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1 Monads and extensive quantities

Anders Kock
University of Aarhus

Abstract. If T is a commutative monad on a cartesian closed category, then there exists a naturalT-
bilinear pairingT(X)×T(1)X → T(1) (“integration”), as well as a naturalT-bilinear actionT(X)×
T(1)X → T(X). These data together make the endofunctorsT andT(1)(−) (co- and contravariant,
respectively) into a system of extensive/intensive quantities, in the sense of Lawvere. A natural monad
map fromT to a certain monad of distributions (in the sense of functional analysis (Schwartz)) arises
from the integration.

Introduction

Another word for “extensive quantitiy”, and one which is commonly used outside mathe-
matics, is “distribution"1. In this common non-mathematical usage, an extensive quantity
(say, of rain on a given day) may bedistributedover a given space, (say the sidewalk), and
its total over that space is measured in terms of some absolute quantity: the totalmassof
the rain on the sidewalk, or the totalnumberof raindrops on the sidewalk (this number is an
integer). So we have different quantitytypesfor such totals, say the quantity type “mass”,
or the quantity type “(integral) number”. In this case, bothare “positive”; but one has also
quantity types like “electric charge” whose quantities admit opposite signs, in the sense that
two such quantities can cancel each other. Note that a mass isnot a (non-negative real)
number, but only becomes so after choosing aunit of mass. Theratio of a given mass
distribution with a chosen unit is a “(distributed) dimensionless quantity”, and a good ap-
proximative mathematical model for many types of totals of such distributed dimensionless
quantities is the ring of real numbers – although for mass, say, non-negativereal numbers
would be a more realistic model for such quantity. Or, the dimensionless quantity may be
an integer (or a non-negative integer), for the case of “number of raindrops”.

A simple approximative mathematical model of these types ofdimensionless total quan-
tities is: they form commutative (additively written) monoids, likeR, R+, orN, in fact, are
free“algebras” on one generator, for a suitable notion of “algebra” (thusN is the freecom-
mutative monoidon one generator, andR is the freereal vector spaceon one generator).
The notion of “free algebra” may be encoded by the notion of monadT. ThusR is T(1),

1In some Germanic languages, like German or Danish, the commonly non-mathematical word for these kind
of distributions is “Verteilung,” resp. “fordeling”. In mathematics, the word “distribution” has acquired a more
specific meaning, namely the distributions in the sense of Laurent Schwartz, where a “distribution” is a continuous
linear functional on a space of “test functions”.
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for the free real vector space monadT. The fact thatT(1) is endowed with aT-bilinear
multiplication comes out from the strength of the monad.

In the present article, we experiment with the viewpoint that the dimensionless distri-
butions on a spaceX form themselves a spaceT(X), whereT is a monad (assumed “com-
mutative”) on “the” categoryE of spaces, assumed to be a cartesian closed category. For
instance,T may be the “free commutative monoid” monad, or the “free realvector space
monad”, – assuming that the field of reals is itself suitably an object ofE . In fact, we have
in mind the case whereE is for instance the category of convenient vector spaces andthe
smooth maps in between; or a topos, like the “smooth topos”, or a “well adapted model” for
synthetic differential geometry; in these cases, the cohesion (say, topology) ofR is retained,
byR being seen as an object of the categoryE .

The units of the monad, i.e. the mapsηX : X → T(X), assign tox ∈ X the distribution
with total 1, and concentrated inx, in some contexts: the “Dirac distribution atx”.

We shall also have a fragment of a theory of how quantities with a physical dimension,
like mass, which are not pure quantities, fit into the picture. They are likewise covariant
endofunctorsM on E , but M(1), unlike T(1), does not carry a natural multiplication or
unit; M is, in some sense, a “torsor” over the appropriate dimensionless-quantity monadT.
(In our [17], we considered similar torsor structure, but only for “total” quantities, i.e.not
distributed over an extended space.)

