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Abstract

We propose a new family of copulas generalizing the Farlie-Gumbel-Morgenstern family and
generated by two univariate functions. The main feature of this family is to permit the
modeling of high positive dependence. In particular, it is established that the range of the
Spearman’s Rho is [−3/4, 1] and that the upper tail dependence coefficient can reach any
value in [0, 1]. Necessary and sufficient conditions are given on the generating functions in
order to obtain various dependence properties. Some examples of parametric subfamilies are
provided.
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1 Introduction

A bivariate copula defined on the unit square I2 := [0, 1]2 is a bivariate cumulative distribution
function (cdf) with univariate uniform I margins i.e. verifying the following three properties:

(P1) C(u, 0) = C(0, v) = 0, ∀(u, v) ∈ I2,

(P2) C(u, 1) = u and C(1, v) = v, ∀(u, v) ∈ I2,

(P3) ∆(u1, u2, v1, v2) := C(u2, v2)−C(u2, v1)−C(u1, v2) +C(u1, v1) ≥ 0, ∀(u1, u2, v1, v2) ∈ I4,
such that u1 ≤ u2 and v1 ≤ v2.

Sklar’s Theorem [29] states that any bivariate distribution with cdf H and marginal cdf F and
G can be written H(x, y) = C(F (x), G(y)), where C is a copula. This result justifies the use of
copulas for building bivariate distributions.

One of the most popular parametric family of copulas is the Farlie-Gumbel-Morgenstern
(FGM) family defined when θ ∈ [−1, 1] by

CFGM

θ (u, v) = uv + θu(1− u)v(1 − v), (1.1)

and studied in [7, 10, 18]. A well-known limitation to this family is that it does not allow the
modeling of large dependences since Spearman’s Rho is limited to ρ ∈ [−1/3, 1/3]. Basing on
this remark, more general copulas have been introduced in 1960 by Sarmanov [26],

CSarmanov

θ,φ,ψ (u, v) = uv + θφ(u)ψ(v), (1.2)
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an re-discovered in 2004 by Rodŕıguez-Lallena and Úbeda-Flores [25]. See [14] for an extension
of this model. Properties of Sarmanov copulas are studied in [16, 27]. Unfortunately, character-
ization of admissible parameters θ and functions φ and ψ is not tractable to obtain closed-form
bounds on the corresponding Spearman’s Rho. Thus, several parametric sub-families of (1.2)
were introduced. In [21], it is remarked that copulas with quadratic sections [23] are not able to
model large dependences. Copulas with cubic sections are thus introduced, with the conclusion
that copulas with higher order polynomial sections would increase the dependence degrees but
simultaneously the complexity of the model. In [11], two kernel extensions of FGM copulas are
studied

CHK1

θ,γ (u, v) = uv + θu(1− u)γv(1− v)γ , (1.3)

for γ ≥ 1 and
CHK2

θ,γ (u, v) = uv + θu(1− uγ)v(1− vγ), (1.4)

for γ ≥ 1/2. It is shown that Spearman’s Rho can be increased up to approximatively 0.39 while
the lower bound remains −1/3. Another similar extension is

CLX

θ,p,q(u, v) = uv + θup(1 − u)qvp(1− v)q, (1.5)

see [15]. Copulas (1.3) and (1.4) are particular cases of Bairamov-Kotz family [3] defined by

CBK

θ,p,q,n(u, v) = upvp [1 + θ(1− uq)n(1− vq)n] , (1.6)

and with associated Spearman’s Rho ρ ∈ [−0.48, 0.501594]. Moreover, it has been remarked
in [12] that dependence degrees arbitrarily close to ±1 cannot be obtained with polynomial
functions of fixed degree. An alternative approach to generalize the FGM family of copulas is
to consider the semi-parametric family of symmetric copulas defined by

CSP

θ,φ(u, v) = uv + θφ(u)φ(v), (1.7)

with θ ∈ [−1, 1]. It was first introduced in [24], and extensively studied in [1, 2]. Let us precise
that, in this paper and in accordance with [22], page 38, a copula C is said to be symmetric if
C(u, v) = C(v, u) for all (u, v) ∈ I2. Clearly, this family also includes the FGM copulas (1.1)
(which contains all copulas with both horizontal and vertical quadratic sections [23]), the para-
metric family of symmetric copulas with cubic sections proposed in [21], equation (4.4), and
kernel families (1.3), (1.4) and (1.5). It can be shown that, for a properly chosen function φ,
the range of Spearman’s Rho is extended to [−3/4, 3/4], whereas the upper tail dependence co-
efficient is always null. We refer to [8] for a very interesting method for constructing admissible
functions φ.

