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Abstract

The noncommutativity of a four-dimensional phase space is introduced from a purely symplectic

point of view. We show that there is always a coordinate map to locally eliminate the gauge

fluctuations inducing the deformation of the symplectic structure. This uses the Moser’s lemma; a

refined version of the celebrated Darboux theorem. We discuss the relation between the coordinates

change arising from Moser’s lemma and the Seiberg–Witten map. As illustration, we consider the

quantum Hall systems on CP2. We derive the action describing the electromagnetic interaction

of Hall droplets. In particular, we show that the velocities of the edge field, along the droplet

boundary, are noncommutativity parameters-dependents.
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1 Introduction

Recently, there has been considerable interest in the noncommutative geometry as framework for

physical theories and as tool for study certain mathematical structures, which appears in some physical

models. This is mainly motivated by the new development in string theory [1]. Subsequently, the idea

of non commutative space time at small length scales [2] has been drawn much attention in various

fields and found interesting implications, see for instance [3-4].

Since the noncommutative space resembles a quantum phase space (with noncommutativity pa-

rameter θ playing the role of ~), many papers have been devoted to study various aspects of quantum

mechanics [5-9] on the noncommutative space where space-space is non commuting and/or momentum-

momentum is non commuting. The usual way of investigating the noncommutative quantum mechan-

ics is to map the noncommutative space to a commutative one. At classical level, this map turns out

to be similar to the celebrated Darboux transformation. In this respect, the noncommutative quan-

tum mechanics can be viewed as quantization of a phase space equipped with modified symplectic

structure. To eliminate the fluctuation, one has to define a diffeomorphism, which maps the modified

symplectic form to its counter part in the commutative case. Hence, one of the main aims of the

present work is to give a general prescription to perform this ”dressing” transformation for arbitrary

modified closed two-form on a curved phase space. This prescription uses the Moser’s lemma [10]

which is a refined version of Darboux theorem. We will discuss many facets and consequences of

this transformation. We also compare this method with the transformation, which arises from the

Hilbert–Shmidt orthonormalization method in four-dimensional phase space.

On the other hand, the prototypical topic at the interface between the noncommutative geometry

and condensed matter physics was in the last decade, the quantum Hall effect. Indeed, according to

the Laughlin [11], a large collection of fermions in a strong magnetic field behaves like a rigid droplet

of liquid. This incompressible quantum fluid picture constitutes the basis of the main advances in

this field of research, especially its connection with the noncommutative structures. Indeed, it was

shown that Laughlin states at filling factor 1/k can be provided by an appropriate noncommutative

finite Chern–Simons matrix model at level k and hence reproduces the basic features of quantum Hall

states [12-13]. In connection with quantum Hall systems in higher dimensions [14-25], the ideas of

the noncommutative geometry were useful to show that the effective action for the edge excitations

of a quantum hall droplet is generically given by a chiral boson action [21-25]. In relation with these

issues, the second main task of this paper concerns the electromagnetic excitations of Hall droplets in

four-dimensional complex projective space. The electromagnetic field is introduced as a variation of

the CP2 symplectic two-form.

The outline of the paper is as follows. In section 2, we first review the basic structure of quantum

systems whose elementary transitions (excitations) operators close the Lie algebra su(d + 1). We

define the Bargmann phase space and the corresponding symplectic structure ω0 of such system. This

is realized by making use of the coherent states formalism, which offers a very nice way in the study of

the quantum classical correspondence. We introduce the noncommutative Bargmann space by shifting

the symplectic two-form ω0 −→ ω0+F where F is the perturbation induced by a external gauge field.

Consequently, the position as well as momenta coordinates cease to Poisson commute. Thus, to study

the dynamics of a given system whose phase space is noncommutative, it is more appropriate to find
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out a dressing transformation that converts the modified symplectic form to ω0. This issue is presented

in section 3. We give a general procedure based on the Moser’s lemma to eliminate the fluctuations of

the symplectic structure. This generalizes the maps based on the Darboux transformations to include

also curved phase spaces. The effects of the modification become then encoded in the Hamiltonian

of the system. We discuss the relation between the obtained transformation and the famous Seiberg–

Witten map, which was initially introduced in the context of the noncommutative gauge theory [1],

see also [26-28]. In section 4, we treat the case where the matrix elements of the fluctuation form F

are constants. We show that, in this particular case, one can obtain an exact dressing transformation

contrarily to Moser’s procedure (which is in some sense perturbative). This exact transformation is

similar to Hilbert–Schmidt orthonormalization procedure. As illustration of our results, we consider,

in Section 5, the problem of the electromagnetic excitations of a quantum Hall droplet in the complex

projective space CP2. The coupling of the quantum Hall droplet with electromagnetic field is done

from a purely symplectic point of view. We give the Wess–Zumino–Witten action describing the edge

excitations on the boundary of the quantum Hall droplet. We show that the electromagnetic field

modify the velocities of the propagation of the chiral field along the angular directions. Concluding

remarks close the present paper.

2 Symplectic deformation and noncommutative Bargmann space

2.1 General considerations

It is well established that for an exact solvable quantum system, there is always a well-defined group

structure. We denote by G the corresponding operator algebra. The dynamical properties of this

system are described within a Hilbert space F and the dynamical observables are represented by

operators acting on it. This space is completely specified by determining the subset of G generated

by the elementary transition or excitation operators of the system, i.e. annihilation t−i and creation

t+i , with i = 1, 2, · · · , d. The Hamiltonian system and various transition operators can be expressed in

terms of the scale operators.