In most of the present article, we consider only dimensionless quantities.
The theory presented here implies an attempt to comment on Schwartz’ dictum“les dis-

tribution mathématiques constituent une définition mathématique correcte des distributions
rencontrées en physique.”([25] p. 84) – but now with “distribution” in the sense given by
general commutative monads.

A main thing is thatT is a covariant functor. An elementP ∈ T(X) is a distribution
on X. We have a unique mapX → 1; applyingT(X → 1) to P yields an element inT(1),
the total of the distributionP. This covariant feature of extensive quantities was stressed
by Lawvere; in particular, he stressed that distributions (in the sense of functional analysis)
are not to be viewed as “generalized functions” (functions behave contravariantly; they are
intensive quantities), but rather are extensive quantities, behaving covariantly (at least when
restricted to distributions of compact support). We shall return to some of Lawvere’s more
specific theory of extensive quantities in the last sections.

One main aspect of the theory to be presented here is that there is a canonical comparison
transformationτ from the monadT into a Schwartz (double-dualization) type monadS
associated toT. To distinguish, we call the elementsP of T(X) concretedistributions, to
distinguish them from distributions in the sense of functional analysis.

The technical underpinning of the present theory is the theory of strong (=E -enriched)
monads on a symmetric monoidal closed categoryE , developed by the author in a series
of articles in the early 1970s, [10], [11], [12], [13], and [14]. We begin by recalling and
expanding some of the aspects of this theory; however, sincewe shall be interested in the
case of a CCC (= cartesian closed category)E only, we use notation etc. from this special
case throughout (so we write× rather than⊗), even though the material in Sections 1-3
deal with the general SMC (= symmetric monoidal closed) case.
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Following the typographical convention from these papers,we writeX ⋔Y for the expo-
nential objectYX . The counit for the adjunction defining the exponential− ⋔Y is denoted
ev: X× (X ⋔Y)→Y ( for “evaluation”).

Because an unspecified endofunctorT is involved throughout, we have in the main
preferred to formulate constructions etc. in terms of diagrams, rather than in terms of ele-
ments of the objects considered; however, expressions talking about “elements” in “sets” are
sometimes more readable than diagrams, so we shall sometimes use such expressions, even
though objects ofE may have no (global) elements at all. Alternatively, the elements talked
about aregeneralizedelements in the sense used in, say, Synthetic Differential Geometry,
as expounded in [15]. It is in principle routine to translateequations and constructions,
expressed in terms of elements, into commutative diagrams.

Acknowledgements. The dialectics between extensive and intensive quantities, as covariant
and contravariant, I learned from Lawvere, and this was a leading guideline in the present
research. This was further spurred by reading Cramér’s introductory text [4] on “calculus
of probabilites,” which explicitly stresses the analogy between probability distributions and
mass distributions - both important cases of extensive quantities.

– I want to acknowledge several fruitful conversations withMichael Wright on these
topics. The diagrams of the article were produced using PaulTaylor’s “diagrams” package.

1 Combinators for strong endofunctors and monads

We consider a CCCE ; notions of “enrichment” or “strength” refer to thisE .
First, we have the evaluation map

evX,Y : X× (X ⋔Y)→Y

and its twin sister ˜evX,Y : (X ⋔Y)×X →Y; they are the counits for the adjunction(X×−)⊣
(X ⋔ −) (resp.(−×X) ⊣ (X ⋔ −)). Often the decorationsX,Y on evX,Y may be omitted,
becauseX andY are clear from the context.

We consider an endofunctorT : E → E , assumed strong ( =E -enriched); recall that
such enrichment is presented in terms of data

stX,Y : X ⋔Y → T(X) ⋔ T(Y),

cf. [7], or [3] II.6.2.3 item (2).
In [10] and [14], we observed that the strength can be encodedas atensorialstrength

t ′X,Y : T(X)×Y → T(X×Y),

natural inX andY. By “conjugating” with the twist mapX×Y →Y×X, one also gets its
“twin sister”

t ′′X.Y : X×T(Y)→ T(X×Y),

likewise encoding the strength.
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Finally, the strength can be encoded ascotensorial strength

