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Abstract

We present a method for estimating the edge of a two-dimensional bounded set, given a fi-
nite random set of points drawn from the interior. The estimator is based both on projections
on C1 bases and on extreme points of the point process. We give conditions on the Dirichlet’s
kernel associated to the C1 bases for various kinds of convergence and asymptotic normality.
We propose a method for reducing the negative bias and illustrate it by a simulation.
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1 Introduction

We address the problem of estimating a bounded set S of R2 given a finite random set Σ of
points drawn from the interior. This kind of problem arises in various frameworks such as classi-
fication [10], image processing [14] or econometrics problems [3]. A lot of different solutions were
proposed since [6] and [16] depending on the properties of the observed random set Σ and of the
unknown set S. In this paper, we focus on the special case where Σ is the set of points of an
homogeneous Poisson process whose support is S = {(x, y) ∈ R2 | 0 ≤ x ≤ 1 ; 0 ≤ y ≤ f(x)},
where f is an unknown function. Thus, the estimation of subset S reduces to the estimation of
function f . Let us note that this kind of support was already considered in [6]. In the wide range
of nonparametric functional estimators [2], piecewise polynomials have been especially studied
[13, 14, 15, 5, 9] and their asymptotic optimality was established under different regularity con-
ditions on f .
The first support estimator based on orthogonal series appears in [1]. Its properties are exten-
sively studied in [12] in the case of Haar and C1 bases. The expansion coefficients estimation
requires the knowledge of the process intensity. This is a limitation which is avoided in [7] in the
case of the Haar basis by considering a coefficient estimation based on the extreme points of the
sample. In this paper, a similar study is carried out in the case of C1 bases. The estimator can
be written as a linear combination of extreme values involving the Dirichlet’s kernel of the C1

basis. A close study of the extreme values stochastic properties as well as a precise control of
the Dirichlet’s kernel behavior allow one to establish general conditions for various convergences
and asymptotic normality of the estimator. Our results are illustrated for the trigonometric basis
case. Note that the model proposed here is well-adapted to the estimation of a bounded star-
shaped subset of the plane. Let D be such a domain. Then, there exists a convex subset C of
this domain, called the kernel of D, from which the whole boundary ∂D of D can be seen. If
we assume an interior point of C to be known, the use of polar coordinates allows to reduce the
problem of estimating ∂D to the problem considered here, that is the estimation of a function
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f , with the particularity that f(0) = f(1). In such a situation, extreme points observed in the
neighborhood of x = 0 bring information on the behavior of f in the neighborhood of x = 1 and
vice versa. Thus, an estimation relying on the trigonometric basis is specially well adapted.
This paper is organized as follows. Section 2 is devoted to the definition of the estimator and Sec-
tion 3 presents some basic results on extreme values and Dirichlet’s kernels. The mean integrated
square convergence of the estimate is briefly studied in Section 4 and the asymptotic normality is
established in Section 5. In Section 6 a very simple bias correction is proposed, illustrated in [8]
by a simulation.

2 Definition of the estimator

2.1 Preliminaries

Let N be a Poisson process with a mean measure µ = cλ, where the intensity parameter c is
unknown, λ is the Lebesgue measure, and the support of N is given by:

S = {(x, y) ∈ R2 | 0 ≤ x ≤ 1 ; 0 ≤ y ≤ f(x)}. (1)

We assume that f is measurable and satisfies

0 < m = inf
[0,1]

f ≤M = sup
[0,1]

f < +∞, (2)

which entails the square integrability of f on [0, 1]. In the sequel, we will introduce extra hypoth-
esis on f as needed.
Let (ei)i∈N be an orthonormal basis of L2([0, 1]). The expansion of f with respect to the basis is
supposed to be both L2 and pointwise convergent to f on [0, 1]:

∀x ∈ [0, 1], f(x) =
+∞
∑

i=0

aiei(x), (3)

with

∀i ≥ 0, ai =

∫ 1

0
ei(t)f(t) dt. (4)

We denote by Kn the Dirichlet’s kernel associated to the orthonormal basis (ei)i∈N defined by