On the other hand, for a classical system, the dynamical observables are differential analytic

functions defined on a phase space endowed with a symplectic structure. The classical limit can

occur only if such structure can emerges from the quantum system in question. In other words,

one must construct a geometry originated from the Hilbert space, which must possess the necessary

symplectic structure. Indeed, for a quantum system, namely an algebraic structure (G,F), there exist

2d-dimensional symplectic manifold M, which is isomorphic to the so-called coset space G/H, where

G is the covering group of G and H is the maximal stability subgroup of G with respect to the fixed

state |ψ0〉, i.e. the highest weight vector.

In the present analysis, we mainly focus on the su(d + 1) quantum systems. For the Lie algebra

su(d + 1), there are 2d generators, which are not in its subalgebra u(d). These can be separated

into the lowering t−i and raising t+i types. It is interesting to note that su(d+ 1) can be introduced

through the Weyl generators t±i and the triple commutation relations, such as

[[t+i, t−j ], t+k] = δjkt+i + δijt+k (1)

[[t+i, t−j ], t−k] = −δikt−j − δijt−k (2)
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implemented by the mutual commutators

[t+i, t+j ] = 0, [t−i, t−j ] = 0. (3)

Recall that, the mentioned description was introduced for the first time by Jacobson [29] in the

context of Lie triple systems. This provides a minimal alternative to the Chevally description. The

corresponding Hilbert space [30], see also [31-33], is

F = {|n1, n2, · · · , nd〉; ni ∈ N} . (4)

The elementary excitations operators act on F as

t±i|n1, · · · , ni, · · · , nd〉 =
√

Fi(n1, · · · , ni ± 1, · · · , nd)|n1, · · · , ni ± 1, · · · nd〉 (5)

where the structure function F (n1, · · · , ni, · · · , nd) is given by

Fi(n1, · · · , ni, · · · , nd) = ni [k + 1− (n1 + n2 + · · ·nd)] (6)

and k is a real number labeling the representation. The Hilbert space has a finite dimension if the

quantum numbers ni fulfilled the condition (n1 + n2 + · · · nd) ≤ k. This dimension is

dim F =
(k + d)!

k!d!

which is nothing but the dimension of the symmetric representations of the Lie algebra su(d+ 1).

To obtain the manifold M, one can use an unitary exponential mapping. This is

d
∑

i=1

(ηit+i − η̄it−i) −→ Ω = exp

d
∑

i=1

(ηit+i − η̄it−i) (7)

where ηi are complex parameters and Ω is an unitary coset representative of the coset space G/H ≡
SU(d+1)/U(d). This gives the complex projective spaceCPd as geometrical realization corresponding

to F . This correspondence can be better visualized using the formalism of generalized coherent states

of G, such as

Ω −→ |Ω〉 ≡ Ω|ψ0〉 = Ω|0, 0, · · · , 0〉. (8)

This gives (see for instance in [33] where the notations are more or less similar)

|Ω〉 =
∑

{ni}

[

k!

n1n2! · · ·nd!(k − n)!

]
1

2 zn1

1 zn2

2 · · · znd

d

(1 + z̄ · z)k/2 |n1, n2, · · · , nd〉 (9)

where n = n1 + n2 + · · · + nd and the complex variables are zi =
ηi√
η̄.η

tan
√
η̄ · η. Obviously, these

states constitute an complete set with respect to the measure

dµ(z̄, z) =
(k + d)!

πdk!

d2z1d
2z2 · · · d2zd

(1 + z̄ · z)d+1
. (10)

The space of analytical functions (Bargmann space) defined by the above coherent states is equipped

with a symplectic (Khaler) two-form. This makes it into classical phase space and hence it connects

the quantum model to its semiclassical limit. It can be realized by introducing the Kahler potential

K0(z̄, z) = ln |〈ψ0|Ω〉|−2 = k ln(1 + z̄ · z) (11)
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which allows us to define a closed symplectic two-form

ω0 = igij̄dz
i ∧ dz̄j . (12)

The corresponding Poisson bracket is given by

{f, g} = −igij̄
(

∂f

∂zi
∂g

∂z̄j
− ∂g

∂zi
∂f

∂z̄j

)

. (13)

The components of the metric tensor take the form

gij̄ =
∂2K0(z̄, z)

∂zi∂z̄j
= k(1 + z̄ · z)−2[(1 + z̄ · z)δij − z̄izj ]

and therefore the matrix elements of its inverse are

gij̄ =
1

k
(1 + z̄ · z)(δij + ziz̄j).

By introducing the canonical coordinates (q, p) of G/H = SU(d+ 1)/U(d)

1√
2k

(qi + ipi) =
zi√

1 + z̄ · z (14)

it is easily seen that the Poisson two-form can be transformed into the canonical one. This is

ω0 =
∑

i

dqi ∧ dpi. (15)

Now the Poisson bracket becomes

{f, g} =
∑

i=1,2

(

∂f

∂qi
∂g

∂pi
− ∂g

∂pi
∂f

∂qi

)

(16)

This re-parametrization offers a familiar phase space structure with
∑

i(p
2
i + q2i ) ≤ 2k, which shows

that the phase space of the system is compact. As mentioned in the introduction, we will essentially

interested by the four-dimensional phase space, namely d = 2 in the above analysis.