λX,Y : T(X ⋔Y)→ X ⋔ T(Y),

cf. [10] and [12].
We give elementwise descriptions of these basic combinators. The elements ofX ⋔ Y

are mapsf : X → Y. The (Eilenberg-Kelly-) strengthstX,Y : X ⋔ Y → T(X) ⋔ T(Y) of T
takes suchf to T( f ) ∈ T(X) ⋔ T(Y). The tensorial strengtht ′X,Y : T(X)×Y → T(X ×Y)
takes(P,y) to T(uy)(x), whereuy : X → X×Y takesx to (x,y); similarly t ′′X,Y : X×T(Y)→
T(X ×Y) takes(x,Q) to T(ũx)(Q) whereũx : Y → X ×Y takesy to (x,y). Finally, λX,Y :
T(X ⋔Y)→X ⋔T(Y) takesS∈T(X ⋔Y) to the mapx 7→T(evx)(S), whereevx : X ⋔Y →Y
is evaluation atx∈ X.

The following will be a main actor in the following. LetB∈ E and letβ : T(B)→ B be
a map. (We are ultimately interested in the case whereT is a strong monad, andβ makesB
into aT-algebra). Then for anyX ∈ E , we have the composite

T(X)× (X ⋔ B)
t ′
✲ T(X× (X ⋔ B))

T(ev)
✲ T(B)

β
✲ B. (1)

Alternatively, by (6) below, this map equals

T(X)× (X ⋔ B)
id× st

✲ T(X)× (T(X) ⋔ T(B))
ev
✲ T(B)

β
✲ B. (2)

In elementwise terms: IfP∈ T(X) andφ ∈ X ⋔ B (soφ : X → B is a map), the value of (2)
on(P,φ) is β (T(φ)(P)) ∈ B, and is denoted

∫

X,B φ(x) dP(x) (with ‘x’ as a dummy variable).
Frequently,B andβ may be understood from the context (and the most important case is
whenB= T(1)), in which case the definiton of

∫

reads
∫

X
φ(x) dP(x) := β (T(φ)(P)), (3)

or, with increasing pedantry (rarely needed)
∫

X
φ(x) dP(x) =

∫

X,B
φ(x) dP(x) =

∫

X,(B,β )
φ(x) dP(x).

We are interested in the case whereβ providesB with structure ofT-algebra. (In this
case, whenE is the category of sets, this “integration” relationship between monad/algebra
theory, and algebraic theories, dates back to the early daysof monad theory with Linton,
Wraith and others, in the mid 1960s: they knew that the elements ofT(X) can be interpreted
asX-ary operationsX ⋔ B→ B on T-algebrasB.) If in particularX is B itself, and we put
φ = idB, we end up with

∫

B,B
x dP(x) = β (P). (4)

We are ultimately to read this as theexpectationof P, see Section 8 below.
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We collect some further definitions and basic relations concerning the combinators re-
lated to a strong endofunctorT : E → E on a symmetric monoidal closed categoryE . We
continue to use notation as ifE were actually cartesian closed, i.e. we write× rather than
⊗.

We already considered the counitevfor the adjunction(X×−) ⊣ (X ⋔−). The unit for
this adjunction is not used so often, it is denotedu, with suitable decorations. Similarly, ˜u is
the unit corresponding to the counit ˜ev. Thus

uX,Y : Y → X ⋔ (X×Y) ũX,Y : Y → X ⋔ (Y×X).

The decorations are usually omitted from notation; even thetilde may often safely be omit-
ted; one case where it is useful to retain the tilde is in the characterizing diagram forδ
(canonical map to double dual; “δ ” for “Dirac”); we have that the following diagram com-
mutes

X× (X ⋔ B)
δ × id

✲ ((X ⋔ B) ⋔ B)× (X ⋔ B)

B

ev

❄

=
✲ B.

ẽv

❄

(5)

Next, a diagram relating the tensorial strengtht ′ with the Eilenberg-Kelly strength (=E -
enrichment)st of T:

TA× (A⋔ B)
t ′A,A⋔B

✲ T(A× (A⋔ B))

TA× (TA⋔ TB)

TA× stA,B

❄

ev
✲ TB.

