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Abstract We investigate the use of Malliavin calculus in order to okdte the Greeks of
multidimensional complex path-dependent options by satih. For this purpose, we ex-
tend the formulas employed by Montero and Kohatsu-Higa ¢ontlultidimensional case.
The multidimensional setting shows the convenience of tladliddin Calculus approach
over different techniques that have been previously pregosideed, these techniques may
be computationally expensive and do not provide flexibildyvariance reduction. In con-
trast, the Malliavin approach exhibits a higher flexibiliy providing a class of functions
that return the same expected value (the Greek) with diffexecuracies. This versatility for
variance reduction is not possible without the use of theeg#lized integral by part formula
of Malliavin Calculus. In the multidimensional context, iied convenient formulas that
permit to improve the localization technique, introduced-burnié et al and reduce both
the computational cost and the variance. Moreover, we shaithe parameters employed
for variance reduction can be obtained the flightin the simulation. We illustrate the ef-
ficiency of the proposed procedures, coupled with the erdthrersion of Quasi-Monte
Carlo simulations as discussed in Sabino, for the numeestaihation of the Deltas of call,
digital Asian-style and Exotic basket options with a fixed anfloating strike price in a
multidimensional Black-Scholes market.

Key Words: Greeks, Risk-Management, Quasi-Monte Carlo Methodsliawal Calculus.

1 Introduction and Motivation

Risk-sensitivities, also called Greeks, are fundameniahtjties for the risk-management.
Greeks measure the sensitivities of a portfolio of financiairuments with respect to the
parameters of the underlying model. Mathematically spenka greek is the derivative of
a financial quantity with respect to (w.r.t.) any of the paetens of the problem. As these
guantities measure risk, it is important to calculate thernckdy and with a small order of
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error. In general, the computational effort required fonaourate calculation of sensitivities
is often substantially greater than that required for peisgmation.

The problem of greeks calculation can be casted as followsp&e that the financial
quantity of interest is described B[ (X(a))Y] (i.e., the price of a derivative contract),
wherey : R — R is a measurable function antlandY are two random variables (r.v.s).
The greek, that we denot is the derivative w.r.t. the parameter

7} 7}

O(e) = 5 EW(X(@)Y] =E | - (X(@)Y|.

The most common of the Greeks are notably, Delta, Gamma, Végda, Rho. These quan-
tities are relatively simple to calculate for plain vanidlantracts in the Black-Scholes (BS)
market. However, their evaluation is a complex and demantisk for exotic derivative
contracts such as Asian-style basket options where nodosmula is known.

The simplest and crudest approach is to employ the Monteo@BIC) estimation of
E [y (X(a))Y] for two or more values ofr and then use finite-difference approximations.
However, this approach can be computationally intensivecam produce large biases and
large variances in particular i = 115, whereA is a measurable set. A variant is tkernel
method(see Montero and Kohatsu-Higa [10]) which generalizesdidifference methods
using ideas taken from the kernel density estimation.

Several alternatives have been proposed without finiferdifice approximatiorRath-
wise methodg¢see Glassermahl[4]) treat the parameter of differentiatias a parameter
of the evolution of the underlying model and differentidtéstevolution. However, this ap-
proach is not always applicable, notably whgris not smooth (for instancgy = 115). At
the other extreme, thikelihood method ratiqsee Glassermanli[4]) puts the parameter in
the measure describing the underlying model and diffesteti this measure. Even if the
likelihood method ratio is applicable to non-smooth fuors it may provide high-variance
estimators. Indeed, compared to the pathwise method (wiitable), it displays a higher
variance. Summarizing, these two alternatives involve tman ideas: differentiating the
evolution or differentiating the measure, respectively.

In this paper we investigate the use of Malliavin Calculusiider to employ (Quasi)-
Monte Carlo (QMC) simulations for the evaluation of the stvities of complex multi-
dimensional path-dependent options. The multidimensisetiing shows the very conve-
nience of the Malliavin Calculus approach over the difféetechniques that have been pro-
posed. Indeed, Malliavin Calculus allows to calculate g®tities as expected values whose
estimation is a natural application of MC methods. Formally

7}

Ble) = E | 30 (X(@) Y] ~E [y (X()) )

whereH is a r.v. depending oKX andY.

In the context of multidimensional options, we extend thenfalas employed by Mon-
tero and Kohatsu-Higa [11] to the multidimensional cases Hpproach gives a certain
flexibility and provides a class of functions (different.s.i4) returning the same expected
value (the sensitivity) but with different accuracies.

Indeed, the previously mentioned alternative techniquag lme computationally expen-
sive in the multidimensional case and do not provide fleitjbibr variance reduction. This
versatility for variance reduction is not possible withdbé use of the generalized inte-
gral by part formula of Malliavin Calculus. Advanced tealumes such as the kernel density
estimation or more recent approaches such as the VibratdeMoarlo in Gilles[[3] are



difficult to employ and computationally demanding in mwimensions. In order to avoid
to use the Malliavin technique, Chen and Glasserrnan [1] imstrated a procedure that
produces “Malliavin Greeks” without Malliavin Calculusoever, since this procedure in-
volves both pathwise and likelihood ratio methods, thenestiors of the formulas for the
sensitivities in Chen and Glassermah [1] have a high vagianc

For these purposes we find convenient representatiokstb&t permit to enhance the
localization technique introduced in Fournié et al. [2] arduce both the computational
cost and the variance. Moreover, we show that the parametepsoyed for the variance
reduction can be obtainezh the flightin the simulation by adaptive technigues. We illus-
trate the efficiency of the proposed procedures, coupleu thé enhanced version of QMC
simulations discussed in Sabirio [16], for the numericaihestion of the Deltas of call,
digital Asian-style and Exotic basket options with a fixed anfloating strike price in a
multidimensional BS market.