2.2 Deformed symplectic structure

We now assume that the symplectic structure of the phase space is modified due to the presence of

an external electromagnetic background. This can be formulated by replacing the canonical two-form

ω0 by a closed new one, such as

ω = ω0 + F = ω0 −
1

2
Bij(q)dq

i ∧ dqj + 1

2
Eij(p)dpi ∧ dpj (17)

where the deformation is encoded in the antisymmetric tensors Eij and Bij. This modification requires

a condition on the space dimension, namely d > 1. Note that, ω can be mapped, in a compact form,

as

ω =
1

2
ωIJ(ξ)dξ

I ∧ dξJ (18)
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where I, J = 1, 2, 3, 4, with ξi = qi and ξi+2 = pi for i = 1, 2. The nonvanishing elements of the

antisymmetric matrix ω are

ω12 = −B12, ω34 = E12, ω13 = ω24 = 1. (19)

It is nondegenerate i.e. det ω 6= 0, when the antisymmetric tensors Eij and Bij satisfy the condition

det(12×2 − EB) 6= 0. This conclusion can easily be reached by writing ω in terms of matrix. Here we

assume that such a condition is satisfied. To find the classical equations of motion and establish the

connection between the classical and quantum theory, it is necessary to define the Poisson brackets

associated with the new phase space geometry in a consistent way. Indeed, since the Poisson brackets

for the coordinates on the phase space are the inverse of the symplectic form as matrix, we have

{F ,G} = (ω−1)IJ
∂F
∂ξI

∂G
∂ξJ

(20)

where (ω−1)IJ is the inverse matrix of ωIJ (17) and (F ,G) are two functions defined on the phase

space. After a straightforward calculation, one can show

{F ,G} =
∑

ik

(Θ−1
1 )ik

∂F
∂qi





∂G
∂pk

−
∑

j

Ekj
∂G
∂qj



− (Θ−1
2 )ik

∂F
∂pi





∂G
∂qk

−
∑

j

Bkj
∂G
∂pj



 (21)

where the matrix elements of Θ1 and Θ2 are defined by

(Θ1)ij = δij − EikBkj (22)

(Θ2)ij = δij −BikEkj. (23)

They can also be read in matrices form as Θ1 = 1−EB and Θ2 = 1−BE , respectively. It follows that,
the modified canonical Poisson brackets are

{

qi, qj
}

= −
∑

k

(Θ−1
1 )ikEkj (24)

{

pi, pj
}

=
∑

k

(Θ−1
2 )ikBkj (25)

{

qi, pj
}

= (Θ−1
1 )ij = (Θ−1

2 )ji. (26)

These relations traduce the noncommutativity of the phase space generated by the symplicric modi-

fication. Clearly, in the limiting case E = 0 and B = 0, the noncommutative relations (24-26) reduce

to the canonical Poisson brackets. According to the modified symplectic structure of the phase space,

we introduce the vector fields XF associated to a given function F(qi, pj). This is

XF =
∑

i

Xi ∂

∂qi
+ Y i ∂

∂pi
(27)

such that the interior contraction of ω with XF gives

ιXF
ω = dF . (28)
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A simple calculation leads

Xi =
∑

j

(Θ−1
1 )ij

(

∂F
∂pj

−
∑

k

Ejk
∂F
∂qk

)

(29)

Y i = −
∑

j

(Θ−1
2 )ij

(

∂F
∂qj

−
∑

k

Bjk
∂F
∂pk

)

. (30)

One can check

ιXF
ιXG

ω = {F ,G}. (31)

3 Noncommutative dynamics in Bargmann space

The celebrated Darboux theorem guarantees the existence of local coordinates (Qi, Pi) such that ω

takes a canonical form. Such Darboux coordinates transformation are easily obtained once of the

tensors B and E vanishes. This can be done by using one-form potential Ai(q)dqi and Āi(p)dpi that

defines a U(1) abelian potential A. It is

F = dA, A = AIdξ
I = Ai(q)dq

i + Āi(p)dp
i (32)

where bar is just a notation and has nothing to do with the usual complex conjugate. Consequently,

for E = 0, the Darboux coordinates are given by

Qi = qi, Pi = pi −Ai(q). (33)

However, for B = 0, one obtains

Qi = qi + Āi(p) Pi = pi. (34)

In the case where both of forms B and E are constant, ω can be re-written in canonical form. This can

be achieved by making use of a linear symplectic orthonormalization procedure à la Hilbert Schmidt,

which will be treated in section 4. However, for nonconstant B and E , the Darboux procedure fails in

converting the symplectic two-form ω0 + F in Darboux canonical form. As alternative method, one

has to employ is based on the Moser’s lemma, which constitutes a refined version of Darboux theorem.

This will be detailed in what follows.

3.1 Symplectic dressing through Moser’s lemma

Let us start by revisiting the derivation of Moser’s lemma which behind a nice procedure to locally

eliminate the fluctuation E + B of the initial symplectic two form ω0. To give a general algorithm to

realize a dressing transformation through Moser’s lemma, we will consider the general case where the

matrix elements of ω0 are phase space dependents.