Kn(x, y) =
hn
∑

i=0

ei(x)ei(y), (x, y) ∈ [0, 1]2, (5)

where (hn) is an increasing sequence of integers. The trigonometric basis will provide us with an
important example to illustrate our convergence results. It is defined by

e0(x) = 1, e2k−1(x) =
√
2 cos 2kπx, e2k(x) =

√
2 sin 2kπx, k ≥ 1, (6)

and we shall suppose for convenience that hn is even. This leads to

Kn(x, y) =

∣

∣

∣

∣

∣

∣

sin (1 + hn)π(x− y)

sinπ(x− y)
x 6= y,

1 + hn x = y.
(7)

The speed at which the sequence (ak) decreases to 0 is linked to the regularity of f . In the case
of the trigonometric basis, if f is a function of class C2 then

ak = O
(

k−2
)

, (8)

(see [4]). The estimator is built in two steps. First, in subsection 2.2, f is approximated by
a sequence (fn) obtained from its expansion with respect to the orthogonal basis. Then, in
subsection 2.3, an estimator f̂n of fn is proposed.
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2.2 Approximation of f

Let (kn) be an increasing sequence of non-negative integers such that kn = o (n). Divide S into
kn cells Dn,r where:

Dn,r = { (x, y) ∈ S | x ∈ In,r }, In,r =

[

r − 1

kn
,
r

kn

[

, r = 1, . . . , kn. (9)

Each coefficient ai is approximated by discretizing (4) according to:

ai,kn =
kn
∑

r=1

ei(xr)λ(Dn,r), xr =
2r − 1

2kn
. (10)

Then, the expansion (3) is truncated to the hn first terms leading to

fn(x) =
∑

i≤hn

ai,knei(x), x ∈ [0, 1], (11)

which can be written in terms of the Dirichlet’s kernel:

fn(x) =
kn
∑

r=1

Kn(xr, x)λ(Dn,r), x ∈ [0, 1]. (12)

Let us emphasize that the approximation fn of f only depends on the basis (ei)i∈N through its
Dirichlet’s kernel. The next step towards the definition of the estimator consists of estimating
λ(Dn,r).

2.3 Estimation of fn

Let N∗n denote the superposition N1 + · · ·+Nn of n independent copies of the point process N ,
and Σn the set of points generated by N∗n. For r = 1, . . . , kn, consider the maximum X⋆

n,r of the
second coordinates of the set of points Σn,r = Σn ∩ Dn,r. Of course, if Σn,r = ∅, set X⋆

n,r = 0.
Then, λ(Dn,r) can be estimated by X⋆

n,r/kn. This leads to an estimate âi,kn of ai,kn defined as:

âi,kn =
kn
∑

r=1

ei(xr)
X⋆

n,r

kn
, 1 ≤ i ≤ hn, (13)

and consequently to an estimate f̂n(x) of fn(x) via:

f̂n(x) =
∑

i≤hn

âi,knei(x) =
kn
∑

r=1

Kn(xr, x)
X⋆

n,r

kn
. (14)

Two remarks can be made. First, the estimator does not require knowledge of c, which ensures
a wide range of applications. Second, the estimator is written as a linear combination of the
maxima X⋆

n,r involving the Dirichlet’s kernel. Thus, the analysis of the behavior of f̂n will rely
on both studies of the Dirichlet’s kernel features and of the maxima’s stochastic properties. This
is the topic of the next section.

3 Basic results

3.1 Bounds on the Dirichlet’s kernel

For x ∈ [0, 1] and j ∈ {1, 2, 3} define

Bn,j(x) =





kn
∑

r=1

|Kn(xr, x)|j




1/j
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and
Bn,∞(x) = max

1≤r≤kn
|Kn(xr, x)| .

In what follows, some theorems involving conditions on Bn,j(x) for j ∈ {1, 2, 3,∞} are fiven.
Some of these conditions follow easily from the properties of Kn, see [12]. In the following lemma
two properties which are less straightforward are given for the special case of the trigonometric
basis.

Lemma 1 Suppose Kn is the Dirichlet’s kernel associated to the trigonometric basis.

(i) If hn = o (kn) then sup
x
Bn,1(x) = O (kn lnhn),

(ii) If hn lnhn = o (kn), then for all x ∈ [0, 1], Bn,2(x) ∼ (knhn)
1/2.

The proof is postponed to the Appendix.

3.2 Maxima stochastic properties

In the sequel, we write:

λ(Dn,r) = λn,r, min
x∈In,r

f(x) = mn,r, max
x∈In,r

f(x) =Mn,r.