The paper is organized as follows. Secfion 2 is a short inttdn on Malliavin Cal-
culus, Section]3 derives the formulas employed for the cdatjmn of the Deltas of call
Asian basket options with floating and fixed strike, Asiaritdigoptions and exotic options.
Sectiori 4 illustrates the enhanced QMC approach that wet addpdescribes in details how
to get the localization parameters with adaptive (Q)MC mésphes; Sectiohl5 discusses the
numerical experiments of the study and finally Secfibn 6 sanmas the most important
results and concludes the paper.

2 Malliavin Calculus: Basic Results and Notation

The aim of this section is to briefly introduce the basic rssfubm Malliavin Calculus and
to fix the notation we adopt in the rest of the paper. For mai@imation on this subject,
we refer the reader to the book by Nualart|[13].

Consider the probability spa¢®,.7,P) where we define th&l-dimensional Brown-

ian motionW (t) = (Wa(t),..., Wi (1)), t € [0,T] and given 0=t{" t{” ... t\", divide the
interval [0, T] into n subintervaldy = [tlin) ,tlii)l), k=0,...,n—1. The superscripts indicates
the fineness of the subdivision ,T]. Now denote the vectas,” = (A,i"f,,Aé”&)

whereA) =W (t(",) — W t").
Now consider a smooth function with polynomial growgh R™M — R, @ € €%, of

the formgp = (p(Aé”), . ,Ar@l). Finally we consider the following space:
Sn={o@y,...a")0e e} c 22(), ()

where(#),,-1 form an increasing sequence i (Q).

Definition 1 The union = (Up>1-%n) C -£2(Q) is called simple functional space and
its elements are called simple functionals.

We now can define the Malliavin derivative operator.

Definition 2 Let ¢ € ., then there exists & N* such thatg = @(A™). The Malliavin
derivative operatoD = (D?,...,DM) of g at a point s Iy is defined as

n-1

a9 () 0
m., __
Ds Q= kZO anﬁm (AO yoee 7An—1)]1||£n) (S) (2)



Let us precise the notation. We haye= (xk_yl, ... ,xk,M), SOX corresponds to the increment
vectorA,i”) and the m-th component x corresponds to the m-th componeﬁ\iﬂ].

Moreover we give the following definition.

Definition 3 Introduce on the norm
2
IF1£2 = IF |l 22(@) + IDF || 22011 <)
the sefD!? is the closure of7 with respect (w.r.t.)] - ||1.2.

Finally we define the Skorohod integraPk.
Definition 4 The adjoint oD in .#2(Q x [0, T]) is the operator:

5 u= (Uy,...,um) € dom(&%% — 5%%(u) (3)

which by definition satisfies fag € D*? andu € dom(5%)

U DT (um(s))ds| =

{w 2 an(u ] =E [p5%(u)] . 4)

Equation[(%) is known as duality relation.

It can be shown (see Nualart [13]) thatuift) is an Ito process, the Skorohod integral
coincides with the Ito integral af andDsu =0if s>t .

We now list some identities and useful results that will bepkayed in the rest of this
paper. Proofs can be found in Nualartl[13].

1. VFy,...,Fq € D2 we haveg(Fy,...,Fy) € D2 andvm=1,....M

da(p

DJ'p = > o

(Fi,...,Fq) DS F. )
For example, lea € RM we have

D’s“eXp(iaiV\A(t)) aneXD(ZlaW )31[0t] (6)

2. Letg(t) be an adapted process we have:

Dm/(p £)dW™(t) +/D W), (7)

T T
o7 [ gt~ [ DIp()dt ®)

3. If € D2, u e dom(65%), andgu € dom(55K) then

and

55 (u) = e (u) Z/ Um(S)DTpds. (9)



3 Multidimensional Malliavin Sensitivities

Consider for simplicity a complete market whose risky as&pti = 1,..., M, are driven by
the following dynamics (in the risk-neutral measure):

dS(t) = rS(t)dt+S(t)oi(t)dBi(t) i=1,....M, (10)
S(0) = x,

wherer is the constant risk-free rate(t) = (01(t), ..., om(t)) is the vector of the volatilities
process andB(t) is the vector of theM-dimensional Brownian motion in the risk-neutral
measure withdB;(t)dBny(t) = pim(t)dt; p is the correlation matrix among the Brownian
motions (it can be stochastic). The existence of the veatoegsso(t) is guaranteed by
theorem 9.2.1 in Shreve [118]. Applying the risk-neutratprg formula (see Shreve [18]),
the calculation of the price at tinteof any European derivative contract with maturity date
T boils down to the evaluation of an (discounted) expectation

a(t) = exp(—r (T —1)) E[y[ A, (11)

the expectation is under the risk-neutral probability measndy is a genericZt-measurable
variable that determines the payoff of the contract.