According to Moser’s lemma, there always exists a diffeomorphism on the phase space φ whose

pullback maps ω to ω0. This is

φ∗(ω0 + F ) = ω0 (35)
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namely, we have

φ : ξI 7−→ φ(ξI),
∂φ(ξK)

∂ξI
∂φ(ξL)

∂ξJ
ωKL(φ(ξ)) = ω0IJ(ξ). (36)

To find out this change of coordinates, one can start by defining a family of one parameter of symplectic

forms

ω(t) = ω0 + tF (37)

interpolating ω0 and ω0 + F for t = 0 and t = 1, respectively, with 0 ≤ t ≤ 1. Note that, t is just an

affine parameter labeling the flow generated by a smooth t-dependent vector field X(t). Accordingly,

one also define a family of diffeomorphisms

φ∗(t)ω(t) = ω0 (38)

satisfying φ∗(t = 0) = id and φ∗(t = 1) will be the required solution of our problem, i.e. (35).

Differentiating (38), one check that X(t) must satisfy the identity

0 =
d

dt
[φ∗(t)ω(t)] = φ∗(t)

[

LX(t)ω(t) +
dω(t)

dt

]

. (39)

where LX(t) denotes the Lie derivative of the field X(t). Using the Cartan identity LX = ιX ◦d+d◦ιX
and the fact that dω(t) = 0, we obtain

φ⋆(t)
{

d
[

ιX(t)ω(t)
]

+ F
}

= 0 (40)

where ιX stands for interior contraction as above. It follows that X(t) is verifying the linear equation

ιX(t)ω(t) +A = 0 (41)

which solves (39). Therefore, the components of X(t) are given by

XI(t) = −AJω
−1JI(t). (42)

For small fluctuations of the symplectic structure, i.e. F ≪ ω0, one can write the inverse of ω as

ω−1(t) = ω−1
0 − tω−1

0 Fω−1
0 + t2ω−1

0 Fω−1
0 Fω−1

0 + · · · . (43)

This determines the components of X(t) in terms of the U(1) connection A and its derivatives and

allows us to write down the explicit form of the transformation φ. Indeed, since the t evolution of ω(t)

is governed by the first order differential equation

[∂t +X(t)]ω(t) = 0 (44)

it is easy to show that

[exp(∂t +X(t)) exp(−∂t)]ω(t+ 1) = ω(t). (45)

This leads to the relation

[exp(∂t +X(t)) exp(−∂t)]|(t=0)(ω0 + F ) = φ∗(ω0 + F ) = ω0 (46)
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where φ∗ is given by

φ∗ = id+X(0) +
1

2
(∂tX)(0) +

1

2
X2(0) + · · · . (47)

More explicitly, using (42), the contribution arising from the second term in (47) read as

X(0) = ω−1IJ
0 AJ∂I . (48)

The contribution of the third term in (47) is

1

2
(∂tX)(0) = −1

2
(ω−1

0 Fω−1
0 )IJAJ∂I . (49)

The last term in (47) gives

1

2
X2(0) =

1

2
(ω−1IJ

0 AJ∂I)(ω
−1I′J ′

0 AJ ′∂I′) (50)

Finally, in terms of local coordinates, the coordinate transformation φ whose pullback maps ω0 +

F −→ ω0 is given by

φ(ξL) = ξL + ξL1 + ξL2 + · · · (51)

where ξL1 is

ξL1 = ω−1LJ
0 AJ (52)

and ξL2 takes the form

ξL2 = −1

2
ω−1LK
0 FKL′ω−1L′J

0 AJ +
1

2
ω−1IJ
0 AJ(∂Iω

−1LJ ′

0 )AJ ′ +
1

2
ω−1IJ
0 AJω

−1LJ ′

0 (∂IAJ ′). (53)

Using the relations

∂J ′AI′ = (∂J ′ω0I′I)ξ
I
1 + ω0I′I(∂J ′ξI1) (54)

∂Iω
−1LJ ′

0 = −ω−1LJ”
0 (∂Iω0J”K)ω−1KJ ′

0 (55)

and the antisymmetry property of the symplectic form, keep in mind that ω0 is assumed closed and

nonconstant, one can check

ξL2 = −ω−1LK
0 FKL′ξL

′

1 +
1

2
ω−1LK
0 ω−1MJ

0 AJω
−1NJ ′

0 AJ ′∂Mω0NK

+
1

2
ω−1LK
0 ω−1MS

0 ASω0MN∂K(ω−1NS′

0 AS′). (56)

It is remarkable that this dressing transformation coincides with the Susskind map derived in connec-

tion with the quantum Hall systems and noncommutative Chern–Simons theory [12]. It leads also to

the very familiar Seiberg–Witten map [1] used in the context of the string and noncommutative gauge

theories. This will be clarified in the next subsection.
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3.2 Seiberg–Witten map in four-dimensional phase space

In fact, one can see from (52) and (56) that the dressing transformation can be written as

φ(ξL) = ξL + ÂL (57)

where we have set

ÂL = ω0
−1LK

[

AK − FKL′ω−1L′M
0 AM +

1

2
ω0

−1MJAJω0
−1NJ ′

AJ ′∂Mω0NK

+
1

2
ω0

−1MSASω0MN∂K(ω0
−1NS′

AS′)

]

. (58)