In this paper, we propose an extension of the CSP

θ,φ family where θ is a univariate function.
This modification allows the introduction of a singular component concentrated on the diagonal
v = u. Consequently, the modeling of strong positive dependences is possible since this new
family can take into account the extremal case of positive functional dependence between two
random variables. Moreover, arbitrary upper tail dependence coefficients can be reached in [0, 1].
The new family is described in Section 2 and the associated Spearman’s Rho and tail dependence
coefficients are studied in Section 3. Section 4 is dedicated to the dependence properties of this
new family of copulas. Finally, some examples of copulas taken in this family are provided in
Section 5. Lemmas are postponed to the appendix.

2 Definition and basic properties

We consider the family of functions defined on I2 by:

Cθ,φ(u, v) = uv + θ(max(u, v))φ(u)φ(v), (2.1)
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where φ and θ are two I → R continuously differentiable functions. Remark that, if θ or φ is the
null function on I then Cθ,φ = Π, the independent copula. In the sequel, we thus assume that
φ vanishes at most on isolated points of I, and that θ is not the zero function on I. The next
theorem gives sufficient and necessary conditions on φ and θ to ensure that Cθ,φ is a copula.

Theorem 1 Cθ,φ is a copula if and only if φ and θ satisfy the following conditions :

(a) φ(0) = 0,

(b) φ(1)θ(1) = 0,

(c) φ′(u)(θφ)′(v) ≥ −1 for all 0 < u ≤ v < 1,

(d) θ′(u) ≤ 0 for all u ∈
◦

I= (0, 1).

Proof: The proof involves four steps.
1. First, it is clear that (P1) ⇔ (a) and (P2) ⇔ (b).
2. Second, we show that (P3) ⇒ (c). To this end, consider 0 < u1 < u2 ≤ v1 < v2 < 1. In this
case, ∆(u1, u2, v1, v2) can be rewritten as

∆(u1, u2, v1, v2) = (u2 − u1)(v2 − v1) + (φ(u2)− φ(u1))(θ(v2)φ(v2)− θ(v1)φ(v1)), (2.2)

and thus ∆(u1, u2, v1, v2) ≥ 0 implies

φ(u2)− φ(u1)

u2 − u1

θ(v2)φ(v2)− θ(v1)φ(v1)

v2 − v1
≥ −1.

Letting u1 → u−2 and v1 → v−2 in the previous inequality yields (c).
3. Similarly, we now show that (P3) ⇒ (d). Taking 0 < u < v < 1, we have

∆(u, v, u, v) = (v − u)2 + θ(v)φ2(v) + θ(u)φ2(u)− 2φ(u)φ(v)θ(v),

= (v − u)

[

(v − u) + θ(v)φ(v)
φ(v) − φ(u)

v − u
− φ(u)

(θφ)(v) − (θφ)(u)

v − u

]

.

Letting u→ v− in the inequality ∆(u, v, u, v) ≥ 0 yields

θ(v)φ(v)φ′(v)− φ(v)(θφ)′(v) ≥ 0,

which is equivalent to φ2(v)θ′(v) ≤ 0. This implies that θ′(v) ≤ 0 for all v ∈ I such that
φ(v) 6= 0. Since φ vanishes only on isolated points and θ′ is continuous, (d) is proved.
4. Finally, it remains to prove that (c, d) ⇒ (P3). Let (u1, u2, v1, v2) ∈ I4 such that u1 ≤ u2
and v1 ≤ v2. Let us denote by R the rectangle [u1, u2]× [v1, v2], by T the triangle with vertices
(0, 0), (0, 1) and (1, 1), and by T̄ the triangle T̄ = I2 \ T . Suppose (c, d) hold and let us prove
that ∆(R) := ∆(u1, u2, v1, v2) ≥ 0. Three cases are considered.

(i) If R ⊂ T , i.e. u2 ≤ v1 then ∆(u1, u2, v1, v2) can be written as in (2.2) and the mean value
theorem entails that there exist u ∈ (u1, u2) and v ∈ (v1, v2) such that

∆(u1, u2, v1, v2) = (u2 − u1)(v2 − v1)

[

1 +
φ(u2)− φ(u1)

u2 − u1

θ(v2)φ(v2)− θ(v1)φ(v1)

v2 − v1

]

= (u2 − u1)(v2 − v1)
[

1 + φ′(u)(θφ)′(v)
]

≥ 0,

as a consequence of (c).

