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Paul M.B. Vitanyi

Abstract

We propose a compression-based version of the empiricedbmnof a finite string over a finite
alphabet. Whereas previously one considers the naked pgntwb (possibly higher order) Markov
processes, we consider the sum of the description of theorandariable involved plus the entropy
it induces. We assume only that the distribution involvedc@nputable. To test the new notion we
compare the Normalized Information Distance (the sintjyametric) with a related measure based on
Mutual Information in Shannon’s framework. This way the iamties and differences of the last two
concepts are exposed.

Index Terms— Empirical entropy, Kolmogorov complexity, normalizedanmation distance, simi-

larity metric, mutual information distance

. INTRODUCTION

In the basic set-up of Shannan [20] a message is a finite sisiaga finite alphabet. One is interested
in the expected number of bits to transmit a message from @esea a receiver, when both the sender
and the receiver consider the same ensemble of messagese(tbepossible messages provided with a
probability for each message). The expected humber of bikmown as the entropy of the ensemble of
messages. This ensemble is also known as the source.

The empirical entropy of a single message is taken to be ttremnof a source that produced it as a
typical element. (The notion of “typicality” is defined diffently by different authors and we take here the
intuitive meaning.) Traditionally, this source is a (ptgihigher order) Markov process. This leads to
the definition in Examplé_2l4. Here we want to liberate theéamoso that it encompasses all computable

random variables with finitely many outcomes consisting mifdi strings over a finite alphabet. Moreover,
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since we are given only a single message, but not the ensdrmbdewhich it is an element, the new
empirical entropy should provide both this ensemble andethieopy it induces. If we are given just
the entropy but not the ensemble involved, then a receivenatain general reconstruct the message.
Moreover, we are given a single message which has a partiterdgth, sayn. Therefore, given the
family of random variables we draw upon, we can select oneéhemtand compute the probability of
every message of length For fixedn, this results in a Bernoulli variable that h&s|" outcomes.

We are thus led to a notion of empirical entropy that consiées description of the Bernoulli variable
involved plus the related entropy of the message inducerteSive assume the original probability mass
function to be computable, the Bernoulli variable is conafleg and its effective description length can
be expressed by its Kolmogorov complexity.

Normalized Information Distance (explained below) betwégo finite objects is often confused with
a similar distance between two random variables. The |asamige is expressed in terms of probabilistic
mutual information. We use our new notion to explain theaitdhces between the former distance between
two individual objects and the latter distance between tarmdom variables. This difference parallels
that between the Kolmogorov complexity of a single finiteemjand the entropy of a random variable.
The former quantifies the information in a finite object, whihe latter gives us the expected number
of bits to communicate any outcome of a random variable kntwhoth the sender and the receiver.

Computability notions are reviewed in AppendiX A, and Koljpoov complexity in Appendik B.

A. preliminaries

We write string to mean a finite string over a finite alphaldet Other finite objects can be encoded
into strings in natural ways. The set of strings is denote@byWe usually take= = {0, 1}. Thelength
of a stringz is the number of letters iX in it denoted agx|. The emptystring e has lengthle| = 0.

Identify the natural number4/ (including 0) and{0, 1}* according to the correspondence
(0,€),(1,0),(2,1),(3,00), (4,01),.... (1.2)

Then,|010| = 3. The emphasis here is on binary sequences only for convemiebservations in every
finite alphabet can be so encoded in a way that is ‘theory aBufior example, if a finite alphabet
has cardinality2®, then every elementc X can be encoded by(i) which is a block of bits of length
k. With this encoding every € ¥* satisfies that the Kolmogorov complexify (z) = K(o(z)) (see

Appendix[B for basic definitions and results on Kolmogorowmgdexity) up to an additive constant that



is independent of.