The transformation (57) is similar to the so-called Susskind map. It encodes the geometrical fluc-

tuations induced by the external magnetic field F . Also, it coincides with the Seiberg–Witten map

in a curved manifold for the noncommutative abelian gauge theory [30]. Indeed, under the gauge

transformation

A −→ A+ dΛ (59)

the components (58) transform as

ÂL −→ ÂL + ω−1LJ
0 ∂J Λ̂ + {ÂL, Λ̂}+ · · · (60)

where the noncommutative gauge parameter Λ̂

Λ̂ = Λ +
1

2
ω−1IJ
0 AJ∂IΛ + · · · (61)

is written as function of Λ and the abelian connection A. The equations (58), (60) and (61) are the

semiclassical versions of the Seiberg–Witten map. The connection Â is the induced noncommutative

gauge potential given in terms of its commutative counter part A. This establish a correspondence

between symplectic deformations and non commutative gauge theories.

Now we return to the situation of our purpose where the phase space is four-dimensional and

equipped with the canonical Darboux form ω0 given in (15). In this particular case, one can verify,

by using (32), (51), (52) and (56), that the deformed two-form ω0 + F (17) takes the canonical form

ω0 + F = dQi ∧ dP i (62)

where the new phase space variables Qi and P i are given by

Qi = φ−1(qi) = qi + Āi(p)−
∑

j=1,2

Aj(q)

[

Eij(p)−
1

2

∂Āj(p)

∂pi

]

+ · · · (63)

P i = φ−1(pi) = pi −Ai(q) +
∑

j=1,2

Āj(p)

[

Bij(q) +
1

2

∂Aj(q)

∂qi

]

+ · · · . (64)

It is interesting to note that for Āi(p) = 0 (respectively Ai(q) = 0) we obtain (33) (respectively (34))

and recover the Darboux transformations discussed above when one of the tensors B and E vanishes.

On the other hand, when the gauge potential (32) is defined as

A = −1

2

(

θ̄ǫijqidqj − θǫijpidpj
)

(65)
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corresponding to a constant electromagnetic fields F (θ and θ̄ real constants), the dresssing transfor-

mation (63-64) gives

Qi =

(

1 +
3

8
θθ̄

)

qi +
θ

2

∑

k

ǫkip
k (66)

P i =

(

1 +
3

8
θθ̄

)

pi +
θ̄

2

∑

k

ǫkiq
k. (67)

ǫij, appearing in (65), is the usual antisymmetric tensor, namely ǫ12 = −ǫ21 = 1.

3.3 Hamiltonian system

Let H ≡ H(p, q) to be the original classical Hamiltonian. In modifying the symplectic structure,

the dynamics becomes described by two-form ω0 + F . The dressing transformation converts the

dynamical system of (ω0 + F,H)
∣

∣

∣

qp
to (ω0,HA)

∣

∣

∣

QP
where we use the old symplectic form but a

different Hamiltonian, which can be obtained by simply replacing the old phase space variables in

terms of the new ones. In this respect, using (57) (or inverting (63) and (64)), one obtains

qi = φ(Qi) = Qi − Āi(P ) +
∑

j=1,2

Aj(Q)

[

Eij(P )−
1

2

∂Āj(P )

∂Pi

]

+ · · · (68)

pi = φ(P i) = P i +Ai(Q)−
∑

j=1,2

Āj(P )

[

Bij(Q) +
1

2

∂Aj(Q)

∂Qi

]

+ · · · . (69)

This result can be used to write down the required Hamiltonian system to the second order in terms

of A’s. This is

HA = H−
∑

i

(

Āiūi −Aiui
)

+
1

2

∑

ij

[

ĀiĀj
∂ūi
∂Qj

+AiAj
∂ui
∂Pj

− 2ĀiAj
∂uj
∂Qi

]

+
∑

ij

Aj

[

Eij −
1

2

∂Āj

∂Pi

]

ūi −
∑

ij

Āj

[

Bij +
1

2

∂Aj

∂Qi

]

ui + · · · (70)

where we the quantities ui and ūi are defined by

ui =
∂H
∂Pi

, ūi =
∂H
∂Qi

. (71)

Here again bar is just a notation. It is clear that the dressing transformation eliminates the fluctuations

of the symplectic form, which become incorporated in the Hamiltonian.

4 Constant symplectic fluctuation

4.1 Poisson structure

As mentioned above the dressing transformation in the special case of a constant symplectic fluctuation

can be achieved by making use of the Hilbert–Schmidt procedure. This can be seen as an exact

alternative to one described in the former section. From (65), one can verify that the matrix element

of the fluctuating tensors are

Eij = θǫij, Bij = θ̄ǫij. (72)
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The nondegeneracy of ω is provided by the condition 1 + θθ̄ 6= 0. In addition, hereafter we assume

that 1 + θθ̄ > 0 is fulfilled. With the above particular modification of the symplectic structure, the

Poisson brackets (24-26) simply read as

{qi, qj} = − θ

1 + θθ̄
ǫij (73)

{pi, pj} =
θ̄

1 + θθ̄
ǫij (74)

{qi, pj} =
1

1 + θθ̄
δij (75)

reflecting a deviation from the canonical brackets.

In this section, we specify the form of the classical Hamiltonian. More precisely, we consider a

bidimensional harmonic oscillator Hamiltonian of the type

V(p, q) = 1

2

∑

i

(

p2i + q2i
)

. (76)

This will be studied in subsection (4.3).