(ii) If R ⊂ T̄ , then symmetry considerations show that ∆(u1, u2, v1, v2) = ∆(v1, v2, u1, u2) ≥ 0
from the case (i).
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(iii) If R ∩ T 6= ∅ and R ∩ T̄ 6= ∅, then R can be decomposed as non-overlapping rectangles
R = R1 ∪ R2 ∪ R3 such that R1 ⊂ T or R1 ⊂ T̄ , R2 ⊂ T or R2 ⊂ T̄ and R3 is a square
of the form [u, v] × [u, v]. Thus, ∆(R) = ∆(R1) + ∆(R2) + ∆(R3) and (i), (ii) entail that
∆(R1) ≥ 0 and ∆(R2) ≥ 0. Let us focus on ∆(R3):

∆(u, v, u, v) = (v − u)2 + θ(v)φ(v)[φ(v) − φ(u)]− φ(u)[θ(v)φ(v) − θ(u)φ(u)]

= (v − u)2 +

∫ v

u
[θ(v)φ(v)φ′(t)− φ(u)(θφ)′(t)]dt.

Note that (c) implies that for all 0 < t < v < 1,
∫ v

t
φ′(t)(θφ)′(y)dy ≥

∫ v

t
−1dy = t− v,

and thus φ′(t)(θφ)(v) ≥ t−v+θ(t)φ(t)φ′(t). Similarly, (c) shows that for all 0 < u < t < 1,

(θφ)′(t)

∫ t

u
φ′(x)dx ≥ u− t,

and thus −(θφ)′(t)φ(u) ≥ u− t− (θφ)′(t)φ(t). It follows that

∆(u, v, u, v) ≥

∫ v

u
[(θφ)(t)φ′(t)− φ(t)(θφ)′(t)]dt = −

∫ v

u
θ′(t)φ2(t)dt ≥ 0

under condition (d). As a conclusion, ∆(R) ≥ 0 and (P3) is proved.

Note that (b) is true if φ(1) = 0 or θ(1) = 0. We refer to Section 5 for a detailed study of
the corresponding sub-families. Although the copula Cθ,φ has full support I2, the following
proposition shows that, in general, it is neither absolutely continuous, nor singular.

Proposition 1 The copula Cθ,φ has both absolutely continuous and singular components Aθ,φ
and Sθ,φ, respectively, given by

Aθ,φ(u, v) = uv + θ(max(u, v))φ(u)φ(v) +

∫ min(u,v)

0
(θ′φ2)(t)dt,

and

Sθ,φ(u, v) = −

∫ min(u,v)

0
(θ′φ2)(t)dt.

Proof: The absolutely continuous component of Cθ,φ is given by

Aθ,φ(u, v) =

∫ u

0

∫ v

0

∂2

∂s∂t
Cθ,φ(s, t)dtds,

with
∂2

∂s∂t
Cθ,φ(s, t) = 1 + (θφ)′(max(s, t))φ′(min(s, t)).

Assume for instance v ≥ u. Then, Aθ,φ can be written as

Aθ,φ(u, v) = uv +

∫ u

0

∫ s

0
(θφ)′(s)φ′(t)dtds +

∫ u

0

∫ v

s
(θφ)′(t)φ′(s)dtds

= uv + (θφ)(v)φ(u) +

∫ u

0
(θ′φ2)(s)ds

= Cθ,φ(u, v) +

∫ u

0
(θ′φ2)(s)ds,

and the conclusion follows. The case v < u is similar.

4



Thus, the mass of the singular component is concentrated on the first diagonal of the square I2.
Denoting by (U, V ) a uniform random pair on I2 with copula Cθ,φ, we have

P(U = V ) = −

∫ 1

0
(θ′φ2)(t)dt.

Besides, the copula Cθ,φ has no singular component if and only if θ is a constant function. This
case is described more precisely in Section 5.

3 Measures of association

In the next two sections, we note (X,Y ) a random pair with joint cdf H, copula C and margins
F and G. The case C = Cθ,φ is explicitly precised.

3.1 Spearman’s Rho

Several invariant to strictly increasing function measures of association between the components
of the random pair (X,Y ) can be considered: the normalized volume between graphs of H
and FG [28], Kendall’s Tau [22], paragraph 5.1.1, Gini’s coefficient [22], Blomqwist’s medial
correlation coefficient [22], paragraph 5.1.4, and Spearman’s Rho [22], paragraph 5.1.2, which is
the probability of concordance minus the probability of discordance of two random pairs with
joint cdf H and FG. Here, we focus on this latter measure, showing in Subsection 5.3 that this
measure can achieve any value in [−3/4, 1]. A first step towards this result consists in remarking
that Spearman’s Rho can be written only in terms of the copula C:

ρ = 12

∫ 1

0

∫ 1

0
C(u, v)dudv−3.

Note that ρ coincides with the correlation coefficient between the uniform marginal distributions.
In the case of a copula generated by (2.1), it can be expressed thanks to the functions φ and θ.

