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Monads and extensive quantities

Anders Kock
University of Aarhus

Abstract. If T is a commutative monad on a cartesian closed category, leee éxists a naturdl-
bilinear pairingT (X) x T(1)X — T(1) (“integration”), as well as a natural-bilinear actionT (X) x
T(1)X — T(X). These data together make the endofunclomnd T (1)(~) (co- and contravariant,
respectively) into a system of extensive/intensive qtiastiin the sense of Lawvere. A natural monad
map fromT to a certain monad of distributions (in the sense of funei@malysis (Schwartz)) arises
from the integration.

I ntroduction

Another word for “extensive quantitiy”, and one which is cmwnly used outside mathe-
matics, is “distributionfl. In this common non-mathematical usage, an extensive ifyant
(say, of rain on a given day) may béstributedover a given space, (say the sidewalk), and
its total over that space is measured in terms of some absolute guahtt totalmassof
the rain on the sidewalk, or the totaimberof raindrops on the sidewalk (this number is an
integer). So we have different quantitypesfor such totals, say the quantity type “mass”,
or the quantity type “(integral) number”. In this case, bath “positive”; but one has also
guantity types like “electric charge” whose quantities &dpposite signs, in the sense that
two such quantities can cancel each other. Note that a mass & (non-negative real)
number but only becomes so after choosingiait of mass. Theatio of a given mass
distribution with a chosen unit is a “(distributed) dimesrdiess quantity”, and a good ap-
proximative mathematical model for many types of totalsumftsdistributed dimensionless
guantities is the ring of real numbers — although for masg, rsan-negativeeal numbers
would be a more realistic model for such quantity. Or, theatisionless quantity may be
an integer (or a non-negative integer), for the case of “remobraindrops”.

A simple approximative mathematical model of these typasmensionless total quan-
tities is: they form commutative (additively written) mads, likeR, R, orN, in fact, are
free“algebras” on one generator, for a suitable notion of “algéthusN is the freecom-
mutative monoidn one generator, ari@ is the freereal vector spac®n one generator).
The notion of “free algebra” may be encoded by the notion ohaat. ThusR is T(1),

1In some Germanic languages, like German or Danish, the coymon-mathematical word for these kind
of distributions is “Verteilung,” resp. “fordeling”. In nthematics, the word “distribution” has acquired a more
specific meaning, namely the distributions in the sense oféret Schwartz, where a “distribution” is a continuous
linear functional on a space of “test functions”.
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for the free real vector space mon&d The fact thafl (1) is endowed with & -bilinear
multiplication comes out from the strength of the monad.

In the present article, we experiment with the viewpoint tha dimensionless distri-
butions on a spac¥ form themselves a spadgX), whereT is a monad (assumed “com-
mutative”) on “the” categorys’ of spaces, assumed to be a cartesian closed category. For
instance,T may be the “free commutative monoid” monad, or the “free resitor space
monad”, — assuming that the field of reals is itself suitallybject of&. In fact, we have
in mind the case wheré is for instance the category of convenient vector spacestand
smooth maps in between; or a topos, like the “smooth topos,"evell adapted model” for
synthetic differential geometry; in these cases, the dohgsay, topology) oR is retained,
by R being seen as an object of the categéiry

The units of the monad, i.e. the mapg : X — T(X), assign tox € X the distribution
with total 1, and concentrated ¥pin some contexts: the “Dirac distribution»t

We shall also have a fragment of a theory of how quantitiel wiphysical dimension,
like mass, which are not pure quantities, fit into the pictuféey are likewise covariant
endofunctoraV on &, but M(1), unlike T(1), does not carry a natural multiplication or
unit; M is, in some sense, a “torsor” over the appropriate dimehessrguantity monad.
(In our [17], we considered similar torsor structure, bulydor “total” quantities, i.e.not
distributed over an extended space.)

In most of the present article, we consider only dimenssmtgiantities.

The theory presented here implies an attempt to commentloneatz’ dictum“les dis-
tribution mathématiques constituent une définition mattéme correcte des distributions
rencontrées en physique([25] p. 84) — but now with “distribution” in the sense givey b
general commutative monads.

A main thing is thafT is acovariant functor An elementP € T(X) is a distribution
on X. We have a unique may — 1; applyingT (X — 1) to P yields an element iff (1),
the total of the distributionP. This covariant feature of extensive quantities was stass
by Lawvere; in particular, he stressed that distributiongi{e sense of functional analysis)
are not to be viewed as “generalized functions” (functioelsdve contravariantly; they are
intensive quantities), but rather are extensive quaastiiehaving covariantly (at least when
restricted to distributions of compact support). We shetilim to some of Lawvere’s more
specific theory of extensive quantities in the last sections

One main aspect of the theory to be presented here is thatitecanonical comparison
transformationt from the monadrl into a Schwartz (double-dualization) type morfad
associated td@. To distinguish, we call the elemerisof T(X) concretedistributions, to
distinguish them from distributions in the sense of funatibanalysis.

The technical underpinning of the present theory is therthebstrong (=£-enriched)
monads on a symmetric monoidal closed categdryleveloped by the author in a series
of articles in the early 19704, [10], [11], [12], [13], arid4]1 We begin by recalling and
expanding some of the aspects of this theory; however, sigcshall be interested in the
case of a CCC (= cartesian closed categétpnly, we use notation etc. from this special
case throughout (so we write rather thang), even though the material in Sections 1-3
deal with the general SMC (= symmetric monoidal closed) case



Following the typographical convention from these papeeswrite X MY for the expo-
nential objecty*. The counit for the adjunction defining the exponentiah Y is denoted
ev: X x (XY) =Y (for“evaluation”).

Because an unspecified endofunciois involved throughout, we have in the main
preferred to formulate constructions etc. in terms of diagg, rather than in terms of ele-
ments of the objects considered; however, expressionagakbout “elements” in “sets” are
sometimes more readable than diagrams, so we shall sonsaisaesuch expressions, even
though objects of’ may have no (global) elements at all. Alternatively, theredats talked
about aregeneralizecelements in the sense used in, say, Synthetic Differentaini&try,
as expounded ir [15]. It is in principle routine to translatpations and constructions,
expressed in terms of elements, into commutative diagrams.

Acknowledgements. The dialectics between extensive and intensive quantifesovariant
and contravariant, | learned from Lawvere, and this was difggguideline in the present
research. This was further spurred by reading Cramér'sduirtory text[[4] on “calculus
of probabilites,” which explicitly stresses the analogyixen probability distributions and
mass distributions - both important cases of extensive tifiem

— | want to acknowledge several fruitful conversations witlthael Wright on these
topics. The diagrams of the article were produced using Paylbr's “diagrams” package.

1 Combinatorsfor strong endofunctors and monads

We consider a CC&’; notions of “enrichment” or “strength” refer to this.
First, we have the evaluation map

ewy X x (XhY)—=Y

and its twin sisteevk v : (X hY) x X —Y; they are the counits for the adjunctiph x —) -
(X'th =) (resp.(— x X) 4 (X h —)). Often the decorations,Y onewy may be omitted,
because andY are clear from the context.

We consider an endofunctdr: & — &, assumed strong ( #-enriched); recall that
such enrichment is presented in terms of data

Sty (X MY = T(X) A T(Y),

cf. [7], or [3] 11.6.2.3 item (2).
In [10] and [14], we observed that the strength can be encag@tkensorialstrength

t§<’Y (TX)xY = T(XxY),

natural inX andY. By “conjugating” with the twist maX xY — Y x X, one also gets its
“twin sister”
thy i X xT(Y) = T(XxY),

likewise encoding the strength.



Finally, the strength can be encodectasensorial strength
Axy :T(XhY)—= XhT(Y),

cf. [10] and [12].

We give elementwise descriptions of these basic combisaffiie elements of 'Y
are mapsf : X — Y. The (Eilenberg-Kelly-) strengtbtx v : X hY — T(X) h T(Y) of T
takes suchf to T(f) € T(X) M T(Y). The tensorial strengtt}  : T(X) xY — T(X xY)
takes(P,y) to T(uy)(x), whereuy : X — X x Y takesx to (x,y); similarly t§ y : X x T(Y) —
T(X xY) takes(x,Q) to T (0x)(Q) whereuy : Y — X x Y takesy to (x,y). Finally, Axy :
T(XMY) = XMT(Y)takesSe T(XMY)tothe mapc— T(ew)(S), whereey : X hY =Y
is evaluation ak € X.

The following will be a main actor in the following. L& € & and let : T(B) — B be
a map. (We are ultimately interested in the case whiegea strong monad, anél makesB
into aT-algebra). Then for an¥ € &, we have the composite

v T(ev) B

T(X) x (XA B) — T(X x (XhB)) T(B) B. 1)
Alternatively, by [6) below, this map equals
T0x (X1 B) L 100« (T mTE) e TR —P B ()

In elementwise terms: P € T(X) andp e X h B (so@: X — Bis a map), the value of2)
on(P, @) isB(T(9)(P)) € B, and is denoted, g @(x) dP(x) (with ‘X as a dummy variable).
FrequentlyB and 8 may be understood from the context (and the most importa# sa
whenB =T (1)), in which case the definiton gfreads

[, 909 dPGO = BT (9)(P). ©

or, with increasing pedantry (rarely needed)

[odP) = [ @ dPr= [ o dPX.
JX X,B X,(B,B)

We are interested in the case wh@@rovidesB with structure ofT-algebra. (In this
case, whe’ is the category of sets, this “integration” relationshipvzen monad/algebra
theory, and algebraic theories, dates back to the early afayonad theory with Linton,
Wraith and others, in the mid 1960s: they knew that the elesfiT (X) can be interpreted
asX-ary operation m B — B on T-algebra®B.) If in particularX is B itself, and we put
@ = idg, we end up with

/' x dP(x) = B(P). 4
BB

We are ultimately to read this as thepectatiorof P, see Sectiohl8 below.