T(ev)

❄

(6)

The proof of this comes about, via manipulation by exponential adjointness, of the definition
of t ′X,Y (as given in [10] p.2 fort ′′) in terms ofst, namely as the exponential adjoint of the
composite

Y
uX,Y
✲ X ⋔ (X×Y)

st
✲ TX ⋔ T(X×Y).

(putY := A⋔ B andX := A).
Next, a diagram relating the tensorial strengtht ′ with the cotensorial strengthλ :

T(Y ⋔ Z)×Y
λY,Z×Y

✲ (Y ⋔ TZ)×Y

T((Y ⋔ Z)×Y)

t ′Y⋔Z,Y

❄

T(ẽv)
✲ TZ.

ẽv

❄

(7)
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This also follows by exponential adjointness manipulations; a proof is given in [12] Lemma
1.2.

We shall also have occasion to use commutativity of the outerdiagram in

TX× (X ⋔ B)
Tδ × id

✲ T((X ⋔ B) ⋔ B)× (X ⋔ B)
λ × id

✲ ((X ⋔ B) ⋔ TB)× (X ⋔ B)

T((X ⋔ B) ⋔ B)× (X ⋔ B))

t ′

❄

T(X× (X ⋔ B))

t ′

❄

T(ev)
✲

T(δ × id)

✲

TB;

ẽv

❄

T(ẽv)
✲

(8)
here, the left hand square commutes by naturality oft ′, the right hand square by (7), and the
triangle by applyingT to (5).

We will take the tensorial strengtht ′ (or equivalentlyt ′′) as the primary encoding. IfE is
the category of sets,t ′X,Y : T(X)×Y → T(X×Y) is the map which forP∈ T(X) andy∈Y
returns the valueT(uy)(P) ∈ T(X×Y), whereuy : X → X×Y is the mapx 7→ (x,y).

The combinatort ′ satisfies a unit law and an associative law. The unit law says that
t ′X,1 : T(X)×1→ T(X×1) is the composite of the two canonical isomorphismsT(X)×1∼=
T(X)∼= T(X×1). The associative law says that the composite

T(X)×Y×Z
t ′X,Y ×Z

✲ T(X×Y)×Z
t ′X×Y,Z

✲ T(X×Y×Z)

equalst ′X,Y×Z. (For simplicity, we write as if× were strictly associative.) There are similar
unit- and associative laws fort ′′. All these laws follow from the standard laws for theE -
enrichment, cf. [10].

We shall have occasion to use a “derived” combinator,

tX,Y,Z : X×T(Y)×Z → T(X×Y×Z); (9)

it can be defined in several ways which are equivalent in view of the associative law fort ′

and the construction oft ′′ in terms oft ′. One way to define it is to consider

t ′′X×Z,Y : X×Z×T(Y)→ T(X×Z×Y) (10)

and conjugate it by interchange ofZ andT(Y), respectively,Z andY. It can, by the associa-
tive law, also be defined as the composite

X×T(Y)×Z
X× t ′Y,Z

✲ X×T(Y×Z)
t ′′X,Y×Z

✲ T(X×Y×Z). (11)
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A natural transformationτ : T ⇒ Sbetween two strong functors isstrongif all squares
of the form

T(X)×Y
t ′X,Y
✲ T(X×Y)

S(X)×Y

τX ×Y

❄

s′X,Y

✲ S(X×Y)

τX×Y

❄

(12)

commute, wheret ′ ands′ are the tensorial strengths ofT andS, respectively2.
Let (T,η ,µ , t ′) be a strong monad, (soT is equipped with a strengtht ′, andη andµ are

strong natural transformations; recall thatt ′ induces a natural strength onT ◦T; “strengths
compose”; an explicit expression for the composite strength (in t ′′-terms) appears in the
center line of (31) below).

It is easy to deduce from the strength of the natural transformationη : id ⇒ T that the
following diagram commutes:

X× (X ