept Fock 
Space (CFS) and derived their expressions of RDQ and/or RDD. Then we tested our 
expressions by applying them to the famous GF-example with various scenarios based on 
two APDQ and four weight formulas (WF). Our test results are consistent with each other 
and with other models. 

The CFS-induced models contain the ingredients of all three classic IR models. Hence, 
by combining Dirac notation, PBN and CFS, we now may have a platform to develop
unified IR models.

Of cause, our ranking formulas derived for induced probabilistic models need to be tested 
against bigger or real data sets. We also need more examination on our proposals about 
PBN [3], which can be extended to continuous variables (like positions) and to time 
dependent variables (like Markov chains). 

Appendix A: The Grossman-Frieder example

In reference [6], a simple example is used throughout that book. The example, referred to 
GF-Example in this article, has a collection of three Documents and one Query as 
follows:
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q : “gold silver truck”

1d : “Shipment of gold damaged in a fire”

2d : “Delivery of silver arrived in a silver truck”

3d : “Shipment of gold arrived in a truck”

The basic data are presented in table A.1.

Table A.1: Term Frequencies ( ,itf , ,q itf ) and ( iN , iidf ) of GF-Example

Term i 1 2 3 4 5 6 7 8 9 10 11

Word a arrived damaged delivery fire gold in of shipment silver truck

1,itf 1 0 1 0 1 1 1 1 1 0 0

2,itf 1 1 0 1 0 0 1 1 0 2 1

3,itf 1 1 0 0 0 1 1 1 1 0 1

,q itf 0 0 0 0 0 1 0 0 0 1 1

iN 3 2 1 1 1 2 3 3 2 1 2

iidf 0 0.176 0.477 0.477 0.477 0.176 0 0 0.176 0.477 0.176

Appendix B: Weight Formulas (WF) and Weights of the GF- Example

Table B.1: Term Weights ( ,iw , ,q iw ), based on WF-1, Eq. (3.6):

WF-1: , ,
, ,

2 2
, ,1 1

,i q i
i q it t

j jj j

tf tf
w w

tf tf




  

 
 

                       (B.1)

Term i 1 2 3 4 5 6 7 8 9 10 11

Word a arrived damaged delivery fire gold in of shipment silver truck

1,iw 0.378 0 0.378 0 0.378 0.378 0.378 0.378 0.378 0 0

2,iw 0.316 0.316 0 0.316 0 0 0.316 0.316 0 0.632 0.316

3,iw 0.378 0.378 0 0 0 0.378 0.378 0.378 0.378 0 0.378

,q iw 0 0 0 0 0 0.577 0 0 0 0.577 0.577

Table B.2: Term Weights ( ,iw , ,q iw ), based on WF-2, Eq. (3.19):
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WF-2: 

   
, ,

, ,2 2

, ,1 1

,i i q i i
i q i

t t

i i i ii i

tf idf tf idf
w w

tf idf tf idf




  

 
 

  
            (B.2) 

Term i 1 2 3 4 5 6 7 8 9 10 11

1,iw 0 0 0.663 0 0.663 0.245 0 0 0.245 0 0

2,iw 0 0.161 0 0.435 0 0 0 0 0 0.871 0.161

3,iw 0 0.500 0 0 0 0.500 0 0 0.500 0 0.500

,q iw 0 0 0 0 0 0.327 0 0 0 0.823 0.327

Table B.3: Term Weights ( ,iw , ,q iw ), based on WF-3, Eq. (3.20):

WF-3: , ,
, ,2 2

, ,1 1

log(1 ) log(1 )
,

log(1 ) log(1 )

i i q i
i q i

t t

i i i ii i

tf idf tf
w w

tf idf tf idf




  

  
 

          
            (B.3)

Term i 1 2 3 4 5 6 7 8 9 10 11

1,iw 0 0 0.663 0 0.663 0.245 0 0 0.245 0 0

2,iw 0 0.190 0 0.514 0 0 0 0 0 0.815 0.190

3,iw 0 0.500 0 0 0 0.500 0 0 0.500 0 0.500

,q iw 0 0 0 0 0 0.577 0 0 0 0.577 0.577

Table B.4: Term Weights ( ,iw , ,q iw ), based on WF-4, Eq. (3.21):

WF-4: 
 
 

,,
, , 22

, ,1 1

1
,

( ) (1 )

q ii
i q it t

i i q i ii i

f idff idf
w w

f idf f idf



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 
 

   
                   (B.4)

Term i 1 2 3 4 5 6 7 8 9 10 11

iidf 0 0.176 0.477 0.477 0.477 0.176 0 0 0.176 0.477 0.176

1,iw 0 0 0.663 0 0.663 0.245 0 0 0.245 0 0

2,iw 0 0.161 0 0.435 0 0 0 0 0 0.871 0.161

3,iw 0 0.500 0 0 0 0.500 0 0 0.500 0 0.500

,q iw 0 0.128 0.346 0.346 0.346 0.255 0 0 0.128 0.692 0.255



Dr. X. Wang PBN, TVS, CFS and Probabilistic IR Models Page 22 of 23

Appendix C: Test Results of the Grossman-Frieder Example in Ref. [6]

In Table C.1 we have listed the test results of some models in Ref [6]. The weight 
formula for VMS on page 16 of [6] is similar to WF-2, Eq. (3.19), but not normalized:

, , , ,,i i q i q i iw tf idf w tf idf                 (C.1)

Table C.1: The Relevance of Documents Related to the Query
Result quoted from Ref. [6]

1d 2d 3d
VMS, page 16 0.031 0.486 0.062
Poisson Model, page 40, no tf -0.477 1.653 0.699
Poisson Model, page 40, with tf -0.484 2.269 0.708
Language Model, page 51 0.000409 0.00121 0.000743
Dirichlet Priors, page 55 0.0000114 0.0002590 0.0001728
Jelinek-Mercer, page 56 0.000314 0.000443 0.000381
Absolute Discount, page 56 0.001215 0.021716 0.005727
INM, page 66-67 0.237 0.473 0.511
LSI, page 73 -0.0541 0.9910 0.9543

To better compare the results, in Table C.2, the highest relevancies (in middle column) 
are adjusted to the VMS value (0.8249) from Table 5.2A. One can see that the RDQ 
result of INM from [6] (in red) is inconsistent with other models:

RDQ: 3 2 1( , ) ( , ) ( , )R d q R d q R d q                                                                 (C.2)

Table C.2: The Adjusted Relevance of Documents Related to the Query
Result quoted from Ref. [6]

1d 2d 3d
VMS, page 16 0.0526 0.8249 0.1052
Poisson Model, page 40, no tf -0.2380 0.8249 0.3488
Poisson Model, page 40, with tf -0.1760 0.8249 0.2574
Language Model, page 51 0.2788 0.8249 0.5065
Dirichlet Priors, page 55 0.0363 0.8249 0.5504
Jelinek-Mercer, page 56 0.5847 0.8249 0.7095
Absolute Discount, page 56 0.0461 0.8249 0.2175
INM, page 66-67 0.4133 0.8249 0.8912
LSI, page 73 -0.0450 0.8249 0.7944
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