We collect some further definitions and basic relations eomiag the combinators re-
lated to a strong endofunctdr: & — & on a symmetric monoidal closed categaty We
continue to use notation asdf were actually cartesian closed, i.e. we writeather than
®.

We already considered the coueitfor the adjunctior(X x —) 4 (X h —). The unit for
this adjunction is not used so often, it is denatedith suitable decorations. Similarly,is
the unit corresponding to the coueit Thus

uxy Y = X (XxY) Oxy:Y—Xh(YxX).

The decorations are usually omitted from notation; everiittie may often safely be omit-
ted; one case where it is useful to retain the tilde is in tharatterizing diagram fod
(canonical map to double duald™ for “Dirac”); we have that the following diagram com-
mutes
o xid
Xx (XhB) —— ((XhB)MB) x (XhB)

ev év )

B B.

Next, a diagram relating the tensorial strengtlwith the Eilenberg-Kelly strength (£-
enrichmentst of T:

/
taAate

TAx (AhB) T(Ax (AMhB))
TAX stap T(ev) (6)

TAx (TADTB) TB.

The proof of this comes about, via manipulation by exporaatjointness, of the definition
of t v (as given in[[10] p.2 fot”) in terms ofst, namely as the exponential adjoint of the
composite

ux.y

Y X (X xY) > TXAT(XxY).

(putY :=AmBandX:=A).
Next, a diagram relating the tensorial strengtiith the cotensorial strength:

)\Y,Z xY

T(YhZ)xY (YhTZ)xY
t\/(mz,v év @
T(YHZ)xY) —— TZ

T(év)



This also follows by exponential adjointness manipulati@proof is given in[12] Lemma
1.2.
We shall also have occasion to use commutativity of the alitgram in

T0xMd 1 (x hB)hB)x (x 1 B) 219

TX x (X M B) (X hB) hTB) x (X h B)
t/

t T((X hB) hB) x (X M B)) v

T(5 xid) T(&Y)

T(X x (X B)) Ty - TB:

8
here, the left hand square commutes by naturality, ¢ie right hand square biyl(7), and the
triangle by applyingdr to (3).

We will take the tensorial strength(or equivalentlyt”) as the primary encoding. # is
the category of set, v : T(X) x Y — T(X x Y) is the map which foP € T(X) andy € Y
returns the valu@ (uy)(P) € T(X x Y), whereuy : X — X x Y is the map— (X, y).

The combinatot’ satisfies a unit law and an associative law. The unit law Saas t
ti1:T(X)x 1= T(Xx1)is the composite of the two canonical isomorphiShiX) x 1=

T(X) 2 T(X x 1). The associative law says that the composite

/ /
tyy xZ XxY,Z

t
TX)xYxZ TXxY)xZ —> T(XxYxZ)

equaldy v, (For simplicity, we write as if« were strictly associative.) There are similar
unit- and associative laws fof. All these laws follow from the standard laws for tie
enrichment, cf.[[10].

We shall have occasion to use a “derived” combinator,

txvz : XXTY)xZ—=>TXxXYx2Z); 9)

it can be defined in several ways which are equivalent in vitth® associative law faor
and the construction af in terms oft’. One way to define it is to consider

tzy i XX ZXT(Y) = T(XxZxY) (10)

and conjugate it by interchangefndT (Y), respectivelyZ andY. It can, by the associa-
tive law, also be defined as the composite

/! "
Xty z tvxz

XXT(YxZ) — T(XxYx2Z). (11)

X
XxT(Y)xZ



A natural transformatiom : T = Sbetween two strong functors ssrongif all squares

of the form .

t
TX)xY 2% T(XxY)
x XY TXxY (12)

S(X) xY — S(X xY)
Sy
commute, wher€ ands’ are the tensorial strengths 6fandS, respective@.

Let(T,n,u,t’) be a strong monad, (Sois equipped with a strength andn andyu are
strong natural transformations; recall tifainduces a natural strength d@re T; “strengths
compose”; an explicit expression for the composite stierigt t”-terms) appears in the
center line of[(31l) below).

It is easy to deduce from the strength of the natural transftionn : id = T that the
following diagram commutes:

ev

X x (X B) - B
r]xXid ne (13)
T(X)x(XmB)T/» (Xx(XmB))TeV)»T(B).

Together with a monad on & comes the notion of (Eilenberg-MooreFyalgebra
(B,B) wheref3 : T(B) — B satisfies a unit- and associative law. In particylar ng =
ids. So from the above, we deduce thaBif= (B, 3) is a T-algebra, then precomposing
Jx : T(X) x (X h B) = B with nx x id just yields the evaluation map (use the description
(@)); let us record this:

PO ) (xB) X B =[x (x By B @a)

[X x (XhB)
The T-algebras form a categog’, whose maps are calléi-homomorphismswve shall
also use the term -linear maps, because this will allow us to talk abdubilinear maps, a
notion introduced in the strong-monad contextinl/[22] ar@].[We shall recall and expand
some of the theory from loc.cit. As long as the mofads fixed, we may say “linear”
instead ofT -linear, and similarly for “bilinear”.
The following result (Theorem 2.1 in [10]) is important fanrgpresent aims:

the functor part T of a strong monad carries two canonicalstures as a monoidal functor;
with respect to each of thesg,is a monoidal transformation.

2There is another use of the word “strong” for a natural trammsftion, namely “all the naturality squares are
pull-backs”. This is not how we use the word here.



These two monoidal structures are in loc.cit. denapeshd U, respectively; one is just
the “twisted” version of the other}y vy is the composite

t/

T
Tm)xTw)lﬂﬁlexTY)—&QiT%xXY)ﬂﬁﬁ1xwa, (15)
and{x y similarly is
t T
T00xTw)lﬁﬂfuTxXijﬁﬂlT%va)E&i1xwa. (16)

The “nullary” part of both the monoidal structuresijs: 1 — T(1), where 1 is the unit
object of& (i.e. the terminal object, in the CCC case).

In distribution theory, ifP anQ are distributions of compact support on spaseandY
respectively, the distributiogix v (P, Q) on X x Y is called thetensor producof P andQ,
cf. [25] lI.1.

Recall from [10] that the strong monddis calledcommutativef ¢ = (. In Theorem
3.2in [10] it is proved that ifT is commutative in this sense, th@rns a monoidal transfor-
mation (and henc& a monoidal monad, sinaggis in any case a monoidal transformation).

(There is a converse result contained in Theorem 2[3'in [tledntains the assertion that
the strengtht’ of T can be reconstructed from the structure of monoidal monadgher,
in the present article, we prefer to have strength as a jpilmcinderlying everything —
almost a part of the logic. Fef = Sets, strength is canonically present in all functors and
transformations.

We proceed to describe some of the relationships we needbetthe various combi-
nators associated to strong monads.

Proposition 1 Precomposingpx y with nx x T(Y) yields . Similarly, precomposing
Px.y with T(X) x ny yields § v . '

Diagrammatically, the first assertion says that the outegmim in the following diagram
commutes; the inner square commutes by naturality, théaéaftl triangle commutes since
n is strong, and the right hand triangle commutes by a monad$awthe total diagram is
likewise commutative, and this proves the first assertiathefProposition.

Xy
X x T(Y) —2

T(XxY)
nxXTY id
Nxx1Yy  NT(xxY)
TXXTY — T(X xTY) ——» T3(X xY) — T(X xY).
Ty ( ) T(ty) ( ) Hx v ( )

The proof and diagram for the second assertion are similar.



LetA= (A,a) andC = (C,y) beT-algebras. A mag : Ax X — Cis called1-linear
(orlinear (T-linear)in the first variabl@, cf. [13], if the following pentagon commutes

a x X y (17)

f

Similarly, a mapX x A — C is called2-linear (or linear in the second variabjef a similar
diagram, now usingf » : X x T(A) — T (X x A) commutes. Finally, if furtheB = (B, ) is
aT-algebra, a map x B — Cis calledbilinear if it is both 1-linear and 2-linear.

(One may define the notion oflinear mapA; x ...A; — C (where theA;s andC are
(underlying objects of) algebras), and in this way, one &hgat a multicategory; however,
to substantiate this, there are some coherence conditiahaéed to be worked out.)

Recall that an object of the forM(Z) carries a canonical algebra structure, namely
with structure maguz : T?(Z) — T(Z) (this is thefree T-algebra orz). The algebras in the
following Proposition are free.

Proposition 2 For any X and Y ing, the map§y : T(X) xY — T(X xY) is 1-linear.
Similarly t : X x T(Y) = T(X xY) is 2-linear. -

Proof. The pentagori(17) above, with= T (X) andX =Y has as top line the map(ty y ) o
t%(x),v' and this is an instance of the tensorial strength for thepomite functof o T; and
then the commutativity of the pentagon is seen to be an instahthe assumption that
is a strong natural transformation. The proof of the secas@rion follows by suitable
conjugation by twist maps.

A consequence (cfi [13]) is thaixy : T(X) x T(Y) — T(X xY) is 1-linear, and that
(Ixy is 2-linear. If all instances ap are 2-linear (or equivalently, bilinear), then the monad
is commutative, and vice versa, cf. loc.cit. Propositidh 1.

Recall that ifC = (C, y) is aT-algebra, any majg — C extends uniquely oveyx : X —
T(X) to a linear mapr (X) — C; this is the “free” property off (X). We have a closely
related “universal” property of (X) x Y:

Proposition 3 Any map f: X x Y — C extends uniquely ovegx x Y : X xY — T(X) xY
to a 1-linearmap : TX) xY — C.