Recall that X⋆
n,r is the maximum of the second coordinates of the set of points Σn,r.

Noticing that, for 0 ≤ x ≤ mn,r,

P (X⋆
n,r ≤ x) = P (N⋆n(Dn,r \ (In,r × [0, x])) = 0), (15)

we easily obtain the distribution function Fn,r(x) = P (X⋆
n,r ≤ x) on [0,mn,r]:

Fn,r(x) = exp

[

nc

kn
(x− knλn,r)

]

. (16)

Straight forward calculations lead to the following expansions for the mathematical expectation
and the variance of X⋆

n,r, where the knowledge of the C1-regularity of f compensates for the lack
of a precise expression for Fn,r on ]mn,r,Mn,r[.

Lemma 2 Suppose f is a function of class C1, n = o
(

k2n
)

and kn = o (n/lnn). Then,

(i) E(X⋆
n,r) = knλn,r −

kn
nc

+ o

(

n

k3n

)

,

(ii) Var(X⋆
n,r) ∼

k2n
n2c2

.

The proof of the following lemma, which is more difficult, is postponed to the appendix.

Lemma 3 Suppose f is a function of class C1 and kn = o (n/lnn). Let (tn,r) be a sequence such
that tn,r = o (n/kn) and tn,r = o

(

k3n/n
)

. Then, the characteristic function of (X⋆
n,r −mn,r) can

be written at point tn,r as:

φn,r(tn,r) =
1 + itn,r

kn
nc F̄n,r(mn,r) + o

(

|tn,r| n
k3n

)

+ o (n−s)

1 + itn,r
kn
nc

,

with s arbitrary large, and F̄n,r = 1− Fn,r.
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4 Estimate convergences

We refer to [12] for a careful study of the bias convergences ‖ fn − f ‖2 → 0 and ‖ fn − f ‖∞ → 0.

Then, we just have to consider (f̂n − fn). A complete investigation for mean integrated conver-
gence, mean uniform convergence, L2-almost complete convergence and uniform almost complete
convergence is available at our website. In order to avoid lengthy developments, we just propose
the following basic result.

Theorem 1 Suppose f is a C1 function. If ‖ fn − f ‖2 = o (1) and if sup
x
Bn,1(x) = o

(

n2/kn
)

,

then E(‖ f̂n − f ‖2) = o (1).

Proof : Introducing the random variable Yn,r = (X⋆
n,r/kn)− λn,r, we have

E
(

‖ f̂n − fn ‖22
)

= E

(

∑

r,s

Yn,rKn(xr, xs)Yn,s

)

, (17)

≤ 2
∑

r,s

|Kn(xr, xs)| (E(Y 2
n,r) + E(Y 2

n,s)) (18)

≤ 4 sup
x
Bn,1(x)

kn
∑

r=1

E(Y 2
n,r), (19)

and the result follows from Lemma 2.

Corollary 1 If Kn is the Dirichlet’s kernel associated to the trigonometric basis and f is a
C1 function then hn ln

1/2 hn = o (kn) and kn(lnhn)
1/2 = o (n) are sufficient conditions for

E(‖ f̂n − f ‖2) = o (1).

Proof : From [12], Proposition 3, hn(lnhn)
1/2 = o (kn) entails ‖ fn − f ‖2 = o (1). Moreover,

from Lemma 1(i), if kn(lnhn)
1/2 = o (n), then

sup
n
Bn,1(x) = O (kn lnhn) = o

(

n2/kn
)

, (20)

and the conclusion follows.

5 Asymptotic distribution

In this section, we present a limit theorem for the distribution of (f̂n − E f̂n). A similar result is
not available for (f̂n − f) without reducing the bias, which is done in the next section.

Theorem 2 Suppose that f is a function of class C1. If kn = o (n/lnn), n = o
(

k
3/2
n

)

and

Bn,∞(x) = o (Bn,2(x)), then (nc/Bn,2(x))(f̂n(x) − E(f̂n(x))) converges in distribution to a stan-
dard Gaussian variable for all x ∈ [0, 1].