In order to apply Malliavin Calculus we need to write the abalynamics in terms of
uncorrelated Brownian motions:

dS(t) = rS(t)dt+S(t)ai(t) % Aim(t)dWn(t) §=1,...,M
m=1
S(0) = x,

wheres M dim(t) akm(t) = pi(t),a.s. and we have definedim(t) = 6i(t) TM_; aim(t),as..
Hereafter we denotéX" and 8° the Kronecker delta and the Dirac delta, respectively.
Naturally at timeT we havey = a(T), a.s..
The following proposition generalizes the formula in Maot&ohatsu-Higal[111] to the
multidimensional case.

Proposition 1 Assuming the dynamids{12) letT) be a.#t-measurable r.v. (it can depend
on the entire trajectory) and considgr = ¢y(m(T)). Denote G the partial derivative

_om(T)

Gk—W, k=l,...,M, (12)

Suppose thap € D12, the k-th delta (the k-th component of the gradient) is

da(0)

A =
K= oxe

=e"E[YG]=e"E {w % K (Gyum) | (13)
m=1

whereu = (ug,...,um) € dom(5%%), z= (z,. .., zy) € dom(3°¥), Gyu € dom(5°%) and

_ Zm(S)
SM1 Jo Za(9)DEM(T)ds

§
z/o 2,(D'M(T)ds# 0, as.

Um(S)




The derivativey/ may have no mathematical sense indeed, the aim of the ptigpois to
overtake the problem with the formalism of distributiongl &alliavin Calculus.

Proof Compute
Dy =y¢DIMT) h=1,... M. (14)

Suppose € dom(3°¢) and multiply the above equation tay(t) and byGy; then sum for all
h=1,...,M and integrate:

M T M T
5 [ Gan(epiw(Mds= 3 [ Gan(s)9/(T)Dim(T)ds (15)
h=1 h=1

Y'Gy does not depend anand due to the definition af we can write

M T
WGy = Z/o Un(S)GDTY(T))ds k=1,...,M (16)
m=1

Finally compute the expected value of both side$ of (16)

M T
E [w/Gk] =FE |:z /0 um(s)GkDg"wds} . a7
m=1

By duality
M=F [qjas"(eku)} k=1,.. ..M, (18)

and this concludes the proof.

3.1 Greeks in the Multidimensional Black-Scholes Market

In this section we apply Propositidd 1 to the case of a muitédisional Black-Scholes
market where the volatilities vector process in Equatfidf) {4 not stochastic (for simplicity
we consider constant volatilities and correlations). Trenadvantage of the Malliavin
approach over different techniques, for example the methoilles [3] and the Chen and
Glassermar]1], is that Propositibh 1 allows the possjbdit variance and computational
reduction due to the flexibility in choosing either the prexe, or betterz. The methods
illustrated in Gilles|[8] and Chen and Glassermian [1] ar&atift to employ if we assume a
multidimensional dynamics and they do not allow versatititr variance reduction.

We consider the casg = oo ; h,k=1,...,M, ax = 1,¥k. Namely, in order to com-
pute thek-th delta we consider only thieth term of the Skorohod integral reducing the
computational cost. In particular, this choice is motidaby the fact that we can enhance
the localization technique introduced by Fourné et al.\Jgith this setting we need to con-
trol only 6k5k(-) and then only th&-th component ofV(t). This enhancement is not possible
with other approaches that furnish only a fixed represeamtatf the components of the mul-
tidimensional deltas.

Under the above assumptions for the vector proeess explicitly derive the multidi-
mensional deltas for the following exotic options in the B&rket:



. Discretely monitored Asian basket options with fixed®&triAssume; <ty--- <ty=T,
whereT is the maturity of the contract and the payoff function

M N +
L[J:(iZ‘IZ\WijS(tJ‘)—K> , (29)

whereK is the strike price and; ; wij = 1. In this case we have
1 N
Gr=— % wij&(t))
Xe ;1 IRSU

and

M N
T)= i;l;wii S ()

We then calculate the following quantities
M N

Lk—/ Dk dS_ leiwu t] tj Oik,

T N
A= /O DI;deSIZ ij&(tj)tjdkk Z ijS( )tj ok

0

and hence G
AK:E[wa,fk(L—k)}, k=1,...,M. (20)
K

Due to the equatiori[9) we can write the the Skorohod intezjrale fork=1,...,M
as:

Gk _% 1 k k Gk % _&
6‘(?) =W <Lk/0 DXGyds— Gk/ D Lkds> o (V\&(T)+ Lk) L
(21)

With another choice of, for instancez, = ay, A« would depend linearly on the whole
M-dimensional Brownian motion, making the localizationtieique less efficient.

M
. Discretely monitored Asian basket options with floatitigke K(T) = z.leS(T) For
simplicity we assumavij = M—l,\IVi,j. The calculation is similar to the previous payoff
function, indeed we can writ¢y = n(T)™ where

n(T)=m(T)—K(T).
In analogy, we have

an( ) g, ST

— G T,
F = M. Gy — Tk,
M To
Mkf/ Dn(T)ds = ka/ DKK (T) = kaW:kaUk,
S(T)Tox

i
/D'ngdsFAk—/ DXTds— Ax— — Ac—Vh,
0 0

T T T M T)T202
/ DlngdS:/ D'ngds—/ DXUyds= By — % =B—HR.,
0 0 0



with the quantitiesly, Uk, Vi, Fk, Vk automatically defined by the above equations. Then

AK:E[wakSk(i)}, k=1,...,M. (22)
Mk
and
R\ R B —Rc) AV
@(M_K):M_KM(T” M )* M @3)

. Digital Asian basket options with fixed strike.