Proposition 2 Let (X,Y ) be a random pair with copula Cθ,φ. The Spearman’s Rho is given by

ρθ,φ = 12

[

Φ2(1)θ(1) −

∫ 1

0
Φ2(t)θ′(t)dt

]

,

where Φ(t) =
∫ t
0 φ(x)dx.

Proof: Clearly, Spearman’s Rho can be expanded as

ρθ,φ = 12

[
∫ 1

0

∫ 1

v
φ(u)φ(v)θ(u)dudv +

∫ 1

0

∫ v

0
φ(u)φ(v)θ(v)dudv

]

.

An integration by parts shows that both terms are equal and thus,

ρθ,φ = 24

∫ 1

0

(

φ(v)θ(v)

∫ v

0
φ(u)du

)

dv

= 24

∫ 1

0
θ(v)φ(v)Φ(v)dv

= 12

[

Φ2(1)θ(1) −

∫ 1

0
Φ2(t)θ′(t)dt

]

,

by a new integration by parts.
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3.2 Tail dependence

The upper tail dependence can be quantified by the upper tail dependence coefficient [13],
paragraph 2.1.10, defined as:

λ = lim
t→1−

P(F (X) > t|G(Y ) > t).

Again, this coefficient can be written only in terms of the copula C (see [22], Theorem 5.4.2):

λ = lim
u→1−

C̄(u, u)

1− u
,

where C̄ is the survival copula, i.e. C̄(u, v) = 1 − u− v + C(u, v). In our family, the following
simplified expression can be obtained:

Proposition 3 Let (X,Y ) be a random pair with copula Cθ,φ. The upper tail dependence coef-
ficient is: λθ,φ = −φ2(1)θ′(1).

Proof: Clearly, the upper tail dependence coefficient can be simplified as

λθ,φ = lim
u→1−

φ2(u)θ(u)

1− u
.

Taking into account of (b) yields

λθ,φ = − lim
u→1−

φ2(1)θ(1) − φ2(u)θ(u)

1− u
= −(φ2θ)′(1) = −φ2(1)θ′(1),

and the result is proved.

Note that a coefficient measuring the lower tail dependence can also be defined as,

lim
t→0+

P(F (X) ≤ t|G(Y ) ≤ t).

but it is always zero in the considered family.

4 Concepts of dependence

In this section, for the sake of simplicity, we assume that X any Y are exchangeable. Several
concepts of positive dependence have been introduced and characterized in terms of copulas. X
and Y are

• Positively Quadrant Dependent (PQD) if P(X ≤ x, Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y), for all
(x, y) ∈ R

2 or equivalently
∀(u, v) ∈ I2, C(u, v) ≥ uv. (4.1)

• Left Tail Decreasing (LTD) if P(Y ≤ y|X ≤ x) is non-increasing in x for all y, or equiva-
lently, see Theorem 5.2.5 in [22], u→ Cθ,φ(u, v)/u is non-increasing for all v ∈ I.

• Right Tail Increasing (RTI) if P(Y > y|X > x) is non-decreasing in x for all y or, equiva-
lently, u→ (v − Cθ,φ(u, v))/(1 − u) is non-increasing for all v ∈ I.

• Left Corner Set Decreasing (LCSD) if P(X ≤ x, Y ≤ y|X ≤ x′, Y ≤ y′) is non-increasing
in x′ and y′ for all x and y, or equivalently, see Corollary 5.2.17 in [22], C is a totally
positive function of order 2, i.e. for all (u1, u2, v1, v2) ∈ I4 such that u1 ≤ u2 and v1 ≤ v2,
one has

C(u1, v1)C(u2, v2)− C(u1, v2)C(u2, v1) ≥ 0. (4.2)
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• Right Corner Set Increasing (RCSI) if P(X > x, Y > y|X > x′, Y > y′) is non-decreasing
in x′ and y′ for all x and y, or equivalently, the survival copula Ĉ associated to C is a
totally positive function of order 2.

Concepts of negative dependence can be similarly defined. Recall that θ is supposed not to be
the null function on I and introduce

v∗ = sup{v ∈ I; θ(v) 6= 0}.

The point v∗, which can be seen as the endpoint of θ, plays a central role in the dependence
properties of the copula Cθ,φ, see Theorem 2 below.