Proof : Denote αn,r = mn,r − kn/(nc) and for all x ∈ [0, 1] introduce ψn,x the characteristic

function of (nc/Bn,2(x))(f̂n(x)− E(f̂n(x))). It expands as:

ψn,x(t) = exp it





nc

knBn,2(x)

kn
∑

r=1

Kn(xr, x)(αn,r − E(X⋆
n,r))



 (21)

× E



exp it





nc

knBn,2(x)

kn
∑

r=1

Kn(xr, x)(X
⋆
n,r − αn,r)







 . (22)
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Consider first the argument of (21):

Tn(x) =
nc

knBn,2(x)

kn
∑

r=1

Kn(xr, x)(αn,r − E(X⋆
n,r)), (23)

and show it converges to 0. By the Cauchy-Schwartz inequality:

|Tn(x)| ≤
nc

kn

Bn,1(x)

Bn,2(x)
max

r

∣

∣

∣αn,r − E(X⋆
n,r)

∣

∣

∣ ≤ nc

k
1/2
n

max
r

∣

∣

∣αn,r − E(X⋆
n,r)

∣

∣

∣ . (24)

Now Lemma 2 entails

|Tn(x)| ≤
n

k
1/2
n

(

max
r

(knλn,r −mn,r) + o

(

n

k3n

))

= o

(

n

k
3/2
n

)

, (25)

which converges to 0. Thus, introducing tn,r =
ncKn(xr ,x)t
knBn,2(x)

, we obtain:

ψn,x(t) ∼ exp it





1

Bn,2(x)

kn
∑

r=1

Kn(xr, x)



E



exp it





nc

knBn,2(x)

kn
∑

r=1

Kn(xr, x)(X
⋆
n,r −mn,r)









= exp it





1

Bn,2(x)

kn
∑

r=1

Kn(xr, x)





kn
∏

r=1

φn,r(tn,r). (26)

To apply Lemma 3, we have to verify that tn,r = o (n/kn) and tn,r = o
(

k3n/n
)

. The first condition
is satisfied since

∣

∣

∣

∣

tn,r
kn
nc

∣

∣

∣

∣

≤ |t| Bn,∞(x)

Bn,2(x)
= o (1) . (27)

The second condition is satisfied as well:
∣

∣

∣

∣

tn,r
n

k3n

∣

∣

∣

∣

=

∣

∣

∣

∣

tn,r
kn
n

∣

∣

∣

∣

n2

k4n
= o (1) . (28)

The characteristic function can be seen to be of the order:

ψn,x(t) ∼
exp it





1

Bn,2(x)

kn
∑

r=1

Kn(xr, x)





kn
∏

r=1

(

1 + itn,r
kn
nc

)

(29)

×
kn
∏

r=1

(

1 + itn,r
kn
nc
F̄n,r(mn,r) + o

(

|tn,r|
n

k3n

)

+ o
(

n−s)
)

. (30)

Consider first the logarithm of term (29). A second-order Taylor expansion yields

J (1)
n (x) =

kn
∑

r=1

[

itn,r
kn
nc

− ln

(

1 + itn,r
kn
nc

)]

= − t
2

2
+O

(

B3
n,3(x)

B3
n,2(x)

)

. (31)

Since B3
n,3(x)/B

3
n,2(x) ≤ Bn,∞(x)/Bn,2(x) = o (1), it follows that J

(1)
n (x) → −t2/2 as n→ ∞.

Finally, consider the logarithm of (30):

J (2)
n =

kn
∑

r=1

ln (1 + un,r), with un,r = itn,r
kn
nc
F̄n,r(mn,r) + o

(

|tn,r|
n

k3n

)

+ o
(

n−s) . (32)
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Observe that maxr |un,r| converges to 0 from (27) and (28). Thus, for n large enough |un,r| < 1/2
uniformly in r and the classical identity |ln(1 + un,r)| < |un,r| yields

∣

∣

∣J (2)
n

∣

∣

∣ ≤ |t| Bn,1(x)

Bn,2(x)

nc

k2n
+ o

(

Bn,1(x)

Bn,2(x)

)

n2

k4n
+ o

(

knn
−s) . (33)

Therefore, the Cauchy-Schwartz inequality leads to J
(2)
n → 0 and ψn,x(t) → e−t2/2 as n→ ∞.

Corollary 2 Suppose Kn is the Dirichlet’s kernel associated to the trigonometric basis and f

is a C1 function. If hn = o (kn), kn = o (n/lnn) and n = o
(

k
3/2
n

)

, then, for all x ∈ [0, 1],

nc(hnkn)
−1/2(f̂n(x)− E(f̂n(x))) converges in distribution to a standard Gaussian variable.

Proof : From (7), Bn,∞(x) ≤ ‖ Kn ‖∞ = 1+ hn, and from Lemma 1(ii), Bn,2(x) ∼ (hnkn)
1/2 so

that Bn,∞(x)/Bn,2(x) = o
(

(hn/kn)
1/2
)

= o (1) .

Possible choices of kn and hn sequences in Corollary 2 are kn = n2/3(lnn)ε and hn = (lnn)ε for
ε > 0 arbitrary small. These choices entail n(hnkn)

−1/2 = n2/3(lnn)−ε.

6 Reducing the bias

The bias can be decomposed as follows:

E(f̂n − f) = (E f̂n − fn) + (fn − f), (34)

where the first term in the sum is the statistical part of the bias, and the second term is the
systematic part of the bias. First, consider the irreductible bias (fn − f). In order to obtain a
limit distribution for (nc/Bn,2(x))(f̂n(x)− f(x)), we need to satisfy the condition

lim
n→∞

nc

Bn,2(x)
(fn(x)− f(x)) = 0. (35)

Introduce Sn(f) =
hn
∑

i=0

aiei. Equation (3.12) in [12] provides sharp bounds for (Sn(f) − fn), so

that the question reduces to considering (Sn(f)− f), which only depends on the basis. We shall
see that the trigonometric basis satisfies (35) under reasonable conditions on hn and kn. In the
case of a general C1 basis, we shall take (35) as a condition.
Now, it follows from Lemma 2(i) that

E f̂n(x)− fn(x) =
kn
∑

r=1

Kn(xr, x)

(

E(X⋆
n,r)

kn
− λn,r

)

(36)

presents a negative component which should be eliminated. To this end, for r = 1, . . . , kn, define
Z⋆
n,r by Z⋆

n,r = 0 if Σn,r = ∅ and Z⋆
n,r is the infimum of the second coordinates of the points of

Σn,r otherwise. Then, the random variable

Zn =
1

kn

kn
∑

r=1

Z⋆
n,r, (37)

has a mathematical expectation

E(Zn) =
kn
nc

+ o

(

n

k3n

)

, (38)
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and a variance

Var(Zn) ∼
kn
n2c2

, (39)

(use Lemma 2 for Z⋆
n,r). We define a corrected estimate by

f̃n(x) =
kn
∑

r=1

Kn(xr, x)

(

X⋆
n,r + Zn

kn

)

= f̂n(x) + ĝn(x). (40)

Lemma 4 Suppose f is a function of class C1, n = o
(

k2n
)

and kn = o (n/lnn). Then,

nc

Bn,2(x)

∣

∣

∣E(f̃n(x))− fn(x)
∣

∣

∣ = o
(

n2/k7/2n

)

, ∀x ∈ [0, 1].

If, moreover, for all x ∈ [0, 1], kn = o
(

B2
n,2(x)

)

and (35) holds, then

nc

Bn,2(x)
(ĝn(x)− E(ĝn(x))) = oP (1).

Proof : We have

nc

Bn,2(x)

∣

∣

∣E(f̃n(x))− fn(x)
∣

∣

∣ ≤ nc

kn

Bn,1(x)

Bn,2(x)
max

1≤r≤kn

∣

∣

∣E(X⋆
n,r) + E(Zn)− knλn,r

∣

∣

∣ (41)

=
nc

kn

Bn,1(x)

Bn,2(x)
O

(

n

k3n

)

= O

(

n2

k
7/4
n

)

, (42)

from (38), Lemma 2 and the Cauchy-Schwartz inequality.
Now, applying (35) to the constant function f = 1 yields

1

kn

kn
∑

r=1

Kn(xr, x) → 1, (43)

as n→ ∞. Therefore, Var(ĝn(x)) ∼ Var(Zn) ∼ kn/(n
2c2) and then

Var

(

nc

Bn,2(x)
(ĝn(x)− E(ĝn(x))

)

∼ kn
B2

n,2(x)
(44)

which converges to 0.