[I. THE NEW EMPIRICAL ENTROPY

Let X be a random variable with outcomes in a finite alphaXetShannon’s entropy [20] is

H(X)=) P(X=x)logl/P(X =uz).
TeX

There are three items involved in the new empirical entrofpglata x:

« A class of random variables like the set of Bernoulli proess®r the set of higher order Markov
processes; from each element of this class we constructraoBlérvariable X with |X|™ outcomes
of lengthn;

« a selection of a random variable from this Bernoulli classhsthatz is a typical outcome, and

« a description of this random variable plus its entropy.

This is reminiscent of universal coding essentially due tankogorov [11], and of two-part MDL due
to Rissanen[[19]. In its simplest form the former, assuminBeanoulli process, codes a string of
length n over a finite alphabelk as follows: A string containing a description of |X| and n/n;
(1 <i < |%]), and the index ofc in the set constrained by these items. The coding should tfe that
the individual substrings can be parsed, except the deiseripf the index which we put last. This takes
additive terms that are logarithmic in the length of the eaxcept the last one. The universal code
takesO(|X|logn) + (n/mfn/mm) bits. The two-part MDL complexity of a string [19], is the nmmum
of the self-information of that string with respect to a smuand the number of bits needed to represent
that source. The source is not required to be Markovian aadw-part MDL takes into account its
complexity. However, the methods of encoding are arbitrary

An n-length outcome: = z1, z9, ..., x, overX is the outcome of a stochastic procéés Xo, ..., X,
characterized by a joint probability mass functidhr({X;, Xo,...,X,,) = (z1,22,...,2,)}. FoOr
technical reasons we replace the Iist, X,,..., X,, by a single Bernoulli random variabl& with
outcomes inX = X™. Here, the random variableX; may be independent copies of a single random
variable as is the case wen the source stochastic proce&emnaulli variable. But the source stochastic
process may be a higher order Markov chain making some of;aldependent (this depends on whether
the order of the Markov chain is greater theh For certain stochastic processes¥Jk are dependent

for everyn: the stochastic process assigns a probability to everyoowtcn >*.



Definition 2.1: Let n be an integery. a finite alphabety € ¥ be a string, X’ a family of computable
processes, each proceéssc X producing (possibly by repetition) a sequence of (possitE@pendent)
random variables = X, X, ..., X, with Pr(X = z) is computable andf (X) < co. Theempirical

entropyof x with respect toX’ is given by
H(z|X) = LHIE{K(X) + H(X):|H(X) —log1/Pr(X = z)| is minimal}.
=e

This means that the expected binary length of encoding atomé of X is as close as possible to
log1/Pr(X = x). In the two-part description the complexity part describgsand the entropy part is
the ignorance about the datain the set>" given X.

Remark 2.2:By assumptionn is fixed. By Theorem 3 in[[20], i.e. the asymptotic equidkaition
property, for ergodic Markov sources the following is thesealetH be the per symbol entropy of the

source. For example, if the sour&es Bernoulli with Pr(=E = s;) = p(s;) (s; € ¥ for 1 < ¢ < |X]), then

H= Zglp(sl) log 1/p(si). Let X be the induced Bernoulli variable witf|™ outcomes consisting of
sequences of length over 3. Then, for every,§ > 0 there is am such that the sequences of length
n > ng are divided into two classes: one set with total probabltigs thare and one set such that for
everyy in this set hold§H — 1 log 1/ Pr(X = y)| < 6. Note thatH (X) = nH. Thus, for large enough
n we are almost certain to hay&/ (X) —log 1/ Pr(X = z)| = o(n).

Sete = ¢§ for convenience. We call the set g% such that|H(X) —log1/Pr(X = y)| = en, with
e > 0 and somen, depending orx andn > ng, the e-typical outcomes ofX. The cardinality of the set

S C X" of suchy’s satisfies
(1 o E)IE‘H(X)_ETL < ‘S‘ < ‘2’H<X)+en.

See [7] Theorem 3.1.2. &
Lemma 2.3:Assume Definitio 2]1. Therk (X) < K(z, X) + O(1).