For, there are natural bijective correspondences
hom(X xY,C) =2 hom(X,Y M C) = homy (T (X),Y i C)

(where the second occurrenceYofh C is the cotensol M C in &7, recalled in [2D) be-
low, and where the second bijection is induced by preconipogby nx); finally, the set



homr (T (X),Y h C) is in bijective correspondence with the set of 1-linear MBPs) x Y —
C, by [13] Proposition 1.3 (i).

It is useful to be have an explicit formula for the 1-lineatemsion off : X x Y — C; it
is the composite

|4

T(X)xY xy T(XxY) T, T(C) ——~ C. (18)

For, ty y is 1-linear, by Propositionl2, and the two other mapdid (I8)lmear, so the
composite is 1-linear. Also, it is easy to see that the ret&n of (I8) along)x x Y givesf
back (use the unit law} y o (nx x Y) = Nxxy, and alsoyo nc = idc). So [18) satisfies the
two conditions in Propositidnl 3.

Proposition 4 The mapPxy : T(X) x T(Y) — T(X xY) is characterized by the following
two properties: it is 1-linear, and its precomposition witk x TY is §. Similarly { :
T(X) x T(Y) = T(X xY) is characterized by the two properties: it is 2-linear, ansl i
precomposition with TX ny is t} ..

Proof. We prove the first assertion. We already observed iha¢ satisfies these two
conditions, cf. Propositiorig 1 and the quotation froni [1f83raPropositiol 2. The converse
follows from Propositioh13.

Assume now thaB = (B, 3) is an algebra, and consider a map X x B — C which
is 2-linear. It extends, by the above, to a 1-linear nfapT (X) x B — C, and we may
ask whether thif inherits fromf the property of being 2-linear (and is thus bilinear). A
sufficient condition is commutativity ofF :

Proposition 5 Let T be commutative. Let8B (B,3) and C= (C,y) be T-algebras, and
assume that f X x B — C is 2-linear. Then its 1-linear extensidn: T(X) x B — C is
bilinear.

Proof. We use the formuld (18) withi = B for the extension. It remains to prove 2-linearity
of this map, i.e. to prove commutativity of the following di@m (where the bottom line is
T, according to[(18))

t” Tt T2f T
TXxTB— T(TXxB) T, T2(X x B) T2c —Y . T1C
TXxB y
TXxB T(X xB) ~TC - C.
t/ Tf y

Consider the composite> Tyo T2f of the last three arrows in the clockwise composite. By
pure monad- and algebra theory, we have

yoTyoT?f =yoTfop, (19)

10



and having performed this replacement, the definitiofy @ppears at the beginning of the
clockwise composite. Sinc& was assumed commutative, we may repldcby (¢, and
after this replacement, the clockwise composite comesotiteacomposite

t/ T(t") u Tf y

TXxTB —» T(XxTB) ——% T2(X xB) - T(X x B) TC C.

Now we can usé (19) once more, in the opposite direction, anehel up with the composite

t T(t" T2f T
TXxTB - TxxTB) 4 T2(x x B) Toc Y y

TC C.

After these manipulations with the clockwise composite,diagram to be proved commu-
tative has the following shape

t/ T(t" T2f
TXxTB— T(XxTB) T T2(X xB) — T2C

TXxf T(Xx B) * Ty

TXxB —= T(XxB) ~TC ~C
t/ Tf %
Here the pentagon * commutes: it comes about by applyinguhetérT to the diagram
expressing the assumption tifatX x B — C is 2-linear. This proves the desired 2-linearity
of f.
For a commutativ@ , we get as an immediate corollary that a nfapgX x Y — C (where
C = (C,y) is aT-algebra) extends uniquely to a bilineb¢X) x T(Y) — C. Since alsof
extends uniquely to a linedr(X x Y) — C, we may conclude thak (X x Y) may serve as
T(X)®T(Y)in &T, with gx v as the universal bilinear map; but we shall not prove or need
existence of such tensor products for genérallgebras.

The following is hardly surprising, and the routine proobimitted:

Proposition 6 If T is a strong natural transformation from one strong monad Tato
other one, S, compatible with the monad structures, thevill also be compatible with
the monoidal strucureg/™, S, i.e. it will be a monoidal transformation. Similarly,will
be compatible with the monoidal structus, §S.

2 Monadsand double dualization

Given a commutative monatl on &. Some of the formal properties of the construction
Jx @(x) dP(x) is best stated in terms of a transformatiorirom T to a certain “double
dualization” monad associated Ta In essencerx will be exponential adjoint offy :
T(X) x (Xh B) — B (whereB is aT-algebra).

11



We assume thaf has equalizers (or sufficiently many — only a few are neededstudy
this question in more detail in Sectibh 9). In this case, tegorys " of algebras for a
strong monad = (T,n, u,t’) becomes enriched ovét. if (A, a) and(B,3) are algebras,
the &-valued hom-objecf(A, a), (B; B)]t is carved out ofA h B by an evident equalizer
diagram involvinga and, expressing th& -homomorphism condition diagrammatically.
(This goes back td [2].) We writéA, a) it (B, 8) for this hom object, and often omit and
B from notation; they are then to be understood from the canténte that A, o) it (B,B)
is a subobject oA B. In short notationAmhr B C Arh B.

Also, &7 is cotensored ovef: if X € & and(B,3) € &7, the cotensoX r (B, B) is the
objectX h Bin &, equipped with thd -structure

p
TxmB) X8 xa1®) 218 x B, (20)

using the cotensorial strengthof T.

In [12], we proved that ifT is a commutative monad, théA, a) it (B, 3), as a subob-
ject of Arh B, is actually a subFalgebra(with the algebra structure & h B given by the
recipe above, wittX = A). This in fact makes’T into a closed category in its own right,
cf. Theorem 2.2 in[[12]. (It is evensymmetricclosed category, in the sense suggested in
loc.cit. ; this was substantiated (A [5]./[6].)

The notion of cotensor anél-valued hom are related by a&f{strong) adjointness, as
is well known, cf. [9] (3.42). This implies that f@ = (B, 3) in &7, we have contravariant
functors

—h(B,B):&—=&T

and
—hr (B,B): & - &

which are strongly adjoint to each other on the right, so #aget a strong monad ofj,
with functor partX — (X th (B, 8)) it (B, ), or with slight abuse of notation

X — (X hB) thr B, (21)

a “restricted double dualization” functor (terminologgiin [16]). These double dualization
monads are rarely commutative (even for commutalijeand their categories of algebras
are often hard to analyze.

In case where? is the category of sets, afi(X) is the monad whose algebras are
boolean algebragX rh 2) it 2 is the set of ultrafilters oX, and the category of algebras
for (— h 2) Mt 2 is the category of compact Hausdorff spaces (Manes’ Theocé [8]
11.2.4).

If T is the identity functor, and € & is any object, we have the “plain” double-
dualization monad— rh D) h D, studied in detail in[[I11]. It is the “full algebraic theory
of D", if we identify monads on the category of sets with infinjtdiawvere theories (as is
done in[23], or[[26]).

Itis easy to see th& itself is an algebra for the (unrestricted) double duai@ratonad
(— m B) rh B; the structure is the magyy : (B th B) m B — B which is “evaluation at the
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identity mapidg € Bh B”. In particular

evg o ds = ids. (22)

Another significant example: iR is a commutative ring object i, there is (under
suitable completeness conditions &ha monadl whose category of algebras are fRe
module objects. SR itself is aT-algebra (in factR = T (1)), and we have the restricted
double dualization mona@d- m R) tht R. In some example@X m R) tht R can be analyzed
as an internal version dafistributions with compact suppooh X (distributions in the sense
of Schwartz); see [24] Prop. 11.3.6 for some topose€dfspaces. An algebraic analysis is
given in [16] for the case whelRis the generic commutative ring.

We return to the general case of a restricted double duimizatonadX — (X i B) mhr
B, whereT is a strong monad off andB = (B, 3) a T-algebra. The unit for this monad is
denoted, so

Ox : X — (XhB) Mt B.

Post-composing with the inclusidiX mh B) ht B C (X rh B) rh B gives the combinatody
considered in Sectidn 1. i is the category of sets, it is the map which takes X to
the T-algebra map)x (x) : X h B — B, “evaluating atx € X". This “evaluation at<” is a
T-homomorphism, thus an element(X m B) rht B. In distribution terms, it is the Dirac
distribution onX atx, whence the notatiod. Theli of the monad — rh B) it B can also
ultimately be described in terms 6f We describe it when, and to the extent we need it, in
the proof of Theoreml1 below.

These double-dualization monads depend on the choice obijket (T-algebraB. The
most important case for us is wheBas (T (1), u;) (later on, we shall denote this particular
T-algebra by the letteR; it plays the role of a number line). Recall that for a%y &, the
algebra(T (X), ux) is thefree T-algebra orX. In particular,T (1) is the free algebra in one
generator.

The construction of the restricted double dualization naol) does not depend on
commutativity of the given monad, however, the following does. So &t be acom-
mutativemonad on#’, and letB = (B, 3) be aT-algebra. Then by [12]A it B carries
structure of ar -algebra wheneveh = (A, o), B = (B, 3) are T-algebras. Therefore, the
mapd : X — (X th B) rhit B extends uniquely to &-homomorphism on the freE-algebra
T(X), so that we have a canonicBdlhomomorphism

Tx ZT(X) —_— (X M B) [ﬁT B.
Its relationship tofy is made explicit in Propositidi 7 below.