Theorem 3 Suppose that f is a function of class C1. If the following conditions are verified

(i) kn = o (n/lnn), n = o
(

k
3/2
n

)

,

(ii) for all x ∈ [0, 1], max(k
1/2
n , Bn,∞(x)) = o (Bn,2(x)),

(iii) for all x ∈ [0, 1],
nc

Bn,2(x)
|fn(x)− f(x)| = o (1),

then, for all x ∈ [0, 1], (nc/Bn,2(x))(f̃n(x)−f(x)) converges in distribution to a standard Gaussian
variable.

The proof is a simple consequence of the expansion

(f̃n − f) = (f̂n − E(f̂n)) + (ĝn − E(ĝn)) + (E(f̃n)− fn) + (fn − f), (45)

and of Theorem 2 and Lemma 4.
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Corollary 3 Suppose Kn is the Dirichlet’s kernel associated to the trigonometric basis and f is

a C2 function. If hn lnhn = o (kn), n = o
(

h
3/2
n k

1/2
n

)

, nh
1/2
n lnhn = o

(

k
3/2
n

)

and kn = o (n/lnn)

then, for all x ∈ [0, 1], nc(hnkn)
−1/2(f̃n(x)− f(x)) converges in distribution to a standard Gaus-

sian variable.

Proof : Conditions (i), (ii) of Theorem 3 are verified. Consider (iii). On using (8) we have

nc(hnkn)
−1/2 |Sn(f)(x)− f(x)| ≤ nc(hnkn)

−1/2
∑

i≥hn

|ai||ei(x)|

≤
√
2nc(hnkn)

−1/2
∑

i≥hn

|ai|

≤
√
2nc(hnkn)

−1/2
∑

i≥hn

i−2. (46)

A straightforward calculation yields

nc

Bn,2(x)
|Sn(f)(x)− f(x)| = O

(

nh−3/2
n k−1/2

n

)

. (47)

From [12], equations (3.11) and (3.12),

|Sn(f)(y)− fn(y)| = O

(

1

kn

∫ 1

0

∣

∣

∣

∣

∂Kn

∂x
(v, y)

∣

∣

∣

∣

dv

)

(48)

and
∫ 1

0

∣

∣

∣

∣

∂Kn

∂x
(v, y)

∣

∣

∣

∣

dv = O (hn lnhn) . (49)

Therefore,
nc

Bn,2(y)
|Sn(f)(y)− fn(y)| = O

(

nk−3/2
n h1/2n lnhn

)

(50)

and (47) with (50) conclude the proof.

Possible choices of kn and hn sequences in Corollary 3 are kn = n4/5(lnn)3/5(ln lnn)ε and
hn = n2/5(ln n)−1/5(ln lnn)ε for ε > 0 arbitrary small. These choices entail n(hnkn)

−1/2 =
n2/5(lnn)−1/5(ln lnn)−ε.

7 Conclusion and further developments

In this paper, we showed how the convergence results established in [7] in the case of the Haar
basis can be adapted for any C1 basis under some assumptions on the Dirichlet’s kernel behavior.
We have emphasized that the estimator and these assumptions only depend on the Dirichlet’s
kernel of the basis. This suggests to define a new estimator based on a Parzen-Rosenblatt kernel.
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Appendix

Proof of Lemma 1

(i) In the sequel, we shall use the inequality found in [12], equation (2.11):
∣

∣

∣

∣

sin(pu)

sin(u)

∣

∣

∣

∣

≤ p1[0,δ](|u|) +
π

2 |u|1[δ,π/2](|u|), (51)

for all p > 0, 0 < δ < π/2 and |u| < π/2. Taking account of the periodicity and symmetry
properties of the trigonometric kernel, it suffices to study

sup
x∈[0,1/kn]

2

kn

[kn/2]+1
∑

r=1

|Kn(xr, x)| , (52)

where [u] denotes the integer part of u. Let us write

1

kn

[kn/2]+1
∑

r=1

Kn(xr, x) =
1

kn

[γn]
∑

r=1

Kn(xr, x) +
1

kn

[kn/2]+1
∑

r=[γn]+1

Kn(xr, x), (53)

with γn = kn/(hn + 1), and consider the two terms separately.

• Introduce δ = (π/kn)([γn]− 1/2). For r = 1, . . . , [γn], we have π(xr − x) ≤ δ and thus
(51) yields |Kn(xr, x)| ≤ 1 + hn which gives in turn

1

kn

[γn]
∑

r=1

|Kn(xr, x)| ≤ 1. (54)

• For r = [γn] + 1, . . . , [kn/2] + 1, we have π(xr − x) ≥ δ and consequently (51) yields

1

kn

[kn/2]+1
∑

r=[γn]+1

|Kn(xr, x)| ≤
1

kn

[kn/2]+1
∑

r=[γn]+1

1

2(xr − x)
≤ 1

2

1

kn

[kn/2]
∑

r=[γn]

1
1
kn

(

r − 1
2

) . (55)

Therefore,

1

kn

[kn/2]+1
∑

r=[γn]+1

|Kn(xr, x)| ≤
1

2

∫ 1

2
+ 1

2kn

δ
π

du

u
≤ 1

2
ln(4(hn + 1)), (56)

for kn > 2(hn + 1).

Finally, collecting (54) and (56), we obtain

sup
x∈[0,1]

1

kn

kn
∑

r=1

|Kn(xr, x)| ≤ 2 + ln(4(hn + 1)). (57)

(ii) From [12], equation (4.14),
∣

∣

∣

∣

∣

B2
n,2(x)

knKn(x, x)
− 1

∣

∣

∣

∣

∣

≤ ‖ Kn ‖∞
Kn(x, x)

1

kn
sup
x

∫ 1

0

∣

∣

∣

∣

∂Kn

∂y
(x, v)

∣

∣

∣

∣

dv. (58)

In the case of the trigonometric basis Kn(x, x) = ‖ Kn ‖∞ = 1+hn (see (7)) and from [12],
equation (3.12) we have

∫ 1

0

∣

∣

∣

∣

∂Kn

∂y
(x, v)

∣

∣

∣

∣

dv = O (hn lnhn) = o (kn) . (59)

The conclusion follows from (58) and (59).
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Proof of Lemma 3

Consider the expansion

E(eitn,rX⋆
n,r) = P (X⋆

n,r = 0) +

∫ mn,r

0
eixtn,rF ′

n,r(x)dx+

∫ Mn,r

mn,r

eixtn,rFn,r(dx). (60)

The first and second term can be computed explicitely since (16) provides an expression of Fn,r

on [0,mn,r]:

E(eitn,rX⋆
n,r ) = e−ncλn,r +

eitn,rmn,rFn,r(mn,r)− e−ncλn,r

1 + itn,r
kn
nc

+

∫ Mn,r

mn,r

eixtn,rFn,r(dx). (61)

The third term can be expanded as

∫ Mn,r

mn,r

eixtn,rFn,r(dx) = eitn,rmn,r F̄n,r(mn,r) +

∫ Mn,r

mn,r

(eixtn,r − eitn,rmn,r )Fn,r(dx), (62)

with
∣

∣eixtn,r − eitn,rmn,r
∣

∣ ≤ (Mn,r −mn,r) |tn,r|. Thus
∣

∣

∣

∣

∣

∫ Mn,r

mn,r

(eixtn,r − eitn,rmn,r)Fn,r(dx)

∣

∣

∣

∣

∣

≤ (Mn,r −mn,r) |tn,r| F̄n,r(mn,r)

≤ (Mn,r −mn,r) |tn,r|
nc

kn
(knλn,r −mn,r)

= O

(

|tn,r|
n

k3n

)

. (63)

Collecting (61)–(63), and remarking that kn = o (n/lnn) yields
∣

∣

∣

kn
nc e

−ncλn,r

∣

∣

∣ = O (n−s) concludes

the proof.
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automatique. Statistique et Analyse des données, 7, 41–56.

[11] Jacob, P. and Abbar, H. (1989) Estimating the edge of a Cox process area. Cahiers du
Centre d’Etudes de Recherche Opérationnelle, 31, 215–226.

[12] Jacob, P. and Suquet, P. (1995) Estimating the edge of a Poisson process by orthogonal
series. Journal of Statistical Planning and Inference, 46, 215–234.

[13] Korostelev, A., Simar, L. and Tsybakov, A. B. (1995) Efficient estimation of monotone
boundaries. The Annals of Statistics, 23, 476–489.

[14] Korostelev, A. P. and Tsybakov, A. B. (1993) Minimax linewise algorithm for image recon-
struction. in Computer intensive methods in statistics by W. Härdle, L. Simar ed., Statistics
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