Proof: The family X consists of computable random variables, that is, in egsehcomputable
probability mass functions. The family of all lower semigoamable semiprobability mass functions can
be effectively enumerated, possibly with repetitions, drieen 4.3.1 in[[1F7]. The latter family contains
all computable probability mass functions, hence it corgai. Thus, if we knowz, X we can compute
the X € X of Definition[2.1 by going through this list. [ |

Example 2.4:Assume Definitioi 2]1. Let; be the number of occurrences of thk character of in

z. If w is a string thenz,, is the string obtained by concatenating the characters avatedy following
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occurrences ofv in x. The cardinality|z,,| is the number of occurrences of in = unlessw occurs as

a suffix of z in which case it is 1 less. In_[12], [18],1[8] theth order empirical entropy of is defined

by
1 ZE1 n;log ;- for k=0,

Hy(z) =
% Z\w|:k |xw|H0($w) for k> 0.

(I.1)

The kth order empirical entropy of can be reconstructed from once we knowk. The kth order
empirical entropy ofr results from the probability induced by /ah order Markov sourc& € X. (A
Bernoulli process is &th order Markov source.)

Let X to be the family ofkth order Markov sources (a specific > 0), provided the transition
probabilities are computable. Such a family is subsumeceumgfinition[2.1. Letx be a string over
Y. which is typically produced by such a Markov source of orddeThe empirical entropyH (z|X") of
z is K(X) + nHi(z). Here X is the random variable associated with & order empirical entropy
computed frome. Note that the empirical entropi{i.(x) stops being a reasonable complexity metric for
almost all strings roughly wheft|* surpasses, [8]. &

Example 2.5:Let 2 = (10)™/? for evenn (that is,n/2 copies of the pattern10”). Let X} be the
family of binary Bernoulli processes. The empirical enyrof (x|X;) is reached for i.i.d. sequence
X = X1,Xo,..., X, € X1, eachX; being a copy of the same random varialblewith outcomes in
{0,1} with P(Y = 1) = 4. Then, H(z|X;) = K(X) 4+ nH(Y). ThenX can be computed from the
information concerning: in O(logn) bits, the particula® € X used inO(1) bits, and a program of
O(1) bits to computeX from this information. In this way< (X) = O(logn). Moreover,H(Y) = 1, so
that H (z|X1) = n + O(log n).

Let X, be the family of first order Markov processes wittiransitions each and with output alphabet
{0,1} for each state. The empirical entrop(z|X>) is reached for the:-bit output of a deterministic
“parity” Markov process. That isX = X, Xs,...,X,, and everyX; gives the output at time of the
Markov process with 2 stateg ands; defined as follows. The transit probabilities agy — s1) =1
andp(s; — sg) = 1, while the output in statey is 0 and in states; is 1. The start state isy. In this way,
P(X = (10)™?) = 1 while H(X) = 0. Then, H(z|X,) = K(X) + H(X). Here K(X) = O(logn),
since we require a description of the 2-state Merkov process involved, and a program to ctenjiu
from this information. Since the outcome is determinisfib(.X') = 0, so thatH (z|X2) = O(logn). <

Example 2.6:Consider the first bits of 7 = 3.1415. ... Let & be the family of Bernoulli processes.

Empirically, it has been established that the frequenclyin the binary expansion of isn/2+0(y/n),



that is, the binary expaqgnsion af is a typical pseudorandom sequence. Herééy|X;) = K(X) +
nH(X) where X = X3, X,,....X,, € A, and theX,’s aren i.i.d. distributed copies oft". Here
Y is a Bernoulli process witP(Y = 1) = 3. Then K(X) = O(logn) and H(Y) = 1, so that
H(z|X1) =n+ O(logn).