Theorem 2 Let (X,Y ) a random pair with copula Cθ,φ. X and Y are

(i) PQD if and only if θ(u) ≥ 0 for all u ∈ I and φ has a constant sign on [0, v∗].

(ii) LTD if and only if θ(u) ≥ 0 for all u ∈ I and u→ φ(u)/u and u→ θ(u)φ(u)/u are either
both non-increasing or both non-decreasing on [0, v∗].

(iii) RTI if and only if θ(u) ≥ 0 for all u ∈ I and u→ φ(u)/(1− u) and u→ θ(u)φ(u)/(1− u)
are either both non-increasing or both non-decreasing on [0, v∗].

(iv) LCSD if and only if they are LTD.

(v) RCSI if and only if they are RTI.

Proof: (i): Condition (4.1) can be rewritten as

θ(max(u, v))φ(u)φ(v) ≥ 0, ∀(u, v) ∈ I2. (4.3)

Suppose first that (X,Y ) is PQD. Considering u = v in (4.3) shows that θ(u)φ2(u) ≥ 0 for all
u ∈ I. Since φ vanishes at most on isolated points, θ(u) ≥ 0 almost everywhere on I. Recalling
that θ is continuous on I, we have θ(u) ≥ 0 for all u ∈ I. Moreover, from (d), θ in non-increasing
on I, and consequently θ(t) > 0 for all t ∈ [0, v∗). Thus, for all (u, v) ∈ [0, v∗)2, θ(max(u, v)) > 0
and condition (4.3) yields φ(u)φ(v) ≥ 0 which implies that φ has a constant sign on [0, v∗].
Conversely, suppose θ(u) ≥ 0 for all u ∈ I and φ has a constant sign on [0, v∗]. For symmetry
reasons, it suffices to verify condition (4.3) for 0 ≤ u ≤ v ≤ 1. In this case θ(v)φ(u)φ(v) = 0 if
v ≥ v∗ and θ(v)φ(u)φ(v) ≥ 0 otherwise.

(ii) and (iii): Proofs are similar. Focusing on (iii), the necessary and sufficient condition can
be rewritten as

u→ θ(max(u, v))φ(v)φ(u)/(1 − u) is non-decreasing for all v ∈ [0, v∗]. (4.4)

Supposing that (X,Y ) is RTI also implies that (X,Y ) is PQD and consequently θ(u) ≥ 0 for
all u ∈ I and φ has a constant sign on [0, v∗]. Assuming for example that φ(u) ≥ 0 for all
u ∈ [0, v∗], condition (4.4) implies that u → φ(u)/(1 − u) is non-decreasing on [0, v] and that
u → θ(u)φ(u)/(1 − u) is non-decreasing on [v, v∗], for all v ∈ [0, v∗]. Thus, u → φ(u)/(1 − u)
and u → θ(u)φ(u)/(1 − u) are both non-decreasing on [0, v∗]. Conversely, assume θ(u) ≥ 0 for
all u ∈ I, and that u → φ(u)/(1 − u) and u → θ(u)φ(u)/(1 − u) are non-decreasing on [0, v∗].
From Lemma 1(i) in the appendix, φ is non-negative on [0, v∗], and (4.4) is clearly true.

(iv) and (v): Proofs are similar. Let us focus on (iv). It is well-known that (X,Y ) LCSD
implies (X,Y ) LTD. Let us prove that the converse result is also true in the Cθ,φ family. Suppose
(X,Y ) is LTD. Following (ii), one can assume that u → φ(u)/u is non-increasing and φ(u) ≥ 0
for all u ∈ [0, v∗], together with θ(u) ≥ 0 for all u ∈ I. Lemma 1(ii) entails that u→ θ(u)φ(u)/u

7



is non-increasing on [0, v∗]. Four cases have to be considered to prove (4.2):
– If 0 ≤ u1 ≤ u2 ≤ v1 ≤ v2 ≤ 1, condition (4.2) reduces to A1 ≥ 0, where we have defined

A1 :=

[

θ(v1)φ(v1)

v1
−
θ(v2)φ(v2)

v2

] [

φ(u1)

u1
−
φ(u2)

u2

]

.

If u2 ≤ v∗, Lemma 2 in the appendix yields A1 ≥ 0. Otherwise, u2 > v∗ implies v1 ≥ v∗ and
Lemma 2 yields A1 = 0.
– If 0 ≤ u1 ≤ v1 ≤ u2 ≤ v2 ≤ 1, condition (4.2) can be rewritten A2 ≥ 0, with

A2 := A1 + Cθ,φ(u1, v2)[θ(v1)− θ(u2)]
φ(u2)φ(v1)

u1u2v1v2
.

If u2 ≤ v∗, then φ(u2)φ(v1) ≥ 0 and Lemma 2 yields A1 ≥ 0. Consequently, A2 ≥ 0.
If v1 ≤ v∗ ≤ u2, then θ(u2) = θ(v2) = 0 and A2 reduces to

A2 =
θ(v1)φ(v1)φ(u1)

u1v1
≥ 0.

Finally, if v∗ ≤ v1, then A2 = 0.
– If 0 ≤ u1 ≤ v1 ≤ v2 ≤ u2 ≤ 1, condition (4.2) can be rewritten A3 ≥ 0, with

A3 := A1 +
φ(u2)

u2

[

φ(v1)

v1

Cθ,φ(u1, v2)

u1v2
(θ(v1)− θ(u2)) +

φ(v2)

v2

Cθ,φ(u1, v1)

u1v1
(θ(u2)− θ(v2))

]

= A1 +
φ(u2)

u2

[

(θ(v1)− θ(u2))

(

φ(v1)

v1
−
φ(v2)

v2

)

+ (θ(v1)− θ(v2))
φ(v2)

v2

(

1 + θ(u2)
φ(u1)

u1

φ(v1)

v1

)]

.

If u2 ≤ v∗, then Lemma 2 yields A1 ≥ 0 and all the above differences are non-negative. Conse-
quently, A3 ≥ 0.
If v2 ≤ v∗ ≤ u2, then θ(u2) = 0 and A3 reduces to

A3 =

(

θ(v1)φ(v1)

v1
−
θ(v2)φ(v2)

v2

)

φ(u1)

u1
≥ 0.

If v1 ≤ v∗ ≤ v2, then θ(u2) = θ(v2) = 0 and A3 reduces to

A3 =
θ(v1)φ(v1)

v1

φ(u1)

u1
≥ 0.

Finally, if v∗ ≤ v1, then A3 = 0.
– The three remaining situations are equivalent to the three previous ones since the considered
copulas are symmetric in the arguments.

5 Sub-families and examples

Recall that (b) is true if φ(1) = 0 or θ(1) = 0. The corresponding sub-families are now studied
in details and examples of copulas in each sub-family are given.
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5.1 The case θ(1) = 0

Let us focus on the sub-family of Cθ,φ defined by conditions (a), (b1), (c) and (d), where

(b1) θ(1) = 0,

First, note that (b1, d) implies that θ is non negative on I. From Proposition 2 and (b1),
Spearman’s Rho is given by

ρθ,φ = −12

∫ 1

0
Φ2(t)θ′(t)dt, (5.1)

and (d) entails that, in this sub-family, ρθ,φ ≥ 0. Second, we focus on copulas generated by
univariate cdf and defined by

CK̄−1,Id(u, v) = uv[1 + K̄−1(max(u, v))],

where K is a cdf on R
+, K̄ is the associated survival function, K̄−1 is its generalized inverse

defined as K̄−1(x) = K−1(1 − x) = inf{t ≥ 0, K(t) ≥ 1 − x} and φ = Id is the identity
function. We assume that K is strictly increasing and differentiable on (K−1(0),K−1(1)), the
associated point distribution function is denoted by k. The following corollary provides sufficient
and necessary conditions to ensure that CK̄−1,Id is a copula. It shows that the hazard function
k/K̄ is the key quantity in this context.

Corollary 1 CK̄−1,Id is a copula if and only if, for all t ≥ 0 such that 0 < K(t) < 1,

k(t)

K̄(t)
≥

1

1 + t
. (5.2)

Proof: Condition (a) is verified since φ(x) = x. Besides, K(0) = 0 is equivalent to condition
(b). Condition (c) is equivalent to

x

k
(

K̄−1(x)
) − K̄−1(x) ≤ 1,

for all x ∈ I, which can be rewritten as

K̄(t)

k(t)
− t ≤ 1,

for all t ≥ 0 by introducing t = K̄−1(x). The conclusion follows from Theorem 1.

As a consequence of condition (5.2), one can easily show that necessarily, K̄(x) ≤ 1/(1 + x).
Let us also note that, from (5.1) and Proposition 3, Spearman’s Rho as well as the upper tail
dependence coefficient can be rewritten in terms of K as

ρK̄−1,Id = 3

∫ +∞

0
K̄4(t)dt and λK̄−1,Id = 1/k(0). (5.3)

In this sub-family, Blomqwvist’s medial correlation coefficient β benefits of a nice interpretation

βK̄−1,Id = 4CK̄−1,Id(1/2, 1/2) − 1 = K̄−1(1/2) = K−1(1/2),

as the median of the cdf K. Besides, characterizations of dependence properties in Proposition 2
can be simplified as
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Corollary 2 Let (X,Y ) a random pair with copula CK̄−1,Id. X and Y are always PQD, LTD
and LCSD. Moreover, X and Y are RTI and RCSI if and only if for all t > 0 such that
0 < K(t) < 1,

k(t)

K(t)K̄(t)
≥

1

t
.