Y = Uy1)>k- (24)

This type of payoff function fulfills the hypotheses of Prsjimn[1 and we might adopt
equation[(ZD). However, due to the properties of the Dirdtad® and Propositiof]1
we can write

B M
Be=e TE[8R (m(T)) G —e B | &R (m(T)) o (T ) 6 - -”za[w zld%%kqoum)}

where we assume thet ¢’ are square integrable(0) = 1, pGy is Skorohod integrable
vk=1,...,M andh > 0. The aim of this setting is to reduce the variance of the ME es
mator of Ay by tuning the localization functiop around the strikd&k with a convenient
choice of the parametér(see Kohatsu-Higa and Pattersph [7]).

Under this assumption the Skorohod integral in equafiol lf&8omes:

55K ((p <W> Gku> ) (%) Gkd5K(u) z / Um(S)DT (@G ) ds

where form=1,....M

D?(¢<W>Gk)=¢<W>D?Gk+ (P'< ) - K>Dm (T),

then the Skorohod |ntegréls"( ( ) ) Gku>

m(T)—K M T m,
M) =K & gy PR ) el (DRSS 6, /miT) K
oM oot ST 7 Un(S)DEM(T)ds v (M)
(25)

Finally, with our choice for the simple processhe last equation becomes:

m(T)-K
NEUES IR e L PTG USSR

wheredS(u) depends on the terms that we have found in the case of Calh Asisket
options.

It is worthwile to say that the same localization procedurd the Malliavin approach
adopted for digital options can be employed for the compartathe Gamma (second
order derivative) for Call Asian basket options.



3.2 Greeks for Exotic Options

In Propositior ]l we have supposed that the payoff funaficsiepends om(T) only. With

the notation adopted in the BS setting, suppose for instamagy = max(m(T) — K,K(T) — K, 0),
whereK is a fixed price, now we cannot rely on Propositidn 1 to deriwe @xpression of

the sensitivities of such an exotic option. Hepedepends separately on two random vari-
ablesm(T) andK(T). In the following we extend Propositidd 1 in order to allonckua
dependence.

Proposition 2 Assuming the dynamicE(12) suppage= /(X,Y). For simplicity we set

r =0, denote G = g—;; and k = %. Letu and p be two simple processes belonging to

dom(55X). Define the followingZt-measurable r.v.s:

MoT
a; = Z /0 Um(S)DandS a = zm:l j(;r Um(S)Dg'YdS (27)
m=1
M T
b = z /o Pm(S)DgX, by = zmzlf(;r Pm(S)DJY ds (28)
=1
M T
OL= Z /O TcUm(s)DTds O =M | j(;r GkPm(s)DMyds (29)
m=1
_ biG¢ 20T,
Tk Uy G 30)

l e EE—— _ .
ajby —ash;’ aby—aphy

Finally, suppose thatd, — axb; # 0,a.s. and U Tyu — UoGyp is Skorohod integrable, we
have:
IR [W(X,Y M
RO A= B [Tk X,Y) + GAWOCY)] =B [ $OXY) 5 3U1Ttn — Ui
m=1
(31)

wheredy anddy denote the partial derivatives with respect to the first aadond variable,
respectively.

A=

Proof Compute:
D'Y(X,Y) = ox YDG'X + Sy YOS Y. (32)

As done in the proof of Propositiéd 1, multiply f@k andup,, sum for allmand integrate:
Mo T Mo T Mo T
3 / Tem(9)DTyds= 5 / Tem(S)DIXds+ 5 / Tm(&DMYds  (33)
m=1 0 m=1 0 m=1 0
Now repeat the procedure above considef@agand pr(s), we have
Mo T Mo T Mo T
z/ GiPm(s)Dg'pds= Z/ GiPm(s)DeXds+ z/ Gkpm(s)DgYds  (34)
m=1~0 m=1/0 m=1/0

We rewrite Equations (33) and (33) as a linear system

{ O1 = agTudx Y +axToy (35)
Oz = b1 Gydx Y + g2Grdv
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Our aim is to computdldx Y (X,Y) + Gy Y(X,Y) such that we can apply the duality
relation. After some algebra we get that

boG(O1 — @ TO2
Tudx P = 2K RK2

XY =G Tarby —aghy)
a1 TxO2 — b1 GO,

Gedvy = Tk (agb2 —agby)

and
Ol (bz — b;r_fk) —02 (aé—-lzk —a]_)

TOx Y + G = 21Dy — aghy

(36)

then we have

M T
Ay =E[O1U1 —OUs] =E z /o (U1 Titm(s) —U2Gkpm(s)) D?wds} ) 37)
=1
by duality
M
) {w S S (U1 Titm — U2Gxpr) (38)
m=1

and this concludes the proof.

We can adapt the result of Propositidn 2 to the BS market. iAtfeé Malliavin Calculus

approach is very versatile and permits to reduce the cortipngh burden and the variance

of the MC by enhancing the localization technique. As dorferieewe considetm(s) =

3Kt Wsand pm(s) = s3K}, s, in order to fulfill the hypothesis of Propositigh 2.
The formula for thek-th component of the delta is

D =E [W(X,Y) (& (UrT) — 8 (sUGw))] , (39)

and the two Skorohod integrals are respectively:

T T
BK(U1T) = UsTWK(T) — Uy /0 DT ds— Ty /0 DU, ds (40)

T T T
554 (UGy) = UoGy /0 AWK — Gy /0 sDKUds— Uy /0 sDKGds (41)

In the MC estimation we can simulate the first term in the aleyeation relying on the
equality:

T T
| sawk(9) = Tw(m) - [ wi(s)ds
0 0

wherefOT\Ni((s)dsis approximated by a sum at the poitts ...ty =T.

In our numerical experiments we considgr= max(m(T) — K,K(T) —K,0) where
m(T) andK(T) have been defined in Sectibn13.1. The terms in Equatlons @#D)4&l)
have been obtained as in Section 3.1.
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4 Simulation Setting

In this section we briefly describe the numerical setting the adopt for the QMC esti-
mation of the Greeks by the Malliavin approach formulas. Wefly illustrate the QMC
method and discuss how to conveniently find the parametettsedbcalization technique
on the flyby adaptive simulation.

4.1 The Quasi-Monte Carlo Framework

Considel = E[y/(X)] whereX is ad-dimensional random vector agd: RY — R, the QMC

N,
estimator ofl is fQMc = %"SX”) Ns is the number of simulations, as for the standard
MC. However the pointX; are not pseudo-random but are obtained by low-discrepasicy s
guences. Low-discrepancy sequences do not mimic randarbaédisplay better regularity
and distribution (see Niederreitér [12] for more on thisjeat). We do not enter into the de-
tails of QMC methods and their properties, we just stres&tighat such techniques do not
rely on the central limit theorem and the error bounds arergby the well known Hlawka-
Koksma inequality. Some randomness is then introducedderdo statistically estimate
the error of the estimation by the sampled variance; thik imschieved by a technique
calledscrambling(see Owen[15]). The randomized version of QMC is called Rarided
Quasi-Monte Carlo (RQMC).

In our numerical estimation we use a randomized version@fSihbol’ sequence with
Sobol’s property A, that is one of the most used low-discnegasequences (it is also a
digital net).

Finally, in order to improve the efficiency of RQMC and redube effect of the so-
calledcurse of dimensionalifywe employ the Linear Transformation (LT) technique intro-
duced in Imai and Tar_[5] in the enhanced version illustrate8abino [1€, 1i7]. The aim
of the LT algorithm is to concentrate the varianceyofinto the components with higher
variability so that we may profit from the higher regularitylow-discrepancy points and
then reduce the nominal dimensionyof

We briefly describe the LT algorithm. Consided aimensional normal random vector
T~ . (4;%), avectorw = (wy,...,wg) € RY and letf(T) = T%, wT; be a linear com-

bination of T. Let C be such that = CC" and assume ~ .4 (0,14) with T Z Ce. The
LT approach considei® asC = C-T = CCHA, with CCH the Cholesky decomposition &f.
Then, in the linear case, we can define:

d
gi(e) = F(C™MAg) = 5 anec+p-w, (42)
k=1

whereay = CY}/ -w=A-B,k=1...,d andB = (C°")Tw while C andA  are thek-th
columns of the matrixC andA, respectively. In the linear case, setting

B
LBl

with arbitrary remaining columns with the only constraiatAA™ = 14, leads to the follow-
ing expression:
o"(e) = p-w|Bles. (44)
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This is equivalent to reduce the effective dimension in tisadation sense to 1 and this
means to maximize the variance of the first compomsegnt

In a non-linear framework, we can use the LT constructionictvinelies on the first
order Taylor expansion af:

d Al s
Pe)~oe) + 3 2T aa, (@5)

The approximated function is linear in the standard norraatlom vectotAe ~ .47(0, ly)
and we can rely on the considerations above. The first coldrtireanatrixA* is then:

- 2
Aqf= arg max <69A(£)) (46)

.16Rd ael

. . . _— AE)\ 2 .
Since we have already maximized the variance contnbutwr(%) , we might con-

sider the expansion af aboutd — 1 different points in order to improve the method using
adequate columns. More precisely Imai and Tan [5] proposestximize:

. agA<ék>>2
Ax*=arg max | ——= 47
' gA’keRd( L (47)

subjectto A*|| =1 andA;*-Ax*=0,j=1,....k—1k<d.

Although equation[{43) provides an easy solution at eagh, $ite correct procedure
requires that the column vectéry* is orthogonal to all the previous (and future) columns.
Imai and Tan[[5] propose to chooge- & =E[e] =0, &= (1,0,...,0),...&=(1,1,1,...,0,...,0),
where thek-th point hask — 1 leading ones. We refer to Sabino [16, 17] for the details of a
fast and convenient implementation of this algorithm.

4.2 Enhancing the Localization Technique

The aim of the localization technique introduced in Foustiél. [2] is to reduce the variance
of the MC estimator for the sensitivities by localizing tiésigration by part formula around
the singularity. In the following, for simplicity, we illdusate the localization technique in the
case of vanilla call options.

Fournié et al.[[2] found that a (possible) expression fordéka of a call option is:

W(T)
XTo |’

_9

Adx

E[€T(S(T)-K) '] =E | (T)-K)" (48)

When the one-dimensional Brownian motidh(T) is large, the tern{S(T) — K)"W(T)
becomes even larger and has a high variance. The idea isdduce a localization function
around the singularity &.
Ford > 0, set
0, for y<K-9,
Ha(y) = { Y2 forye [K—8,K +4], (49)
1 for y>K+9,
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andG(z) = [°, H;(y)dy, then consideF5(z) = (z—K)* — G5(z). Consequently, we have:

8 =€"E [Hy(sm) 2322 + T [Ra(sT) S (50)
Fs vanishes foz < K — ¢ andz> K + 9, thusFs(S(T))W(T) vanishes whelV(T) is large.