Let X, be the family of computable random variables with as outcoiimary strings of length
n. We know that there is a small program, say of abowt000 bits, incorporating an approximation
algorithm that generates the successive bits fifrever. Telling it to stop aften bits, we can generate the
computable Bernoulli variabl& € X, assigning probability 1 ta: and probability O to any other binary
string of lengthn. Assumen = 1, 000, 000, 000. Then, we have{(X) < log 1, 000, 000,000+c ~ 30+c¢
where thec additive term is the number of bits of the program to computend a program required
to turn the logarithmic description df, 000,000,000 and the program to compute into the random
variable X. Finally, H(X) = 0. Therefore H (z|X>) < 10,030 + c. &

Example 2.7:Consider printed English, say just lower case and space signoring the other signs.
The entropy of representative examples of printed Engleshldeen estimated experimentally by Shannon
[21] based on human subjects guesses of successive charact text. His estimate is between 0.6
and 1.3 bits per character (bpc), and|[22] obtained an ewtiob1.46 bpc for PPM based models,
which we will use in this example. PPM (prediction by partiahtching) is an adaptive statistical data
compression technique. It is based on context modeling eeigiion and uses a set of previous symbols
in the uncompressed symbol stream to predict the next syinbihle stream, rather like a mechanical
version of Shannon’s method. Consider a textnotharacters over the alphabet used by [22], and let
X be the class of PPM based models wittoutput characters over the used alphabet. Since the PPM
machine can be described @(1) bits (its program is finite) and the lengthin O(logn) bits, we have
K(X) =0O(logn). Hence,H (z|X) < K(X) + 1.46n = 1.46n + O(logn). &

In these examples we see that the empirical entropy is highen the family of random variables
considered is simpler. For simple random variables the kedge in the Kolmogorov complexity part is
neglible. The empirical entropy with respect to a complexifg of random variables can be lower than
that with respect to a family of simple random variables ansforming the ignorance in the entropy
part into knowledge in the Kolmogorov complexity part. Wes ukis observation to consider the widest
family of computable probability mass functions.

Lemma 2.8:Let X’ be the family of computable random variabl&swith H(X) < oo, andz € £*
with |X| < co. Then,H (z|X) = K(z) + O(1).



Proof: First, letp, be a shortest prefix program which computedence|p.| = K(x). By adding
O(1) bits to it we have a program, which computes a probability mass functiprwith p(z) = 1 and
p(y) =0 for y # z (z,y € £*). Hence|p,| < K(x) + O(1).

Second, let, be a shortest prefix program which computes a probabilitysrhasctionp with p(z) = 1
andp(y) = 0 for y # x (z,y € ¥*). Thus,|g,| < |p,|. Adding O(1) bits to g, we have a program,
which computese. Then, K (z) < |gp| + O(1).

Altogether, |g,| = K(x) + O(1). [

For the sequel of this paper, we need to extend the notion gireml entropy to joint probability
mass functions.

Definition 2.9: Let n be an integerX a finite alphabety,y € X" be strings,Z be the family of
computable joint probability mass functiong, € Z and (x,y) an outcome ofZ. Let the probability
mass functiorp(z,y) = P(Z = (z,y)) have a finite joint entropy? (Z) < co. The empirical entropy
of (z,y) with respect toZ is

H(z,y|Z) = %E{K(z) +H(Z):|H(Z)—log1/p(z,y)| is minimal}.

Lemma 2.10:Let Z be the family of computable joint probability mass functdfi with H(Z) < oo,
andz,y € ¥* with |X| < co. Then,H (z,y|2) = K(z,y) + O(1).
Proof: Similar to that of Lemm& 218. [

I1l. NORMALIZED INFORMATION DISTANCE

The classical notion of Kolmogorov complexity [11] is an edijive measure for the information in a
single object, and information distance measures the informdigtween gair of objects [2]. This last
notion has spawned research in the theoretical directiea tlle many Google Scholar citations to the
above reference. Research in the practical direction hassém on the normalized information distance
(NID), also called “the similarity metric,” which arises byormalizing the information distance in a
proper manner. (The NID is defined Hy (Ill.2) below.)