4.2 Dressing transformation and Quantization

We start by noting that under the transformation

Qi = aqi +
1

2
bθ
∑

k

ǫkip
k (77)

P i = cpi +
1

2
dθ̄
∑

k

ǫkiq
k (78)

the Poisson brackets (73-75) give the canonical ones

{

Qi, Qj
}

= 0
{

P i, P j
}

= 0 (79)
{

Qi, P j
}

= δij

once the real scalars a, b, c and d satisfy the following set of constraints

4a2 − 4ab− θθ̄b2 = 0

4c2 − 4cd − θθ̄d2 = 0

4ac+ 2θθ̄(ad+ bc)− θθ̄bd = 4(1 + θθ̄).

A simple solution of such set is

a = c =
1

b
=

1

d
=

1√
2

√

1 +
√

1 + θθ̄. (80)

On the other hand, in terms of the above new dynamical variables, ω can be written as

ω =
∑

i

dQi ∧ dP i. (81)

11



Inverting the transformation (77-78), we obtain

qi =
a

√

1 + θθ̄

[

Qi +
θ

2a2

∑

k

ǫikP
k

]

(82)

pi =
a

√

1 + θθ̄

[

P i +
θ̄

2a2

∑

k

ǫikQ
k

]

. (83)

For small values of θ and θ̄, we can see that (82) and (83) give

Qi =

(

1 +
1

8
θθ̄

)

qi +
θ

2

∑

k

ǫkip
k (84)

P i =

(

1 +
1

8
θθ̄

)

pi +
θ̄

2

∑

k

ǫkiq
k (85)

which are sensitively comparable to the expressions (66) and (67).

4.3 New induced dynamics

The Hamiltonian V (76)becomes

V =
a2

2
(

1 + θθ̄
)





∑

i

(

1 +
θ2

4a4

)

P iP i +

(

1 +
θ̄2

4a4

)

QiQi +

(

θ

a2
− θ̄

a2

)

∑

j

ǫijQ
iP j



 . (86)

Evidently the (θ, θ̄)-dependent terms in (86) arise from the deformation of the symplectic structure.

It follows that the deformation of the symplectic structure can be thought as a perturbation reflecting

the action of some external potential on the system. This feature is very similar to the Landau problem

in quantum mechanics. For the purpose of the next section, we shall convert the Hamiltonian (86) in

complex notation. This can be achieved by introducing the variables

Zi =

√

∆

2

(

Qi + i
P i

∆

)

, Z̄i =

√

∆

2

(

Qi − i
P i

∆

)

(87)

where the involved parameter is

∆ =

√

4a4 + θ̄2

4a4 + θ2
. (88)

They satisfy the usual Poisson relations

{

Zi, Zj
}

= 0
{

Zi, Z̄j
}

= −iδij
{

Z̄i, Z̄j
}

= 0.

The Hamiltonian V can be written as the sum of two contributions, such as

V − V0 =
1

4a2
1

1 + θθ̄

√

(4a4 + θ2)
(

4a4 + θ̄2
) (

Z1Z̄1 + Z2Z̄2
)

(89)

12



where V0 is given by

V0 = − i

2

θ − θ̄

1 + θθ̄

∑

ij

ǫijZ̄
iZj. (90)

It can be also written in a form that is more appropriate for our purpose. Indeed, by considering new

variables

Z+ =
1√
2

(

Z1 + iZ2
)

, Z− =
1√
2

(

Z1 − iZ2
)

(91)

and substituting (91) in (89-90), we end up with

V = (Ω− δ)Z+Z̄+ + (Ω+ δ)Z−Z̄− (92)

where Ω is

Ω =

√

(4a4 + θ2)(4a4 + θ̄2)

4a2(1 + θθ̄)
(93)

and δ takes the form

δ =
θ − θ̄

2
(

1 + θθ̄
) . (94)

Note that, two-form (81) can be rewritten as

ω = i
(

dZ+ ∧ dZ̄+ + dZ− ∧ dZ̄−
)

. (95)

Upon quantization, all canonical variables become the Heisenberg operators satisfying commutation

rules according to the canonical prescription, i.e. Poisson bracket −→ -i commutator. It follows that

the nonvanishing commutators are

[

Z+, Z̄+

]

= 1,
[

Z−, Z̄−
]

= 1. (96)

Note that, the Hamiltonian (92) is a superposition of two one dimensional harmonic oscillators. Thus,

the symplectic modification induces a splitting of energy levels (degeneracy lifting). This effect is very

important and will have interesting consequences on the electromagnetic excitations of quantum Hall

effect in four-dimensional space. This is the main task of the next section.

5 Four-dimensional quantum Hall droplet

5.1 Brief review

To illustrate the results of the previous sections, we consider a large number of particles, evolving in

four-dimensional complex projective manifold CP2, under the action of a magnetic field generated by

two-form ω0 (12). In this situation the spectrum is highly degenerate, splitting in Landau levels, and

it was shown [21] that there is one-to-one correspondence between the lowest Landau levels (LLL)

or ground state wavefunctions and the coherent states given by (9), with d = 2 (F ≡ LLL). For a

13



strong magnetic field (k → ∞), the gap between Landau levels becomes large and the particles are

constrained to be accommodated in the LLL forming a quantum Hall droplet.