Theorem 1 Let T be a commutative monad. Then the mgp$orm a strongly natural
morphismt : T = (— rh B) thy B; it is @ morphism of monads, and it is compatible with the
canonical monoidal structures on the functors in question.

(This holds, whether one takgsor §J as the monoidal structure on the double dualization
monad; and foll, there is anyway only one canonical monoidal struture gshnis assumed
commutative.)

13



Proof. By construction,to d = n, soT is compatible with the units of the two monads
in question. Let us prove compatibility with the, T (the latter being the multiplication
of the double dualization monad in question). The unit anghitoof the adjunction that
gave rise to the monagd- rh B) tht B aredy : X — (X th B) tht Bin & (already considered),
andea: A— (At B)m Bin &7, given by essentially the same recipe which gavghe
counit goes the “wrong way” because of the contravariantneaif the two adjoint functors
in question). Since the multiplication of a monad arisirapfran adjoint pair is an instance
of the counit of it, we conclude that does indeed live if’T. Therefore, the two maps to
be compared to prove thatis compatible withu, T are two mapd2(X) — (X h B) thr B
both of which areT-linear. By PropositiofI3, it therefore it suffices to seet tihay agree
when precomposed withrx. Here is the relevant diagram:

X =% 1) T8 1(x 1B i B) < (X B) thr B) M B) hr B)
Ux HX
T . . (X B)r B

The counterclockwise composite gives by the unit law for the monad. The top com-
posite may be rewritten, using naturalitypfinto the composite

TX — % (X B) thr B > T((X 1 B) iy B) — (X 1 B) thr B) i B) thr B);

button is 4, by construction ofr, andd composed with is an identity map (one of the
monad laws for the double dualization monad here). So thekelise composite likewise
ends up agx. Sor is indeed a morphism of monads. Since everything is comipatitth
the strengths, we conclude from Proposifibn 6 thatso preserves the monoidal structure.

Remark. This theorem is analogous to Theorem 3.20in [11]; there, Rew®ne considers
thefull double dualization mona@- rh B) rh B for anunstructuredbjectB.

The transformatiorr in the Theorem is in fact an exponential adjoint version & th
“integral” studied in Sectiohl1:

Proposition 7 The maprx : T(X) — (X rh B) th B has for its exponential adjoint the map
Jxg: T(X)x (XhB)—B.

Proof. Sincer is the T-linear extension oD : X — (X th B) M B, T may be described
explicitly as the composite

TX T(9) T((xmB)mB)—/\»(XmB)mTBM(XmB)mB- (23)

Thus, the exponential adjoint ofappears as the clockwise compositdin (8) composed with
B. On the other hand, if one follows the counterclockwise cosite in [8) byf3, we see
from (1) that we have the mafy g-
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Let (B,3) be aT-algebra. By the Theorem, we have for exch & a mapry : T(X) —
(X i B) hr B, defined in terms o, and with good properties, in particular, itTslinear.
ForX = B, we have in particularg : T(B) — (B B) ht B. We have also a magiq : (Brh
B) mt B — B “evaluation atidg”, and thus get by composition a magB) — B.

Proposition 8 The composite

T(B) —2 BMB)hr B9 . B

equalsB : T(B) — B.

Proof. Both maps to be compared afelinear, so it suffices to see that they agree when
precomposed witlpg. We haveB o ng = idg, by the unit law forT -algebras. On the other
hand,

€Mg o Tgo Mg = €Vg 0 O
by construction off, andevy o s = idg, as we observed aboVe{22) for unrestricted double
dualization intoB; it holds then, by restriction, also for the restricted dieudbualization
monad.

Theoreni 1 allows us to descrilig.y (@(P,Q)) in terms oftx (P) andty (Q), and simi-
larly for {; note the formal similarity with Fubini’s Theorem.

Theorem 2 Let Pe T(X) and Qe T(Y), and letp € (X xY) th B. Thentxxv (¢ (P,Q))(¢)
andx .y (J(P,Q)) (@) appear as the left and right hand side, respectively, of tlewing
equation (which therefordoldsfor all P,Q,¢ when T is assumed to be a commutative

monad)
/)(( /Y o(X,y) dQ(y)) dP(x) = /Y ( /X (p(x,y)dP(x)) dQ(y). (24)

Proof. We first argue thatx .y (Yx v(P,Q))(¢) € B is given by the expression on the left
hand side. We denote the combinators for the strong m8rad- h B) it B by T, T, etc.
Then by Theorer]1

Txxy (Y(P,Q)) =Py v (x(P), v (Q)).
Therefore, it is a matter of analyzing,  for the monadS, and this is pure\-calculus;
in fact, S can easily be proved to be a submonad of the full double catadiz monad

D = (— th B) M B. We claim that the monoidal structutg for this monad is given, in
elementwise terms, as follows, fBre (X M B) M B, Q€ (Y hB) h B) andg € (X xY) h B:

U(P.Q)(¢) =Plx— Qly— @(x,y)]].
This is an elementwise reformulation of the following (g g for @ etc.:

Proposition 9 The monoidal structurelx y : D(X) x D(Y) — D(X xY) on the functor
D = (— i B) th B may be described as follows: fordPD(X) and Qe D(Y), the value of
Pxy(P,Q)onge (X xY) B is given as the composite

(XxY)mB—:»th(YmB)X—mQ»thB P

B. (25)
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Similarly, the value o (P, Q) on ¢ is given as the composite

XhP Q

(XxY)hB—Yh(XhB) =—— YhB B.

Proof. One may prove this by brute force, Aycalculus, but sincB(D(X xY)) is involved,
this means that a four times dualization ifas involved, and this is not easy to handle;
some ML type program on a computer would be useful here! Heweve can use the fact
thaty is characterized by being linear in the first variable, angéstrict along the unit (here:
d) tot”, cf. Propositioi 4. So we shall prove th@atl(25), as a funatibR Q, satisfies these
two criteria. We shall be content with arguing elementwsgnthetically). So consider
PeD(X) (soP:XhB— B)andQ e D(Y) (soQ:Y M B — B). Then [2b) returns with
P, Q as input the composite described. We must argue that it,Xed €, depends linearly
onP; recall that “linear” presently mean®*linear”, i.e. “homomorphisms db-algebras”.
The function ofP given by [25) is the map

xnB) hB "2 (xxv)hB)hB,

wheresis the map

(X xY)mB — X (YMmB) m X MB.
Now any object of forntJ M Bis canonically &-algebra, and any morphisvith B — U m B
of the forms B (for s: U — V) is aD-algebra homomorphism, sineeh B: & — (&P)°P
is the left adjoint of the two adjoint functors that togetbevduced the monald.
To prove the other condition, “precomposing with consider what happens if one puts
P = dx(x) = evaluation ak, wherex € X (recall thatn now is Dirac delta formation). Then
P gets replaced bgy, so the value of(25) is

XhQ ew

(XxY)hB — Xh(YhB) =—= XhB B.

But ey o (X rh Q) = Qo ey, and precomposingy with the isomorphism{X x Y) M B &
X (Y h B) yieldsQo (T h B), and thus we arrive at (the valuetf, at(x,Q)), as given
at the beginning of Sectidd 1 (replacifigoy (— rh B) h B).

3 Monadsand actions by monoids

Exploiting the fact that the functdr carries two monoidal structures, we get in particular
thatT (1) carries two natural monoid structures, namely, first,

T =T 2L raxy=T0) (26)

and, secondly, the one obtained by replacihgvith ). They of course agree wheh
is commutative. The monoid multiplication (28) may be described equivalently as the

composite
!
b H

T(1) xT(1) T(AxT(1)=T3(1) T(1). (27)
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This follows by recalling the construction gf in terms oft’, t” and i, and noting thaty
may be eliminated, since it equals the composite of twoiédFhisomorphisms Ix T(1) &
T(1) 2 T(1x 1), cf. [10] Lemma 1.8 (in fact, in the cartesian closed case, loess more

generally commutativity of
"

XxTY 2% T(X xY)

pr T(pr)

TY TY

where pr denotes the projection). From either description (26)Laf) [@llows that the
multiplication of T (1) is 1-linear. (It is not necessarily 2-linear, even wigi) happens to
be commutative. However, if is commutative, the multiplication is bilinear.)

The unite of the monoidT (1) is 1 : 1 — T(1), also sometimes denoted 1.

Any object of the formT (X) carries a left action by (1), and also a right action by
T(1), the latter (which will be our main concern) given by

T(X) x T(1) Wxa T(X x 1) = T(X).

This action is unitary and associative, using the monoidcstire onT (1) given by (; if
one prefers, one can replace simultaneoysly andy 1 by the correspondings. (For
the left action byT (1), one uses eithap for both the action and the monoid structure, or
uses( for both the action and the monoid structure.) We stick thtraction, defined by
Y, as in the displayed formula. It is immediate to see that:iK — Y is any map, then the
mapT (f): T(X) — T(Y) is equivariant for the action.

The action of the monoid (1) on T(X) may be discussed (for some of its aspects)
in more generality as follows: Lek = (T,n, u,t’) be a strong monad ofi, and letR =
(R,e,m) be a monoid ing” (with e: 1 — Rthe unit andn: R x R— Rthe multiplication).
There is an evident notion of B-linear right action oR on T, namely a family of unitary
and associative actions (naturaMne &) x: T(X) x R— T (X), with -x 1-linear.