If we approximate the Kolmogorov complexity through reafd compressors [16], [6], [4], then we
obtain the normalized compression distance (NCD) from tHe. Nhis is a parameter-free, feature-free,
and alignment-free similarity measure that has had grepaamin applications. (Only the compressor
used can be viewed as a parameter or feature.) The NCD wasdeedy a related nonoptimal distance

[15]. In [1Q] another variant of the NCD has been tested onradjor time-sequence databases used in



all major data-mining conferences against all other majethmds used. The compression method turned
out to be competitive in general and superior in heterogeselata clustering and anomaly detection.

There have been many applications in pattern recognitibglogeny, clustering, and classification,
ranging from hurricane forecasting and music to to genoraitd analysis of network traffic, see the
many papers referencing [16], [6], [4] in Google Scholar{1f] it is shown that the NID, and in_[4] that
the NCD subject to mild conditions on the used compressern@trics up to negligible discrepancies
in the metric (in)equalities and that they are always betw@end 1. The computability status of the
NID has been resolved in [23]. The NCD is computable by dédinit

The information distanceD(x, y) between strings: andy is defined as

D(z,y) = m;n{lpl :U(p,z) =y AU (p,y) =z},

where U is the reference universal Turing machine above. Like thémiégorov complexity K, the

distance functionD is upper semicomputable. Define
E(z,y) = max{K(z]y), K(y|z)}.

In [2] it is shown that the functio® is upper semicomputabl&)(z,y) = E(x,y) + O(log E(x,y)), the
function F is a metric (more precisely, that it satisfies the metrice@ualities up to a constant), and that
E is minimal (up to a constant) among all upper semicomputdisance functiond)’ satisfying the

mild normalization condition$ 2-D'(xy) < 1 and}’ 2-D'(#y) < 1. (Here and elsewhere in

YyFT T:TFY

this paper log” denotes the binary logarithm.) Thermalized information distanc@NID) e is defined
by

E(z,y)
max{K(z), K(y)}

e(zr,y) = (11.1)

It is straightforward tha® < e(z,y) < 1 up to some minor discrepancies for ally € {0, 1}*. Rewriting
e using [A.1) yields

, (I11.2)

e(m,y) — K(x7y) — mln{K(x),.;((y)}

max{K(x), K(y)
up to some lower order terms that we ignore.

Lemma 3.1:Let x be a stringX’, Z be the families of random variables with computable proligbi
mass functions and computable joint probability mass fonst respectively. Moreover, foX € X and
Z € Z we haveH (X)), H(Z) < oo. Then, we can substitute the Kolmogorov complexitied ihd)Iby
the corresponding empirical entropies as[in (JII.3).
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Proof: By Lemma’s[2.8 and_2.10 we know the following. Fat is the family of computable
probability mass functions (z|X) = K(x), H(y|X) = K(y). For Z is the family of computable joint
probability mass functionsg (z,y|2) = K(z,y). Hence,

z,y|2) — min{H (z|X), H(y|X)}
max{H (z|X), H(y|X)} ’

e(r,y) = H{ (111.3)

ignoring lower order terms. [ |

Remark 3.2:In Lemmal[3.1 we can replace the computable random variallethé restriction to
computable random variables that have a singleton supibat,is, probability mass functiorns with
p(z) = 1 for somexz and p(y) = 0 for all y # x. Alternatively, we can replace it by the family of
computable Markov processes. To see this, for eveoy lengthn there is a computable Markov process
M of ordern — 1 that outputse deterministically andX (z) = K(M) + O(1).

Clearly, if we replace the family of computable probabilitass functions in the empirical entropies in
Lemmal3.1 by weaker subfamilies like the families based anmdable Bernoulli functions, computable
Gaussians, or computable first order Markov processes,ltbermal3.1 will not hold in general. <

Remark 3.3:The NCD is defined by

|Z(xy)| — min{|Z ()], |Z(y)[}
max{|Z(z)|,|Z()[}

where Z(x) is the compressed version af when it is compressed by a lossless compressokiVe

NCDgyg(z,y) = (1n.4)

have substitutedy for the pair(z,y) both for convenience and with ignorable consequences.i@&ms

a simple compressor that uses only Bernoulli variablesef@mple a Huffman code compressor. The
compressed version of a string is preceded by a header pimgtémformation identifying the compressor
and the charcteristics used (the relative frequenciesisnctise) to compress the source string. In general
this is the case with every compressor. (In [3] the NCD basedcampressors computing the static
Huffman code of a Bernoulli variable is shown to be the totalllsack-Leibler divergence to the mean.
We refrain from explaining these terms since are extranémwsir treatment.)