The dynamics of the droplet is characterized as follows. Since the LLL are highly degenerated,

one can fill states with M = M1 +M2 particles where Mi stands for the particle number in a given

mode i. The corresponding density operator is then

ρ0 =
∑

n1,n2

| n1, n2 〉 〈 n1, n2 |. (97)

The fluctuations, preserving the number of states, are described by an unitary transformation

ρ0 −→ ρ = Uρ0U
† (98)

and the equation of motion is the quantum Liouville equation

i
∂ρ

∂t
= [V, ρ] (99)

where V is the confining potential ensuring the degeneracy lifting of the LLL, see [21-22, 24] for

more details. Furthermore, since the LLL wavefunctions coincide with SU(3) coherent states in the

symmetric representation, this offers a simple way to perform the semiclassical analysis. This can be

done by associating to every operator A a symbol, such as

A(z̄, z) = 〈z|A|z〉 = 〈0|Ω†AΩ|0〉. (100)

An associative star product of two functions A(z̄, z) and B(z̄, z) is then defined by

A(z̄, z) ⋆ B(z̄, z) = 〈z|AB|z〉 (101)

which rewrites, for large k, as

A(z̄, z) ⋆ B(z̄, z) = A(z̄, z)B(z̄, z) − gjm̄∂jA(z̄, z)∂m̄B(z̄, z). (102)

Then, the symbol or function associated with the commutator of two operators A and B is given by

〈z|[A,B]|z〉 = −gjm̄{∂jA(z̄, z)∂m̄B(z̄, z)− ∂jB(z̄, z)∂m̄A(z̄, z)} (103)

which leads to the result

〈z|[A,B]|z〉 = i{A(z̄, z),B(z̄, z)} ≡ {A(z̄, z),B(z̄, z)}⋆ (104)

where {, } stands for the Poisson bracket defined by (13) and the notation {, }⋆ stands for Moyal

brackets.

With the above semiclassical correspondence, we can give the symbol of the density matrix (97)

in the limit of large number of states, i.e. large magnetic field, and large number of fermions M

(M < dimF). This is [21]

ρ0(z̄, z) ≃ exp(−kz̄ · z)
M
∑

n=0

(kz̄ · z)n
n!

≃ Θ(M − kz̄.z). (105)
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where Θ is the usual step function. It corresponds to an abelian droplet configuration with boundary

defined by kz̄ · z =M and its radius is proportional to
√
M .

The confining potential can be defined in terms of the Fock number operators Ni|n1, n2〉 =

ni|n1, n2〉, with i = 1, 2. This is

V = N1 +N2. (106)

The associated symbol is given by

V(z̄, z) = 〈z|V |z〉 = k
z̄ · z

1− z̄ · z . (107)

which is exactly the potential given by (76).

This brief review gives the necessary tools needed to examine the electromagnetic excitations of

a quantum Hall droplet in four-dimensional manifold by using the results obtained in the previous

sections. We will mainly focus on the situation where the matrix B and E are constants.

5.2 Electromagnetic excitations of quantum Hall droplets

It is clear that we may think the Hilbert F as the quantization of the phase space CP2 where the

symplectic form ω0 is proportional to the Kahler form on CP2. The modification of the symplectic

structure of the phase space induces electromagnetic interactions of the quantum Hall droplets. The

symplectic dressing methods, discussed previously, give a prescription to eliminate the gauge fluctua-

tions by encoding their effects in the expression of the Hamiltonian of the system. Hence, in the case of

constants B and E , as shown above, the symplectic two form is mapped, via the relations (82-83), (87)

and (91), to its canonical form (95) in terms of the new variables Z+ and Z−. The Poisson brackets

become the canonical ones. Also, it is easily seen that the confining potential (107) can be mapped as

V(Z̄, Z) = Ω+Z+Z̄+ +Ω−Z−Z̄− (108)

where Ω± = Ω∓ δ and the density function is given by

ρ0(Z̄, Z) = Θ
[

M − k
(

Ω+Z+Z̄+ +Ω−Z−Z̄−
)]

. (109)

These are the main ingredients to evaluate the effective action describing the quantum Hall droplets

interacting with an external magnetic field F . This action is given by [34]

S =

∫

dtTr
[

ρ0U
† (i∂t − V )U

]

. (110)

For a strong magnetic field or k large, the quantities appearing in this action can be evaluated as

classical functions.

Along similar lines as in [34, 21,24], we start by computing the kinetic term. In this order, we set

U = e+iΦ (Φ† = Φ) to get

i

∫

dtTr
(

ρ0U
†∂tU

)

≃ 1

2k

∫

dµ{Φ, ρ0}∂tΦ (111)

where the symbol {, } is the Poisson bracket. This gives

{Φ, ρ0} = (Ω+L+Φ+Ω−L−Φ)
∂ρ0
∂r2

(112)

15



where r2 = Ω+Z+Z̄+ +Ω−Z−Z̄− and the first order differential operators are defined by

Lα = i

(

Zα
∂

∂Zα
− Z̄α

∂

∂Z̄α

)

, α = +,−. (113)

In (112), the derivative of the density function gives a δ function with support on the boundary ∂D
of the droplet D defined by kr2 =M . Then, we have

i

∫

dtTr
(

ρ0U
†∂tU

)

≈ −1

2

∫

∂D×R+

dt (Ω+L+Φ+ Ω−L−Φ) ∂tΦ. (114)

We come now to the evaluation of the potential term in (110), which can be written as

Tr(ρ0U
†V U) = Tr (ρ0V ) + iTr ([ρ0, V ] Φ) +

1

2
Tr ([ρ0,Φ] [V,Φ]) + · · · . (115)

It can be easily verified that the first term in the second line in (115) gives a bulk contribution that

can be ignored since we are interested to the edge dynamics. Further, remark that it is Φ-independent

and contains no information about the dynamics of the edge excitations. From (97) and (106), we

have [ρ0, V ] = 0, thus the second term in (115) vanishes. The last term in (115) is evaluated similarly

to (114). Finally, we have

∫

dtTr
(

ρ0U
†HU

)

≈ 1

2

∫

∂D×R+

dt (Ω+L+Φ+ Ω−L−Φ)
2 . (116)

Combining (114) and (116), we get

S ≈ −1

2

∫

∂D×R+

dt [Ω+ (L+Φ) + Ω− (L−Φ)] [(∂tΦ) + Ω+ (L+Φ) + Ω− (L−Φ)] . (117)

This action involves only the time derivative of Φ and the tangential derivatives LαΦ. It is a general-

ization of a chiral abelian Wess–Zumino–Witten (WZW) theory. For θ = 0 and θ̄ = 0, we recover the

WZW usual action for the edge states associated with un-gauged Hall droplets in four-dimensional

space [21]. This is given by

S ≈ −1

2

∫

∂D×R+

dt
[

(∂tΦ)(LΦ) + ω(LΦ)2
]

). (118)

where L = L+ + L−.

5.3 Edge fields

The action (117) is minimized by the fields Φ, which are satisfying the equation of motion

∑

α=±
(ΩαLα)[∂tΦ+ΩαLαΦ] = 0. (119)

The edge field Φ can be expanded in powers of the phase space variables Zα. Note that, since the

excitations are moving on the real 3-sphere S3 ∼ SU(2), it is convenient to introduce the SU(2)

parametrization. This is

Ω+Z+ =

√

M

k

√

ζ̄ζ
√

1 + ζ̄ζ
eiφ+ , Ω−Z− =

√

M

k

1
√

1 + ζ̄ζ
eiφ− (120)
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where ζ and ζ̄ are the local complex coordinates for SU(2). The operators L± reduce to partial

derivatives ∂φ±
with respect to φ±. Thus, the field Φ is given as

Φ =
∑

n+,n−

cn+,n−(t)e
iφ+n+eiφ−n− (121)

where the coefficients cn+,n− are (φ+, φ−)-independents for (n+ 6= 0, n− 6= 0). It follows that the

solution of the equation of motion (119) takes the form

Φ = (φ+ − Ω+t) + (φ− −Ω−t) +
∑

n+n−

cn+,n−(0)e
i(φ+−Ω+t)n+ei(φ−−Ω−t)n− . (122)

It is clear, from the last equation, that the noncommutativity arising from the symplectic modification

changes the propagation velocities of the edge field along the angular directions. It is also important

to stress that the velocities Ω+ and Ω− are different (respectively equal) for θ 6= θ̄ (respectively θ = θ̄).

6 Concluding remarks

We close the present analysis by summarizing the main points and results. We first introduced the

Bargman phase space of a quantum system whose elementary excitations close the su(3) Lie algebra.

This space is interesting in three respects. First, it equipped with a symplectic structure that one can

vary in order to describe the electromagnetic excitations of the system. Second, the points of this space

are in correspondence with the SU(3) coherent states, which respect the over completion property.

This provides us with an elegant tool to perform the semiclassical analysis (definition of star product

and Moyal brackets). Third, this phase space is four-dimensional manifold and one can consider a

symplectic modification (17) such both positions q and momentum p cease to Poisson commute. This

can not be realized in two dimensional case.

In connection with this phase space, the present work addresses three major issues: First, the vari-

ation (or perturbation) of the symplectic two-form ω0 −→ ω0+F , which induces the noncommutative

structures, can be eliminated through the Moser’s lemma that is a refined version of Darboux theorem.

This leads to a dressing transformation (51), see also (68-69), which converts the modified two-form

in its undeformed form. The effects of the fluctuations become encoded in the Hamiltonian of the

system (70). The dynamics remains unchanged. We showed the dressing transformation is equivalent

to the Seiberg–Witten map (57-58). This means that a symplectic modification and a noncommutative

abelian gauge transformation are equivalents.

The second issue concerns the particular case where the matrix elements of the components E and B
of electromagnetic fluctuation F are constants (72). We used the Hilbert–Schmidt orthonormalization

procedure to write down an exact dressing transformation (82-83). Here again the effect of the non

commutativity becomes encoded in the Hamiltonian (86). This induces the anisotropy of the harmonic

oscillator potential (92) and upon quantization generates a degeneracy lifting analogously to the well

known Zeeman effect.

Finally, as application of the tools developed in this paper, we considered the problem of quantum

Hall effect in the complex projective space CP2 = SU(3)/U(2). We derived the Wess–Zumino–Witten

action (117) governing the electromagnetic excitations of a large collection of fermions in the lowest
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Landau levels. We obtained explicitly the edge field excitations (122) traveling with modified velocities

as consequence of the noncommutativity effects.
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