A 1-linear action by a monoi& on the monad is by Propositiofi 3 determined by its
restriction (for eactX) alongnx x R, i.e. by mapgpyx : X x R— T(X), natural inX. So the
unit and associativity constraints for the action can bedead in terms op. We have

Proposition 10 The 1-linear extension of a magp: X x R — T(X) satsfies the unit con-
straint iff

(xng1—>xxe X><R—>p T(X))Zl‘lx,
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and it satisfies the associativity constraint iff the follogvdiagram commutes:

/

t
X xR R PR T3¢ R 28 T R) 1P 72(x)
Xxm Hx (28)
X xR T(X).
5 X)

Proof. We leave the proof of the first assertion to the reader. Assoove that [28)
commutes. To prove that the action is associative meansng@quality of two maps
T(X) x Rx R— T(X), both of which are 1-linear. So it suffices to prove that thieee
maps agree when precomposed with x Rx R. The resulting diagram is then seen to
be [28); note that the three last arrows in the clockwise amitg in [28) is just the ac-
tion, by the explicit formulal{18) for how a map x R— T(X) extends to a 1-linear map
T(X) x R— T(X). — We leave to the reader the proof that associativity of tieaimplies
commutativity of [28) (and we shall not need this implicadio

We return to the special case of the right action by the mofgld on T (X). We denote
this action simply by a doB- A, for P € T(X) andA € T(1). We think ofT (1) as “scalars”.

We ask the question whether not offitge T-algebras, but gener@l-algebras carry an
action byT(1). For this, we need commutativity @f;, we have the following (which is not
used in the sequel).

Proposition 11 Let T be a commutative monad, and (& a) be a T-algebra. Then A
carries a unigue action by the monoidT), in such a way thatr : T(A) — Ais equivariant.
The action is unitary and associative, and any homomaorpbishralgebras is equivariant.

Proof. By general monad theory, we have tleat T(A) — A sits in a canonical absolute
coequalizer diagram i&f
T2(A) = T(A) = A,

where the two parallel maps afga) and i respectively. The map (a) is equivariant
for the action, without any assumptions ®n We shall use commutativity of to prove
equivariance ofua. When this is established, it is clear that the action dedsatonga
from T(A) to A, and the rest is then easy. Equivarianceugfmeans that the right hand
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region in the following diagram commutes:

IJAXT].

TAx 1 TAXML 20 11 TAxT1

pr|= Praa Yn1

NTax1

TA T(TAx 1) T(Ax 1)

= T(pr) = T(pr)
nra

T2A TA

HA

Here pr denotes the relevant projections. The triangle commutesusen is a monoidal
transformation. The (slanted) square commutes by natyiraio the counterclockwise
composite equalpr : TAx 1 — TA The top line composite is ju3tAx n;. The clockwise
composite of the total diagramT8(pr) o a1 0 (TAx n1); this, however, is again jugr :
TAx1— TA by ageneral law for the relationship betwegny and the unitisomorphisms
(here thepr), cf. [10], diagram (2.3). So we conclude that the total diag commutes.
Now, the two composites in the right hand region are Bothilinear, because thegys are
T-bilinear by commutativity ofT. So to prove commutativity of the right hand region,
it suffices to prove that it commutes after precomposotidh vyix n, which is what the
commutativity of the total diagram expresses. This prokesroposition.

It is easy to see that if the monddis M x — for a non-commutative monoil in the
category of sets, thema will not be equivariant; so for Propositibnll1, one cannspense
with the commutativity assumption for the monad

Even though the projectiopr : Ax 1 SA appears in the above construction and ar-
gument, all the constructions and arguments work in gersgrametric monoidal closed
categories, using the unit objelcinstead of 1, and using the unit isomorphisms (part of
the data of a monoidal closed categof/p | = A instead ofpr. The construction in the
following Sections, however, depend in a crucial way of tesuamption that our category is
cartesianclosed.

4 Action of functions on distributions

We consider a strong (not necessarily commutative) manaa &. But from now, we
assume not only thaf is symmetric monoidal closed, but that itdartesianclosed (as the
notation in the previous sections anticipated). Then theath is terminal, and we have the
notion of the total; folP € T(X), itstotalis T(!)(P) € T(1), where ! :X — 1 is the unique
such map.
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Recall thatT (1) carries a canonical monoid structurag, with m defined in terms of

Y1, cf. (26).

Proposition 12 Let Pe T(X) and Qe T(Y). Then the total ofyx v (P, Q) is the product by
m of the totals of P and Q.

This is an immediate consequence of the definitiomadgether with naturality ofyy with
respectto the maps X — 1and!:Y — 1.

The spac& h T (1) inherits a monoid structumey, ex in a standard (“pointwise”) way.
We shall equip any fre&-algebraT (X) with a (right) T-linear action+ by the monoid
XM T(1). The construction does not depend on commutativity of theadd. We shall
construct a map

T(X)x (XhT(1)) L T(X) (29)

It is defined as the unique 1-linear extension oggrx T(1) of the following composite
map:
(pr.ev) 1

p= Xx(XMT(1) —— XxT(1) =% T(Xx1)=T(X). (30)
Here, pr denotes the projectioX x (X i T(1)) — X to the first factor, anévdenotes the
evaluation magX x (X M T(1)) — T(1). The composite map displayed is actually 2-linear,
so if the monadl' happens to be commutative, the 1-linear extension of it twill be
bilinear, by Propositiohl5.

By Propositior 1, it is clear that an alternative descriptid p is:

id
xx (Xt T1) Py g MO o XL iy 2T

The action of X th T(1) on T(X) presented here (“action Hynctionson distribu-
tions”) restricts to the action df (1) on T (X) (“by scalarson distributions”) considered
in SectiorB, via the monoid mapiT(1) : 1M T(1) — X h T(1) induced by ! X — 1;
expressed synthetically, @ : X — T(1) has constant valué € T(1), thenP+-@=P-A,
wherel- denotes the action of th T(1), and the dot denotes the actionTofl) on T (X).

Theorem 3 The actiort: T(X) x (X h T(1)) — T(X) is associative and unitary.

Proof. Our proofis not quite straightforward; there ought to bet@dv@ne. To prove the as-
sociativity assertion, we should compare two maX) x (XM T(1) x (XM T(1) = T(X)
which both are 1-linear, so it suffices to prove that theircpreposite withnx x id are
equal. This is achieved by a contemplation of the followitegdam. (For the arrow de-
noted “pr,ev”, the middle factorT 1 does not participate in thigr, ev)-formation (so ele-
mentwise, the map takés, A, @) to (x,A, @(x))); also, isomorphismX x = X are omitted
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from notation.)

i t
X x (X T1) x (X hT1) PRI o s X T1) Z2X9TE o (X T1))
XX my “(pr.ev)” T(pr,ev)
X x (X M T1) X xT1xT1 T(XxT1)
tx 171
Xxm T(tx1)
(pr.ev)
XxT1 T2X
t)/é,l Hx
TX;

the left hand region commutes, by definitionmg in terms ofm, and the upper right hand
square is essentially just a twisted version of the natyratjuare fort” w.r.to the map
(pr,ev) : X x (XM T(1)) = X x T(1), recalling that th combinatdrin (@) came about by
a twisting ofty, , y (here withY = 1 andZ = T(1)). The lower right hand region deserves
a more detailed argument. Let us prove its commutativitthetit using identifications like
X x 1= X. Consider namely

XxT1xT1 RENE s T(Xx1xT1)

XXty
X x T(1xT1) x T (1)

X xT(t]y) (31)

XxT?(1x1) M T(XxT(1x1)) 1) T(X x 1x 1)

X X U1x1 Mxx1x1
XxT(1x1) 7 T(Xx1x1).

ty 1x1

After the identification of Ix 1 with 1, the left hand column is{(times) the defining con-
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struction ofm; and after the identification of x 1 x 1, the lower right hand object iB(X).
The lower region commutes becaysés a strong natural transformation, thus compatible
with the tensorial strengths @ andT; and the upper region * is an instance of the gener-
alized associativity of the tensorial strengths”. In more detail, writingr andZ for 1, to
keep them apart, consider

/

"
XtyTz t vxTz
_ >

X
XxTYXxTZ

XxT(YxT2Z) TXxYxTZ)
X xT(t}7) T(X xt/7)

X xT2(Y x 2)

TXxT(Y x2))

"
X,T(YxZ)

T(t%,YXZ)

T2(X xY x 2).

The top composite i vz, by (I1). The right hand vertical compositeTigty v £ ), by the
associative law fot”. So the clockwise composite in this diagram equals the ek
composite of *in[(31L) (when we pit=Z = 1) ; and the counterclockwise similarly equals
the counterclockwise in *. This proves the associativity.

To prove the unitary law, we must prove thdtx ex : T(X) x 1 — T(X) x (X h T1)
followed byt is the identity map ofl (X) (modulo the identificatio (X) x 1 2 T(X)).
The two mapsT (X) x 1 — T(X) to be compared are 1-linear, so it suffices to prove that
they agree when precomposed with. Consider the diagram

X id
X x1 220 e (x i T1) P2 1) (x T
(pr.ev) -
XX
X x T1 T(Xx 1)

t//

The square commutes by the constructiok géind the triangle commutes by the pointwise
nature ofex in terms ofe= n;. Finally, the lower composite igx 1. After the identification
of X x 1 with X, we thus get)x, and this proves the unitary law.

We next address naturality questions for the actipboth with respect t&X, and with
respect to the monaf. It does not immediately make sense to ask for plain natyrafi-
w.r.toX, since the domaifi (X) x (X mh T(1)) depends both covariantly and contravariantly
on X, but we do have

Proposition 13 (Frobeniusreciprocity) If f : X =Y is any map, the map(T) : T(X) —
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T(Y)isY hT(1)-equivariant, where Yh T (1) acts on TX) via the monoid homomorphism
fFIYAMT(L) - XAT(L).

Here, f* is short forf M T(1) : Y M T(1) — X M T(1). The statement can be expressed
diagrammatically as commutativity of the right hand regiothe diagram

. . .
xx (vt P vty P rx et e T
f xid T(f) xid T(f).
Yx (YhTL) — TYx (Y ATL) TY

Ny X1 F

In this region, both composites are 1-linear, so as in thefsbPropositior 1L, it suffices
to prove commutativity of the diagram when precomposed withx id. Then thens may
trivially be pushed to the right, using naturality pfand bifunctorality ofx. When thens
come next to thé-s, we can use the defining equatidng (30) to elimirateo that the total
diagram above is rewritten as

id % * (pr,ev) tx1
X x (Y hT1) Xx (XhTL) L X« T1 24 T(Xx1) = T(X)
f x id f xid T(fxid) |T(f).
Y x (Y hT1) ey ~Y><T1T/,1>T(Y><1) ~  T(Y)

Here, the left hand region commutes for pudecalculus” reasons, and the rest commutes
by naturality. This proves the Proposition.

We next consider the naturality w.r.to morphisms of mormd$ — S. This is simpler:

Proposition 14 Lett : T = S be a morphism of strong monads. Thgn T(X) — S(X)
is X h T(1)-equivariant, where &) is equipped with action by X T (1) via the monoid
homomorphism X 71 : X h T(1) — X h S(1).

In diagrammatic terms, this says that the following diagammmutes:

l_
TXXx(XHTL) —— TX
Tx X (X 11) X .

SX>x (X th 1) —— SX
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For, it is standard monad theory that a monad morphisit = Sinduces a “forgetful”
functor&S — &7, compatible with the “underlying” functors; and thes : T(X) — S(X)

is aT-homomaorphism; similarly for T-homomorphisms in the first variable”, like the left
hand vertical map in the displayed diagram. Since both caitgmthus ard -linear in the
first variable, it suffices by Propositign 3 to see that we gepmmutative diagram when
we precompose the displayed diagrammixyx id, and this is straightforward.

We address the question of the relation between the attidi(X) x (X M T(1)) —
T(X) of functions on distributions, antl(1)-valued integratiory : T(X) x (X h T(1)) —
T(1). We express this elementwise, and leave the diagrammateriggon to the reader.
We first note

Proposition 15 Let Pe T(X) and letgp € X h T(1). Then/y ¢(x) dP(x) equals the total of
P o

Proof. We are comparing the value Bt of two mapsT (X) x (X h T(1)) — T(1). Both
are 1-linear, so it suffices to see that they agree when prgesed withnx x id : X x (X
T(1)) = T(X) x (XM T(1)). Precomposingy yields by [14) the evaluation mapx (X rh
T(1)) — T(1). For the other composite, we recall the descriptioh a6 1-linear extension
of the mapp : X x (X h T(1)) — T(X) in (30), here appearing as the top composite in

t//
xx (xhT) P o1 Y rixxn) =

ev I'xid T(!xid) T

Tl IxTL— T(Ix1) = T(D)

The clockwise composite is the total in question, the caeidgekwise is again the evalua-
tion map. This proves the Proposition.

Combining with Theorem|3, we therefore have the followirtggration theoretic signif-
icance of the actioh; again, we express it in elementwise terms. The manadassumed
commutative.

Theorem 4 For P e T(X) and¢ andg in X h T(1), we have

[ @0 dPF@)( = [ (@1 @) dPX.
Proof. The left hand side is, by the Proposition, the total of théritlistion (P+ @) F ¢,
and the right hand side is by the Proposition the total of ik&idutionP + (¢ - @). The
result now follows from the associative law (Theoigm 3) far action of the (commutative)
monoidX h T (1) onT(X).

This Theorem can also be obtained by using the naturalithefarious combinators
with respect to transformation of monads, as expressedipdBitio 1#; namely, one uses
the transformatior : T = (— M T (1)) hr T(1) considered in Theoref 1.
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5 Tensor product and convolution

If PeT(X)andQe T(Y), one hagp(P,Q) € T(X xY). This s, for classical distributions,
the “tensor product” of the distributioisandQ. One has als@(P, Q), which agrees with
(P, Q) if the monad is commutative. We henceforth stick to the comatize case.
Ifnowm: X xY — Zis a map, we may form theonvolutionof P andQ alongm; this is
T(m)(Y(P,Q)) € T(Z). Thus in element-free terms, convolution formation alomg the

composite
T(m
T(X) xT(Y) i’» T(X xY) —>( ) T(2).
Itis T-bilinear.

We have encountered special cases already, namely thé @igton of T(1) on T(X),
which is convolution along the isomorphiskix 1 — X. The multiplication making (1)
into a monoid is the special case whete- 1, so this multiplication is likewise a convolu-
tion.

The convolutions that are most important in functional gsial are the convolutions
along the addition mag- : V xV — V for an abelian monoi/; this will be a mapx :
TV)xT(V)— T(V) makingT (V) in to an abelian semigroup. Assuming that the monad
T is of the kind studied in Sectidn 7 below, all objeTtsX) carry a natural addition structure
+, and« and+ together will makeT (V) into a commutative rig. Distributivity of over+
follows from R-bilinearity of x.

6 Physical quantitiesastorsors

To motivate the following, consider the 1-dimensional eecpacek over a fieldk. Then

a k-linear isomorphisnk — k is multiplication by an invertible scalare k, andr in fact
defines a natural isomorphison: T = T, whereT is the free-vector space monad, namely
px 1 T(X) = T(X) is the homothety “multiplication by”. This transformation is compati-
ble with theu of the monad, since each instancepa$ a linear map; but it is not compatible
with 1, sincepy (1) =r € kis not necessarily & k.

Proposition 16 Letp : T = S be a strong natural transformation between endofunctors o
& . Then for any pair of objects X, the following diagram commutes:

TXx(XATY) — T2Y

px x (X h py) Py

SXx (X h SY) —— Y

where the horizontal maps are “strength in the righthandtéacfollowed by evaluation”,
and where natural transformatiop® denotes the natural transformatior? F> S? derived
from p.
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Thus the top arrow is

TX x stT

ev
TXx (XATY) TXx (TXhT2Y) — T2,

wherest" is the strength (enrichment) @F; similarly the bottom arrow one is obtained
from the strengtistS of S. The natural transformatigo? is more explicitly given bypZ =
S(py) o pry. The proof of this Proposition is in principle elementaryuses thap is a
strongnatural transformation, which means in particular (cf.1}3.2.8) that diagrams of

the form
Str

XMy TXMHTY
sts TX M py
SXh SY TXhSY

px MY

commute (the equivalence of this notion of strong natuemigformation with the one of
(I2) is proved in[[10] Lemma 1.1).

LetB= (B,B) be aT-algebra. Recall from Secti¢n 1 that we have a map
/ LT (X) x (X 1 B) = B.
X

Similarly for S. Inspecting the explicit constructidnl (2) (with (1); p1) for (B, 3)), we note
that the construction depends pnbut it does not depend an Therefore, the following is
not surprising:

Proposition 17 Let T and S be strong monads é&nand letp : T = S be a strong natural
transformation, compatible with thgs, but not necessarily with thgs. Then thefy-
formation for the monads T and S is compatible wathin the sense that the following
diagram commutes:

b

T(X)x (XhT(1) T(1)
px x (X p1) P1
S(X) x (Xt §(1)) — S(1).

JX

Proof. Use the explicit form[{2) for they in question; then the desired diagram comes
about from the diagram in Propositibn] 16 by puttivig= 1, and concatenating it with the
commutative square expressing compatibilityoafith the us of the monads:

prop = pgopi,
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whereu" anduS denote the multiplication of the mona@isandS, respectively.

Let T be a commutative monad afi. Consider another strong endofunckéron &,
equipped with an action by T,

v:T(M(X)) = M(X)

natural inX, and withv satisfying a unitary and associative law. Then eveX) is a
T-algebra by virtue ofvx : T(M(X)) — M(X), and morphisms of the forivl(f) areT-
linear. LetM andM’ be strong endofunctors equipped with sdckactions. There is an
evident notion of when a strong natural transformafiorM = M’ is compatible with the
T-actions, so we have a category Dfactions. The endofunctdr itself is an object in
this category, by virtue ofi. We say thatM is a T -torsor if it is isomorphic toT in the
category ofT -actions. Note that no particular such isomorphism is chptgs is just like
a 1-dimensional vector space okelit is isomorphic tok, but no particular isomorphism is
chosen.

Our contention is that the category Ditorsors is a mathematical model of (not neces-
sarily pure) quantities of typ€ (which is the corresponding pure quantity). Thus is the
free R-vector space monad, the functdrwhich to a spac&X € & associates the space of
distributions of electric charges ov¥r is aT-torsor.

The following Proposition expresses that isomorphismsatibasA : T = M are de-
termined byA; : T(1) — M(1); in the example, the latter data means: choosingi&of
electric charge.

Proposition 18 If g and h: T = M are isomorphisms of T -actions, and ifg h; : T(1) —
M(1), then g= h.

Proof. By replacingh by its inverseM — T, it is clear that it suffices to prove thatgf: T —

T is an isomorphism of -actions, angb; = idy (1), thenp is the identity transformation. As
a morphism ofT -actions,p is in particular astrongnatural transformation, which implies
that right hand square in the following diagram commutesafoy X € &; the left hand
square commutes by assumption@mn

X "
X x1 22y T(1) S T(Xx 1)

= XX p1 Pxx1

Xx1

XxT(1) — T(Xx1
o X T 5 TXx Y
Now both the horizontal composites ayg. 1, by general theory of tensorial strengths. Also
Pxx1 is T-linear. Then uniqueness dflinear extensions oveyx 1 implies that the right
hand vertical map is the identity map. Using the naturalftifieation of X x 1 with X, we
then also get thaby is the identity map of (X).
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7 Monadsand biproducts

LetT be a commutative monad. We summarize some of the relatiangbe the covariant
functorT : & — &, and the contravariant M T(1) : & — &. The latter is actually valued
in the category of commutative monoids4h

e There is aT-bilinear pairingT (X) x (X h T(1)) — T(1), namely the exponential
adjoint [y of the mapry : T(X) — (XM T (1)) hr T(1).

e There is an associative and unitanbilinear actiort- of X h T(1) on T (X); it satis-
fies a “Frobenius reciprocity” naturality condition.

These are two of the axioms laid down by Lawvere in his dedoripf relations be-
tween extensive quantities and intensive quantities,oetheT-bilinearity, cf. e.g.[[19],
Lecture 1V; in Lawvere’s axiomatics, one deals rather witimbarity in the sense of an ad-
ditive structure.

We shall in the present Section describe a simple catedg@rioperty of the monad,
which will guarantee thatT-linearity implies additivity”, even R-linearity” in the sense of
arigR e & (“rig"= commutative semiring), namelg = T(1). This condition will in fact
imply that&T is a “linear category”.

We begin with some standard general category theory, naamalynadl = (T,n, i) on
a category which has finite products and finite coproducts. diStributivity is assumed.)
So & has an initial object 0. IT(0) € & is a terminal object, then the objed (0), Lip) is
a zero object in’T, i.e. it is both initial and terminal. It is initial becau3e as a functor
& — &7, is aleft adjoint, hence preservesinitials; and sifig®) = 1, it is also terminal (the
terminal object in€T being 1€ &, equipped with the unique map(1) — 1 as structure).
This zero object in€T we denote 0. Existence of a zero object in a category impiias t
the category has distinguished zero mapg OA — B between any two objects andB,
namely the unique map — B which factors through 0. Fof T, we can even talk about
the zero map Pg : X — B, whereX € & andB = (B,f3) € &7, namelyny followed by
the zero map fix) g : T(X) — B. We have a canonical map+Y — T(X) x T(Y): the
compositeX — X+Y — T(X) x T(Y) is (nx,0x 1(v)) (here, the first map is the coproduct
inclusion map ). Similarly, we have a canonical n¥ap> T(X) x T(Y). Using the universal
property of coproducts, we thus get a canonical map: X+Y — T(X) x T(Y). It extends
uniquely ovemx.y : X+Y — T(X+Y) to aT-linear map

Oxy : T(X+Y) = T(X) xT(Y),

and® is natural inX and inY. We say thall : & — & takes binary coproducts to products
if ®xy is an isomorphism (i’ or equivalently in&T) for all X, Y in & . Note that the
definition presupposed that(@) = 1; it is the zero object i, so that if T takes binary
coproducts to products, it in fact takes finite coproductsrtmucts, in a similar sense. So
we can also use the phrask takes finite coproducts to produtfer this property ofT.

We define an “addition” map i’ ; it is a map+ : T(X) x T(X) to T(X), namely the

composite
Py T(O)

T(X) x T(X) TX+X) —= T(X)
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where[J: X+ X — X is the codiagonal. So in particular,iifi denotes theth inclusion
(i=1,2) of X into X + X, we have
T (in; )
idrx = TX — M) o ox) X rxerx T (32)
Under the identificatiof (X) = T (X + 0) = T(X) x 1, the equatior{32) can also be read:
T(1): T(0) — T(X) is right unit for+, and similarly one gets that it is a left unit.
We leave to the reader the easy proof of associativity andhuatativity of the map

+:T(X) x T(X) = T(X). It follows thatT (X) acquires structure of an abelian monoid in
&T (and also in®).

Proposition 19 Every T-linear map TX) — T(Y) is compatible with the abelian monoid
structure.

Proof. This means that we should prove commutativity of the squarethe following

diagram

T(X+X) —(D> T(X) x T(X) f—Xf» TY)xT(Y)

+ * +

T(X)

——T(Y)
for f any T-linear map; sof is not necessarily of the form(g), but it has the property
that it preserves 0. To prove commutativity of the diagranit Suffices to precompose
with the linear isomorphisr®. Now the two maps to be compared are botlinear, and
T(X +X) is a coproduct ins’T, so it suffices to see that their composite with the inclusion
T(ini) : T(X) = T(X+ X) (wherei = 1 or=2) are equal. Nowf x f)o®oT(in;) is seen

to bef, using that 0 is neutral for the addition.

Recall that we have th€&-bilinear actionT (X) x T(1) — T(X). It follows from the
Proposition that it is additive in each variable separately
We have in particular th&@ -bilinear commutative multiplicatiomn: T(1) x T(1) —
T(1), likewise bi-additivem(x+y,z) = m(x,z) + m(y,z), or in the notation one also wants
to use,
(X+Yy)-z=%x-2+Yy-2

so thatT (1) carries structure of a rig (= commutative semiring). Thgswie also denote

R. The category of modules over a iRjis the category of abelian monoids equipped with
a bi-additive action byR, and maps which preserve the addition and the action. We may
summarize:

Proposition 20 Each T(X) is a module over the rig R T(1); each T-linear map TX) —
T(Y) is an R-module morphism.
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It is more generally true that-linear mapsA — B (for AandB € £T) areR-module maps.
We shall not use this fact; it is proved in analogy with thegfraf Propositiod 11L.

Let us finally note

Proposition 21 If T takes finite coproducts to products, then so does thecitsadl
Schwartz monad S (— h T(1)) it T(1).

Proof (sketch). We have
OATA)) M T() =1y T(1) =1
the last isomorphism because=10 is an initial T-algebra. Similarly,

SX) x S(Y) = [(X M T(1)) hr T(1)] x [(Y " T(1)) thr T(1)]
=[(XMT@)e Y hT()]hr T(1)

becausep is coproduct ins’T,
=[(X+Y)MT(1)]hr T(1)
becauseb is product ing’
— S(X+Y).

8 Expectation and other moments

We consider now a commutative monga= (T,n, u,t') on& (a CCC with coproducts and
finite inverse limits), such thafT, n, u) takes finite coproducts to products. Ths is a
semi-additive category with biproducts all its objects are modules over the Rg=T(1),
and all morphisms ar@-linear (as well ag -linear, of course). We caR the rig ofscalars

Talking synthetically, we call the elementsDfX) concretedistributions onX. We also
have the objec(X) = (X h R) ht Rof Schwartz distributions oX, i.e. T-linear functionals
XM R— R; and we have the magx : T(X) — S(X) taking concrete distributions ox to
such functionals. We have by Propositidn 7 tiiatp(x) dP(x) is the value of the functional
x(P): XMW R— Ron @: X = R (@ a “test function” onX, in Schwartz terminology).
Thetotal of P is theT(X — 1)(P) € T(1) = R, and may be written af, 1x dP(x) where
1x : X — Ris the constant function with the multiplicative unitle = n; of R.

For concrete distributionB on the spac®itself, (soP € T(R)) there are other charac-
teristic scalars, called “moments”, namely some of theeslof the functionatr(P) : Rrh
R — Ron some particular functioi®— R. In view of the universal role which the identity
map has in e.g. Yoneda’s Lemma, it is no surprise that theevafuhis functional ondg
plays a particular role. It is thexpectatiorof P, denotedE(P) € R,

E(P) ::'/I;x dP(x).
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We have

Proposition 22 Let Pe T(R). Then any value of the functions(P) : (Rt R) — R is the
expectation of some’ T(R): for any ¢ € Rrh R and Pe T(R),

R(P)(@) = E(T(9)(P)).
Proof. By naturality oft with respecttap: R— R,
TROT(®) =[(@M R) M1 RloTr.

When postcomposed wittMg : (R R) Mt T — R, the left hand side giveB(T (¢)(P)),
the right hand side givesk(P) (@), becausevg o (@ R) Mt R) = ev,.

Note that for anyT -algebraB = (B, 8), andP € T(B), we haveE(P) = [gx dP(x) =
B(P); this is just a reformulation of {4).

SinceRis arig, we have for each natural numiber mapR — R, elementwise described
by x+— x". Thenth moment,(P) of P € T(R) is defined asgx" dP(x), thusao(P) is
the total of P, and o (P) the expectation oP. Note thata;(P) = E(P) = 1 (P), where
1 : T?(1) — T(1) = Rcomes from the monad-multiplicatign: T? = T(1) =R,

In [4] (5.5.6), one finds the formulB{X + Y} = E{X} + E{Y} whereX,Y is a joint
distribution of two simultaneous random variables, valireR. The formula looks decep-
tively just like it were a consequence of linearity®f T(R) — R (= 1 : T2(1) — T(1));
but recall thaiX,Y is not a pair of distributions; rather, it is meant to denogénaultaneous
distribution, i.e. an elemei € T(Rx R), andX + refers to the distributios T (R) ob-
tained by applying (+) : T(Rx R) — T(R) to P. So the formula is not a simple linearity.
It is rather a formulation of the following:

Proposition 23 The following diagram * commutes:

T2(2) T®) T(RxR) ) T(R) =T?(1)
H2 B * [21
T(2) R=T(1)

wheref3 is the coordinatewise T -algebra structure orxR.