The same analysis, with similar results, is valid for thé-sbjle Asian options and the
exotic option analyzed in Sectidn 3. Indeed, it suffices fgaee S(T) with the average
¥i.iWijS(tj) in the equations above and considerifarelsestatement to select the local-
ization function when the strike price is stochastic or tdian is exotic. In addition, in
the above options formulas, the role of the “weight” te‘-ﬁ%—) is played by the Skorohod
integral. We remark that the formulas that we derived to aaephek-th component of the
delta display weights that depend only on the Skorohoddrag¢m.r.t. thek-th component
of the multidimensional Brownian motion permitting to keettontrol the variance. If we
would have chosen to control all the components of the Skuatohtegral, taking all non-
zero components of the simple vector processve would have needed to tune different
M Brownian motions making the localization technique ledienht and computationally
more expansive.

The choice of the parametéris of fundamental importance for the result of the local-
ization technique because it influences the variance of tBeelstimator. In the following
we describe how to employ am the flyefficient value based on adaptive MC simulations.
For ease of notation, we consider once more a vanilla cabhopayoff bearing in mind that
the same applies to the payoffs under study. In such casese&deta make the substitution
illustrated above. A good candidate fdrwould be the one that minimizes the variance of
the second term in equatidn_{50).

. _ : Fs(SM)W(T)
o = argmirvar T (51)
and deriving w.r.td:
_Hs(SMHWM] _,. [ W@ ST -K)=3] _
Var T =Var T 5 =0. (52)
At this point we findd such that:
W) (ST -K)-d _
T 25 =0, P-as (53)
then
T)—K)W(T)
5= % (54)
XoT

In order to have an operative parameter we then consideoliogving approximation:

xoT

Var [M]

xoT

[ Var [(wqu)}

(55)

As already mentioned, the considerations here above dneafiti for the computation of the

greeks of the options we are considering. As already ititstt, it suffices to replacg%)
with the Skorohod integral and that is the reason why we hvaya shown the term this
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Table 1 Inputs Parameters

S50) = 100 Vi=1....M

r = 5%

T = 1

oi = 10%+ 5140% i=1...,M
Dil =50% i,l=1....M

term explicitly in the calculations above. The same sulistins must be made to calculate
eachd for the each component of the Delta of the call type Asian éakd exotic options
since these results hold true in the multidimensional regtis well.

In the spirit of adaptive MC techniques (see for instancerdain [€]), the variance
above can be easily estimated by a MC simulation and then xmgfthe same random
draws, one runs a second MC simulation in order to estimatgrbeks.

In the case of one dimensional digital options the compuortais slightly different.
Kohatsu-Higa and Pattersdn [7] claim that a good candidaté fs:

_ IR e@%dz \"?
5‘(13°¢<z(32dﬂ[68k<u>2}> | (56)

Knowing thatE [&5K(u)] = 0, under the assumption thafz) = e~%, we have

& = (Var [5%(u)]) 2.

(57)
The above parameter can be easily estimated by an adaptiveriviation in the multidi-
mensional setting as illustrated for call-type options.

We note that in our formulas the computation of #th delta depends only on the
th component of the Skorohod integral making the localimatechnique easier to apply
and the paramete¥ easy to calculate. Once more, we remark the fact that thesnva
and computational reduction considerations are not plessilthout using the Malliavin
Calculus approach.

5 Numerical Investigations

In this section we discuss the results of the (R)QMC estiwndbiased of the proposed ap-
proaches. We considét =5 andM = 10 underlying securities and an equally-spaced time
grid with N = 64 time points. Hence, the effective dimension of the (R)Q8it@ulation is
either 320 or 640. We estimate the multidimensional Deltath(respect to each underlying
asset) of each contract discussed before. The paramets®srcfor the simulation are listed
in Tabled.

We adopt RQMC simulations, based on the enhanced versimtrdted in Section 4.1,
and consists of 32 replications each of 2048 random poirites& random draws are ob-
tained from a Matosek affine plus random digital shift scrambled version (satoMek [9])
of the Sobol sequence satisfying Sobol's property A (seeo5d8]). We also avoid gen-
erating the 320 or 640-dimensional Sobol' sequence by ugihgtin Supercube Sam-
pling (LSS) method (Oweri_[14]). Briefly, this sampling mentsm is a scheme for cre-
ating a high-dimensional sequence from sets of lower-deiegral sequences. For instance,
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a 640-dimensional low discrepancy sequence can be cortatefrom 13 sets of a 50-
dimensional low discrepancy sequence by appropriatelgiaiaiizing the run order of the
points (the last concatenation neglects the last 10 diraes}iFor theoretical justification
of the LSS method, see Owen [14].

The computation is implemented in MATLAB on a laptop with arel Pentium M,
processor 1.60 GHz and 1 GB of RAM. We compute all the optinotdrons for the LT
technique in Sectidn 4.1. Such an LT construction is optifrthk integrand function is the
payoff of the option and hence is optimal for price estimatim contrast, our goal is the
computation of the Deltas and this would not seem to be thenapthoice. However, if
we would have applied the LT for the integrand function gibsnthe Malliavin approach
we would have got as many LT-decomposition matrices as th@psu of assets (one for
each delta). This setting would remarkably increase the @RE making the estimation
less convenient. The numerical experiments below justifyassumption.

5.1 Call with fix and floating Strike

As a first experiment, we compute the Deltas of an Asian bagk&in with fixed and float-
ing strike. We compare the estimated values of the Deltagt@neccuracies obtained with
different approaches: finite differences, localizatioritwdifferent parameters and finally
localization coupled with adaptive parameters. The chofdbe parameters for the local-
ization and finite difference techniques is of fundamentgdortance because it influences
the variance of the estimator (see for instance L'Ecuyg). [Bhe numerical derivative is
often calculated assuming = 1% (in our case 1% of the initial price of the underlying
securities); this may not be the optimal choice. In addjtinrthe multidimensional compu-
tation (gradient estimation) one should consider diffeder©ur approach based on adaptive
techniques overtakes this problem by calculating the pararson the fly These parameters
are optimal meaning that they provide the minimal variaricthe estimator (in the sense
described in Sectidn4.2). Talile 2 and Tdble 3 show the ssith different approaches ob-
tained for an at-the-money Asian call with fixed and floatitrike andM = 10 underlying
assets. All the estimated values are in statistical acooelbut display different accuracies.
The finite difference errors are higher than those obtainédlacalization (with the exemp-
tion of & = 5%). In particular, when the strike is floating, this tecluggeturns a completed
biased Delta associated with the highest volatility. Rindinite difference estimations re-
quire a computational effort that is4B times higher that those obtained with localization.
The adaptive localization and standard localization perfequally well with the former
having slightly better precision and the advantage of selgbetter localization parameters
for each component.

In order to have a complete picture of the sensitivity of tieeulssed techniques, we
repeat the experiment considering oMy= 4 assets and several strike prices. This further
analysis cannot be performed for Asian option with floatitrike. Figurd 2 an@]1 show the
estimated Deltas and errors, respectively. Since forettbney options the finite difference
approach provided lower accuracy, we avoided to reporegslts. In term of precision, in
this setting as well, the standard localization with= 1% and the adaptive localization
return the most accurate results. In particular, these ppocaches perform equally well
with the former one having a more constant trend acrossalitbneyness.
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Adaptive Localization Fin. Diff.
0=1% 0=5% 0 =10% 0=1%
A +err A +err A +err A +err A +err
543 | 0.18 | 543 | 0.28 | 5.4 2.9 543 | 0.19 | 543 | 0.31
550| 0.23 | 550 | 0.30 | 55 2.7 550 | 0.26 | 5.51 | 0.49
558 | 0.29 | 557 | 0.30 | 5.6 2.9 558 | 0.34 | 5.60 | 0.52
566 | 0.30 | 5.65| 0.33 | 5.6 2.9 566 | 0.39 | 5.69 | 0.98
574 0.39 | 573 | 041 | 5.7 3.0 574 | 035 | 579 | 0.81
582 | 043 | 581 | 044 | 5.8 3.1 583 | 0.50 | 5.88 | 0.87
590 | 0.45 | 589 | 040 | 5.9 2.9 591 | 052 | 599 | 1.27
598 | 0.35 | 597 | 041 | 6.0 3.0 6.00 | 051 | 6.10 | 0.87
6.07 | 0.47 | 6.05| 0.40 | 6.0 3.2 6.09 | 058 | 6.20 | 1.40
6.16 | 0.50 | 6.13 | 0.51 | 6.1 3.0 6.17 | 0.64 | 6.29 | 1.12

Table 2 Call Option with Fixed StrikeM = 10: At-the-Money Deltas and Errors (00).

Adaptive Localization Fin. Diff.
0=1% 0=5% 0=10% 0=1%
A +err A +err A +err A +err A +err

004 | 019 | 004 | 019 | 004 | 0.17 | 0.04 0.13 0.04 0.11
012 | 020 | 0.12 | 0.23 | 0.11 | 0.30 | 0.12 0.19 0.13 0.19
019 | 032 | 019 | 035 | 0.19 | 0.32 | 0.20 0.26 0.22 0.33
027 | 036 | 0.27 | 0.38 | 0.27 | 0.36 | 0.28 0.32 031 0.44
034 | 029 | 035 | 037 | 0.34 | 045 | 0.36 0.43 041 0.45
042 | 035 | 043 | 035 | 042 | 047 | 0.45 0.44 0.51 0.63
050 | 039 | 050 | 047 | 050 | 0.47 | 053 0.51 0.61 0.77
058 | 050 | 059 | 055 | 058 | 0.61 | 0.62 0.57 0.71 0.98
067 | 045 | 067 | 055 | 0.67 | 0.64 | 0.71 0.51 0.81 1.65
074 | 064 | 0.75 | 064 | 0.75 | 058 | 1.72 | 23373 | 7x10* | 2x 20/

Table 3 Call Option with Floating StrikeM = 10: Deltas and Errorsq100).

5.2 Digital Call

The aim of this subsection is to describe the results of onrerical investigation assuming
Asian digital options. The following discussion and destion have a double purpose. Since
the payoff of digital option can be seen as the derivativett{gn sense of distribution) of
the payoff of a call option, the methodology and the localiraparameters described in
Sectior 3.1l can be be rearranged and used to compute the G@mdheross sensitivities
in the multidimensional setting) of a call option (natuyallith some changes). In addition,
the Delta of a digital option is a more demanding task due ¢oittegular payoff that is
pathologically not differentiable.

We repeat the organization of our discussion as done for ien/call options and con-
sider only a fixed strike price. Tablg] 4 shows the estimatetlisimensional Deltas and
their errors for an at-the-money digital option Bh= 10 underlying securities. The best ac-
curacy with the standard localization technique is not@gkd anymore witld = 1%, that
means that in some situations it is not the optimal choiceointrast, the adaptive local-
ization is the best performing technique in terms of precisit returns better localization
parameters that provide an unbiased estimator with lowggirvee.

As done before, we run a QMC simulation considering dvily= 4 assets and analyze
the results by varying the strike price. Figlile 3 Ahd 4 shanetftimated Deltas and errors,
respectively. Once more the adaptive localization apprat&plays the lowest error.
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Fig. 1 Call Option with Fixed StrikeM = 4: Estimation Errors.
Adaptive: Solid Line, Locd = 0.01: Dashed line, Locd = 0.1: Dotted line, Loc.d = 0.05: Dash-dotted
line.

Adaptive Localization Fin. Diff.
0=1% 0=5% 0=10% 0=1%
A +err A +err A +err A +err A +err
030 | 015 | 030 | 0.75 | 0.31 38 0.30 | 0.18 | 0.30 | 0.19
029 | 023 | 029 | 086 | 0.31 35 029 | 031 | 0.29 | 0.27
029 | 029 | 030 | 0.74 | 0.31 3.6 029 | 031 | 028 | 0.34
029 | 045 | 029 | 0.80 | 0.30 32 0.28 | 038 | 0.28 | 0.45
029 | 048 | 029 | 0.78 | 0.31 3.6 028 | 041 | 0.26 | 0.49
029 | 056 | 029 | 0.88 | 0.31 34 0.27 | 049 | 025 | 0.49
028 | 056 | 028 | 0.82 | 0.31 3.6 0.27 | 064 | 0.24 | 0.65
0.27 | 055 | 028 | 098 | 0.30 3.6 025 | 048 | 023 | 0.50
0.27 | 058 | 028 | 0.80 | 0.29 39 024 | 072 | 022 | 0.77
0.27 | 0.60 | 0.27 | 0.86 | 0.30 34 024 | 070 | 0.20 | 0.60

Table 4 Digital Option with Fixed StrikeM = 10: At-the-Money Deltas and Errors.
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Fig. 2 Call Option with Fixed StrikeM = 4: Estimated Deltas with the Adaptive Localization.

5.3 Exotic Option

As a last experiment we perform a QMC numerical simulaticorder to estimate the Deltas
of an exotic option. Tablel5 and Figufds 5 &hd 6 present thétsesf this experiment. In this
last example all the approaches perform equally well, aaéiotic structure of the payoff
makes its estimator unsensitive to the different localimaparameter. The finite difference
is also performing well but is less precise if we take intocact the computational burden
that is 261 times higher.

6 Concluding Remarks

In this paper we have investigated the use of Malliavin dakin order to calculate the
Greeks of multiasset complex path-dependent options by @Mtilation. As a first re-
sult we have derived the multidimensional version of therfaias obtained by Montero
and Kohatsu-Higa [11] in the single asset case.The mulédsional setting shows the ad-
vantage of the Malliavin Calculus approach over alteregtdchniques that have been previ-
ously proposed. These different techniques are hard teeimght and in particular, are com-
putationally time consuming when considering multiassgivdtive securities. In addition,
their estimators potentially display a high variance (s@arfstance Chen and Glasserman
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Fig. 3 Digital Option with Fixed StrikeM = 4: Estimation Errors.
Adaptive: Solid Line, Locd = 0.01: Dashed line, Locd = 0.1: Dotted line, Loc.d = 0.05: Dash-dotted
line.

Adaptive Localization Fin. Diff.
0=1% 0=5% 0 =10% 0=1%
A +err A +err A +err A +err A +err
6.4 11 6.5 13 6.5 18 6.5 0.8 6.5 1.0
6.6 16 6.6 12 6.6 18 6.6 10 6.6 11

Table 5 Exotic, M = 10: At-the-Money Deltas and Errors (00).
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Fig. 4 Digital Option with Fixed StrikeM = 4: Estimated Deltas with the Adaptive Localization.

[Z]). In contrast, the use of the generalized integral byt framula of Malliavin Calculus
gives enough flexibility in order to find unbiased estimateith low variance. In the multi-
dimensional context, we have found convenient formulasatieeasy and flexible to employ
and permit to improve the localization technique. Finallg have performed a detailed
analysis on how the localization parameters can influenegtécision of the estimators.
Moreover, we have proposed an alternate approach, basedaptive (Q)MC techniques
that returns convenient parameters that can be obtain¢lde flightin the simulation. This
approach provides a better precision with the same conipogturden. However further
studies would be necessary to enhance its accuracy assdiffigargnt dynamics and payoff
functions.

The proposed procedures, coupled with the enhanced ves$iQuasi-Monte Carlo
simulations as illustrated in Sabirio [16], are discussegth@n the numerical estimation of
the Deltas of call, digital Asian-style and Exotic basketiaps with a fixed and a floating
strike price in a multidimensional Black-Scholes market.
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