Thus, Z(z) is comprised of the header generated Lyfor x. This header makes it possible to use
the uncompress feature, denoted herezy so thatZ—'Z(x) = z. The header describes a random
variable = based on the compressgr The family of random variables induced by the compresgor
can be denoted by’;.

In this way, we can define the Bernoulli variablé used to compress. The empirical entropy

H(z|Xz) = K(X)+H(X). Here K (X) is uncomputable. We approximate it by the length of the heade
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say |«(X)|. The Bernoulli variableX has entropyH (X) and |Z(z)| = |a(X)| + H(X). Similarly for
y and (z,y). Therefore,

la(XY)|+ H(X,Y) — min{|a(X)| + H(X), |a(Y)| + H(Y)}

NCDz(z,y) = max{|a(X)| + H(X),[a(Y)|+ H(Y)} 7

(I11.5)

ignoring lower order terms, wheie(X)| > K(X), |a(Y)| > K(Y), and|a(XY)| > K(XY).

IV. MUTUAL INFORMATION

In [25], [], [13], [Q], [26], [14] the entropy and joint erdpy of a pair of sequences is determined,
and this is directly equated with the Kolmogorov complexitythose sequences. The Shannon type

probabilistic version of[(IIL.R) is

€H(X, Y)

H(X,Y) — min{H(X), H(Y)}
max{H(X),H(Y)}
- max{H(X),HY)} - HX,Y) + min{H(X), H(Y)}

=1 max{H (X), H(Y)}

N I(X;Y)
max{H(X),H(Y)}’

since themutual information/ (X;Y") between random variables andY is
I(X;Y)=H(X)+ H(Y) - HX,Y),

and

max{H(X),H(Y)} + min{H(X),HY)} =H(X)+ HY).

In this way,er (X,Y) is 1 minus the mutual information between random variaBleandY per bit of
the maximal entropy. How do the cited references connestdistance between two random variables
to (IIL.2), the distance between two individual outcomeand y?

Ostensibly one has to replace the entropy of random vadakleand Y by the empirical entropy
according to Definitioh 2]1 deduced from stringsandy. To obtain the required resuli (Tll.2) one has
to use familiesY, ), Z of computable random variables such tétz) = H (z|X), K(y) = H(y|Y),
and K (z,y) = H(z,y|Z). In our framework this is possible only it', ) are appropriate families of
computable random variables, aifl is an appropriate family of computable joint random vasbl

Outside our framework the widest notion of empirical enyrap (Il.1) and there it is not possible at all.
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To obtain computable approximations using a real-world p@ssorZ for = andy as in [II.4) we

can take the empirical entropy based on compre&sas in [IIL.4) and [(IIL5).

APPENDIX
A. Computability

In 1936 A.M. Turing [24] defined the hypothetical ‘Turing ntaice’ whose computations are intended
to give an operational and formal definition of the intuitivetion of computability in the discrete domain.
These Turing machines compute integer functionscttraputablefunctions. By using pairs of integers
for the arguments and values we can extend computable dmscto functions with rational arguments
and/or values. The notion of computability can be furthetersed, see for example_[17]: A function
f with rational arguments and real valuesupper semicomputablé there is a computable function
¢(x, k) with z an rational number an& a nonnegative integer such thatz, k + 1) < ¢(z, k) for
everyk andlimy_, . ¢(z, k) = f(x). This means that can be computably approximated from above. A
function f is A function f is lower semicomputablié — f is upper semicomputable. A function is called
semicomputabléf it is either upper semicomputable or lower semicompugatr both. If a functionf
is both upper semicomputable and lower semicomputabl@, fhis computable A countable sefS is
computably (or recursively) enumerahlethere is a Turing maching” that outputs all and only the
elements ofS in some order and does not halt. A countable $é$ decidable (or recursiveif there is
a Turing machingl” that decides for every candidaiewhethera € S and halts.