Proof. Write T(1) for R, and write 1+ 1 for 2, and let® be the comparison isomorphism,
expressing that takes finite coproducts to products. Then the left hand sqgc@ammutes,
since® is T-linear, and the outer diagram commutes by naturality @fith respect to the
map: 2 — 1. (Here, of coursd,l is the unique map 2> 1, but we write it for systematic
reasons; in fact, the Proposition and the proof immediajelyeralizes wheR is replaced
by R", in which casél: 2n — nis not so trivial.)
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For comparison with the quoted formula from [4], XY denotesP, the clockwise
composite takeP to E{X + Y}, and the counterclockwise takes it iff¢X} + E{Y}.

If P e T(R) has total 1, the physical significance®fP) € Ris “center of gravity” of
P (thinking of P as a mass distribution). However, physically it is cleat tha center of
gravity of a mass distribution on the liedoes not the depend on the location of the origin
0 € R, but only of theaffinestructure ofR, in other words, it is invariant under affine maps
R — R Here, we may take “affine maR — R’ to mean maps of the forr— a-x+b
wherea andb are scalarg R.

Proposition 24 Let P< T(R) have total 1. Then for any affing: R— R, ¢(E(P)) =
E(T(@)(P)).

Proof. We may writep € Rrh Ras a linear combination of the identity map: R — R, and
1:R— R(the map with constant valuedlR), ¢(x) = a-x+b. By Propositiol 22, we have

E(T(¢)(P)) = tr(P)(¢) = r(P)(a-id +b-1).
Then sincagr(P) is T-linear, itisR-linear (Proposition 20), so we may continue the equation
=a-1r(P)(id) +-b- 1r(P)(1),
which isa-E(P) +b- 1, the last term sincE has total 1.

The notion of moments make sense not only for distributiond®Re= T (1), but for
instance also for distributions d¥ = T(2). Thus ifP € T(2), we have for ang : R> — R
the scalarf ¢(2) dP(2). Since the dummy variablehere ranges ovét?, it is more natural
to write it z= (X,y), wherex andy range oveR, and thus the scalar in question is written
Jre @(x,y) dP(x,y). Themixed second order momenftP is the scalar obtained by taking
¢ to be the multiplication maR x R— R, so is [z X-y dP(x,y). Itis in terms of this that
one can define theorrelation coefficient ofP.

9 Examples.

The simplest example is whe# is the category of sets (strength is automatic here), and
T is the free-commutative-monoid monad. This is related ¢éortbtion of “multiset”, since
T(X) also may be seen as the set of multi-subse$;a&n element off (X) consists in an
assignemen® of multiplicities {n(x) € N | x € X}, with ny = 0 for all but a finite number

of xs, “P is if compact support”. Thefi (1) = N, andX M T (1) is the set of assignements
¢ of multiplicities {n(x) € N | x € X}, but without the requirement of compact support.
ConsiderX = T(1) = N. One can easily see that(N) may be identified with the set

of polynomials in one variable with coefficients froly and then convolution along the
addition mapN x N — N becomes identified with multiplication of polynomials. g8larly

for finite productsNk.)

An example where the conceptual machinery (strength) hbe tarought in explicitly
is the following, which was one of the motivations for the et research: Consider the
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category& of convenient vector spaces and the smooth {“ebut not necessarily linear)
maps in between. It is a cartesian closed category, cf. [48][&], and there exists free
vector spacesK-modules) in it, hence a commutative monad The categorys’ does
(probably) not have equalizers, at least it is clear thatztite set of a nonlinear map, say
V — R, does not have a natural vector space structure. On the lndinel; the equalizer of
two parallellinear maps in& does exist. The following piece of general theory shows that
therefores’ hasenoughequalizers to form the subobje&tht B C Arh B, which was crucial
in the construction of restricted double dualization man@d in Sectiohl2), and ih [12].

We recall from [2], or[[12] the two parallel maps whose eqeej if it exists, gives
At BC A B, (whereA= (A,a) andB = (B,f3) are twoT-algebras). The two maps
A B— T(A) hBarea rh B, on the one hand, and the composite

anB % Ty aTe) TANE

T(A) hB. (33)

The mapa B is clearlyT-linear. For the mad (33), this is not immediately clear;antf
it depends on commutativity of the monad

Proposition 25 Let T be a commutative monad, and=A(A,a) and B= (B,f3) two T-
algebras. Then the composife33) is T-linear.

Proof. In the diagram

TmmB)I§Q+TUAmTa T(ide)T(TAmB)
A A A
AMTB < TAMT?B G TB TARTB
idh B idhp| [idhTB idh B
ANB — TANTB LY TAMB,

the vertical outer edges are tiealgebra structures oA m B and TA th B, respectively,
expressed in terms of the cotensorial strenijthWe are thus required to prove that the
outer square commutes.Three of the inner squares comnrutbvimus reasons (ignore for
the moment the arrovd M ), but the upper left square does not. Now the associative law
for the structureB allows us to replace the “doubled” arrad/th T3 with id i y. But for

a commutative monad, the upper left hand square postcomposed with ¢ commutes;

this condition is in fact equivalent to commutativity ©f as stated ir [12] Definition 2.1 (in
loc.cit., it is presented as an alternative equivalent d&fimnof commutativity ofT in terms

of the cotensorial strength). From this follows that the outer diagram above commutes,
and this proves the Proposition.
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A concrete description of the monddfor vector spaces oveR in this category was
given in [1]. The authors in fact prove that it is“carved ittbly topological means from a
Schwartz type double dualization monad, described alsb8h [They provide a categorical
study of this monad along different lines than ours, namelyerms of an “exponential
modality” (essentially the comonad ! considered in lineayic).

10 Probability theory

To justify some measure- and probability- theoretic tewtagy, one may think of an ele-
mentX  T(1) not just as a “test function”, in the sense of Schwartz distion theory,
but as a generalized “measurable subseX obr as a generalized “event” in the “outcome
space”X. The connection is that a subs€tc X (for suitable£ and suitablel) gives rise
to a functionX — T(1), namely the characteristic function (whose value is 1xfer X',
and 0 else). Like foX th T(1), the set of subsets of depends contravariantly o, via
inverse image formation. Instead of tidinearity requirement for Schwartz distributions
XM T(1) — T(1), there are other well known algebraic requirements for nness viewed
as functions from the boolean algebra of subsed$ wfthe rigT (1). This shall not concern
us in detail here; the observation is just that test funstammX may be viewed as generalized
measurable subsets/eventsKinand thereby it gives us access to terminology and notions
borrowed from measure theory or probability theory. Weadseanticipated this import of
terminology when we, foP € T(R), used the word “expectation &f for [gx dP(x).

A strong monad™ on a CCC¢# is calledaffineif T(1) = 1. For algebraic theories, this
was introduced in[[26]. For strong monads, it was proved B fhat this is equivalent
to the assertion that for aX,Y, the mapyxy : T(X) x T(Y) — T(X x Y) is split monic
with (T(pr1), T(pr2)) : T(X xY) — T(X) x T(Y) a retraction. In[[21], it was proved that
if & has finite limits, any commutative monddhas a maximal affine submonag, the
“affine part of T". It is likewise a commutative monad. Speaking in elemeséaterms,
To(X) consists of those concrete distributions whose totaldsT(1). We consider in the
following a commutative monad and its affine parp.

Probability distributions have by definition total€lR, (recall thatR denotes the rig
T(1)) and take values in the interval from 0 to 1. We do not in thespn¢ article con-
sider any order relation oR, so there is no “interval from 0 to 1”; so we are stretching
terminology a bit when we use the word “probability disttilbm onX” for the elements of
To(X), but we shall do so. So a “probability distribution” is hewstja concrete distribution
P e T(X) with total 1, or in the notation from Secti¢h 1,

/ 1y dP(X) = 1
X

where % : X — Ris the function with constant value<lR. Since the object 1 is terminal, it
is clear that for anyf : X — Y, if P e T(X) is a probability distribution, then so&(f)(P) €
T(Y). (Alternatively: T is a subfunctor of .)

If P e To(X) andQ € To(Y), theny(P,Q) € To(X x Y), cf. Proposition IR; this also fol-
lows since the inclusion of strong monaldsC T is compatible with the monoidal structure
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Y. From this in turn follows that e.g. probability distribatis are stable under convolution.

The assertion thapy v for the monadTy is split monic, quoted above, may in termino-
logy from probability theory be rendered: “the distributifor independent random vari-
ables may be reconstructed from marginal distributionstatl that ifQ € T(X xY), then
its marginal distributions ar€(pr;)(Q) (i = 1,2). If Q is a probability distribution, then so
are its marginal distributions.

The subobjeclp(X) C T(X) is clearly not stable under the multiplication by scalars
A € R; in fact, formation of totals is the map(!) : T(X) — T(1) = R, hence isT -linear,
and therefore commutes with multiplication by scalars. drtipular, To(X) C T (X) is not
stable under multiplicatior by functionsg € X h R. However, this multiplication still
plays a role in the formulation of probability theory pretahhere. LeP € Tp(X), and let
@ € X th Rbe such thad := [y @(x) dP(x) is invertible in the multiplicative monoid dR.
Then we hav® - ¢ € T(X). We may form the element ifi(X)

Pp:i=(PF@) A%

this is a probability distribution. For by Theorérh 4, itsabis calculated aa ~ multiplied
on

[ 5 dPH@)x) = [ 1909 dPX = [ @0 dPO) = .
X X X

Sowe get 1.

Let us think ofg in the above consideration as a (generalized) “evAntiriting A for
®; also, let us writd>(B) for [, B(x) dP(x), for generaB € X h R. Then we hava = P(A),
and the value oP I A on the “event’B is P(A-B). Now A- B is the eveniAN B (for the
case of characteristic functions of subsetsxpf So Pa is P(ANB)/P(A), the classical
“conditional probability ofB givenA”.
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