The proof is similar to the one of Corollary 1. In examples 1,...4, all the PQD, LTD, LCSD,
RTI and RCSI properties hold.
Examples

1. A first example of copula belonging to this sub-family is the Cuadras-Augé copula [4]:

CCA

α (u, v) = min(u, v)α(uv)1−α =Mα(u, v)Π1−α(u, v),

where α ∈ [0, 1], M is the Fréchet upper bound defined by M(u, v) = min(u, v) and Π is the
product copula Π(u, v) = uv. The copula CCA

α can be interpreted as the weighted geometric
mean of M and Π. It is generated by the CK̄−1,Id family with K̄(x) = (1 + x)−1/α, which is the
survival function of a Generalized Pareto Distribution (GPD) with positive shape parameter
1/α (see for instance Table 1.2.6 in [5]). The associated Spearman’s Rho given by (5.3) is
ρCA

α = 3α/(4 − α) and the upper tail dependence coefficient is λCA

α = α.
2. Another similar example is the family (B11), introduced in [13], page 148:

CB11

σ (u, v) = σmin(u, v) + (1− σ)uv = σM(u, v) + (1− σ)Π(u, v),

where σ ∈ (0, 1]. The copula CB11

σ can be interpreted as the weighted arithmetic mean of M
and Π. It is generated by the CK̄−1,Id family with K̄(x) = (1 + x/σ)−1, which is the survival
function of a GPD with scale parameter σ (see for instance Table 1.2.6 in [5]). The associated
Spearman’s Rho and upper tail dependence coefficient are ρB11

σ = λB11

σ = σ. Note that, for all
α ∈ (0, 1], one always has ρB11

α ≥ ρCA

α . Since both Cuadras-Augé and (B11) copulas are indexed
by a single parameter they do not allow the pair (ρ, λ) to reach arbitrary values in [0, 1]2.

3. To partially overcome this limitation, it is natural to consider K̄(x) = (1 + x/σ)−1/α,
which is the survival function of a GPD with positive shape parameter 1/α and scale parameter
σ, α ∈ (0, 1], ασ ∈ (0, 1]. The associated Spearman’s Rho given by (5.3) is ρGPD

α,σ = 3ασ/(4 − α)
and the upper tail dependence coefficient λGPD

α,σ = ασ. Thus, the CGPD

α,β copula allows the pair

(ρ, λ) to reach any value in the triangle {(ρ, λ) ∈ (0, 1)2 : ρ ≤ λ < 4ρ/3} with the following
choice of parameters: α(λ, ρ) = 4− 3λ/ρ and σ(λ, ρ) = (ρλ)/(4ρ − 3λ).

4. Choosing K as the cdf of the uniform distribution on [0, α], α ≤ 1 gives rise to the family
of copulas

CUniform

α (u, v) = uv(1 + αmin(1− u, 1− v)),

introduced in [11], Section 1, and with associated Spearman’s Rho ρUniform

α = 3α/5 and upper
tail dependence coefficient λUniform

α = α.
5. Finally, note that the family

Cf (u, v) = min(u, v)f(max(u, v))

proposed in [6] can also enter our sub-family with an appropriate choice of K.
Basing on Example 1, we can state the following result:

Proposition 4 Suppose Cθ,φ is a copula and θ(1) = 0. Thus, 0 ≤ ρθ,φ ≤ 1 and 0 ≤ λθ,φ ≤ 1,
and these bounds are reached within the sub-family.
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5.2 The case φ(1) = 0

Here, we focus on the sub-family of Cθ,φ defined by conditions (a), (b2), (c) and (d), where

(b2) φ(1) = 0,

Note that (b2) implies that the upper tail dependence coefficient is always null in this sub-family.
This sub-family encompasses the semiparametric family of copulas with constant function θ de-
fined in (1.7). Consequently, this sub-family also includes the FGM family (1.1), the parametric
family of symmetric copulas with cubic sections proposed in [21], equation (4.4), both kernel
families (1.3) and (1.4) introduced in [11], and the PQD copulas (1.5) introduced in [15].
From Proposition 2, in the subfamily of Cθ,φ constrained by (b2), the following lower bound for
Spearman’s Rho holds:

ρθ,φ ≥ 12Φ2(1)θ(1),

where the right-hand term can be interpreted as Spearman’s Rho associated to the copula (1.7)
with constant function θ(.) = θ(1). Since, in this particular case, Spearman’s Rho is lower
bounded by −3/4 (see [1], Proposition 2), we have:

Proposition 5 Suppose Cθ,φ is a copula and φ(1) = 0. Thus, λθ,φ = 0 and ρθ,φ ≥ −3/4, and
this bound is reached within the subfamily.

Remark. It is of course possible to build copulas such that φ(1) = 0 and θ is a non constant
function. As an example, consider the function φ(x) = x(1−x) which generates the FGM family
of copulas. Taking u = 0 in condition (c) and integrating with respect to v ∈ [x, 1] imply that
θ(x) ≤ 1/x for all 0 < x ≤ 1. Let us consider the extreme case θ(x) = 1/x. The copula writes

C(u, v) = Π(u, v) + (1− u)(1 − v)M(u, v),

and the associated Spearman’s Rho is ρ = 3/5 which is much larger than the maximum value
(ρ = 1/3) in the FGM family.

5.3 General case

Collecting Proposition 4 and Proposition 5, we are now in position to provide the bounds for
the general family (2.1).

Proposition 6 Suppose Cθ,φ is a copula. Thus, 0 ≤ λθ,φ ≤ 1 and −3/4 ≤ ρθ,φ ≤ 1, and these
bounds are reached within the family.

Besides, Proposition 1 entails that the copulas (1.7) are the only ones which are absolutely
continuous. Thus, we can conclude that, in the general Cθ,φ family, the absolute continuity is
incompatible with the upper tail dependence.
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[23] Quesada-Molina, J. J. and Rodŕıguez-Lallena, J. A., 1995. Bivariate copulas with quadratic
sections. Nonparametric Statistics, 5, 323–337.
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Appendix: Auxiliary lemmas

Lemma 1 Assume Cθ,φ is a copula.

(i) If u → φ(u)/(1 − u) is non-decreasing (resp. non-increasing) on [0, v∗] then φ(u) ≥ 0
(resp. ≤ 0) for all u ∈ [0, v∗].

If, moreover, θ(u) ≥ 0 for all u ∈ I, then

(ii) If φ(u) ≤ 0 (resp. ≥ 0) for all u ∈ J ⊂ I and u → φ(u)/u is non-decreasing (resp.
non-increasing) on J then u→ θ(u)φ(u)/u is non-decreasing (resp. non-increasing) on J .

Proof:

(i) Assume u → φ(u)/(1 − u) is non-decreasing on [0, v∗]. Then, from (a), ∀u ∈ [0, v∗],
φ(u)/(1 − u) ≥ φ(0) = 0. Therefore, φ(u)/(1 − u) is non-negative on [0, v∗] and the
conclusion follows.

(ii) Remark that [θ(u)φ(u)/u]′ = θ′(u)φ(u)/u+ θ(u)[φ(u)/u]′. Thus, if φ(u) ≤ 0, θ(u) ≥ 0 and
u→ φ(u)/u is non-decreasing, (d) implies that [θ(u)φ(u)/u]′ ≥ 0 for all u ∈ J .

Lemma 2 Assume Cθ,φ is a copula, θ(u) ≥ 0 for all u ∈ I and

(i) either {u→ φ(u)/u is non-increasing and φ(u) ≥ 0} for all u ∈ [0, v∗],

(ii) or {u→ φ(u)/u is non-decreasing and φ(u) ≤ 0} for all u ∈ [0, v∗].

Let (u1, u2, v1, v2) ∈ I4 such that u1 ≤ u2, v1 ≤ v2 and introduce

A1 :=

[

θ(v1)φ(v1)

v1
−
θ(v2)φ(v2)

v2

] [

φ(u1)

u1
−
φ(u2)

u2

]

.

Then, u2 ≤ v∗ entails A1 ≥ 0 and v∗ ≤ v1 entails A1 = 0.
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Proof: Assume (i) holds, situation (ii) is similar. First, remark that u → θ(u)φ(u)/u is non-
increasing on the whole I interval, since this function is non-negative and non-increasing on
[0, v∗] (Lemma 1(ii)) and vanishes on [v∗, 1]. Therefore,

θ(v1)φ(v1)

v1
−
θ(v2)φ(v2)

v2
≥ 0

in all cases. Now, if u2 ≤ v∗, then u→ φ(u)/u is non-increasing on the considered interval and
the conclusion follows. It v∗ ≤ v1, then θ(v1) = θ(v2) = 0 and the result is proved.
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