Example A.1:An example of a computable function j§n) defined as theath prime number; an
example of a function that is upper semicomputable but notprdable is the Kolmogorov complexity
function K in Appendix(B. An example of a recursive set is the set of primmenbers; an example of a

recursively enumerable set that is not recursivgzis N : K(z) < |z|}. &

B. Kolmogorov Complexity

Informally, the Kolmogorov complexity of a string is the fth of the shortest string from which
the original string can be losslessly reconstructed by éectfe general-purpose computer such as a
particular universal Turing machirié, [11] or the text|[[1¥]. Hence it constitutes a lower bound @mvh
far a lossless compression program can compress. In thix pag require that the set of programs of
U is prefix free (no program is a proper prefix of another prograimat is, we deal with therefix

Kolmogorov complexity(But for the results in this paper it does not matter whetieruse the plain
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Kolmogorov complexity or the prefix Kolmogorov complexjtye call U the reference universal Turing
machine Formally, theconditional prefix Kolmogorov complexiti (xz|y) is the length of the shortest
input z such that the reference universal Turing macliinen inputz with auxiliary informationy outputs

x. Theunconditional prefix Kolmogorov complexity(z) is defined byK (z|e). The functionsK(-) and
K(- | -), though defined in terms of a particular machine model, arehina-independent up to an additive
constant and acquire an asymptotically universal and atescharacter through Church’s thesis, see for
example[[17], and from the ability of universal machinesitoudate one another and execute any effective
process. The Kolmogorov complexity of an individual finiteject was introduced by Kolmogoroy [11]
as an absolute and objective quantification of the amounbfofrnation in it. The information theory
of Shannon[[20], on the other hand, deals watrerageinformationto communicatebjects produced
by a random source Since the former theory is much more precise, it is sumgighat analogs of
theorems in information theory hold for Kolmogorov comjptgxbe it in somewhat weaker form. For
example, letX andY be random variables with a joint distribution. Thei(X,Y) < H(X) + H(Y),
where H(X) is the entropy of the marginal distribution of. Similarly, let K (z,y) denoteK ((x,y))
where (-, ) is a standard pairing function andy are binary strings. An example is;, y) defined by
y+ (x+y+1)(z+y)/2 wherex andy are viewed as natural numbers as[in](l.1). Then we have
K(z,y) < K(z) + K(y) + O(1). Indeed, there is a Turing machifié that provided with(p, ¢) as an
input computesU (p), U(q)) (whereU is the reference Turing machine). By constructiorfpfwe have
Ki(z,y) < K(z) + K(y), henceK (z,y) < K(x) + K(y) + O(1).

Another interesting similarity is the followingf(X;Y) = H(Y) — H(Y | X) is the (probabilistic)
information in random variableX about random variabld”. Here H(Y | X) is the conditional entropy
of Y given X. Sincel(X;Y) = I(Y; X) we call this symmetric quantity thenutual (probabilistic)
information

Definition A.2: The (algorithmic) information inxz abouty is I(z : y) = K(y) — K(y | ), wherex, y
are finite objects like finite strings or finite sets of finiteirsys.

It is remarkable that also the algorithmic information iredimite object about another one is symmetric:
I(z :y) = I(y : ) up to an additive term logarithmic ik (z) + K (y). This follows immediately from

the symmetry of informatioproperty due to A.N. Kolmogorov and L.A. Levin (they provedar plain
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Kolmogorov complexity but in this form it holds equally forgfix Kolmogorov complexity):

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]
[19]

K(z,y) = K(z) + K(y | ©) + O(log(K () + K (y))) (A1)

= K(y) + K(z | y) + O(log(K(z) + K(y)))-
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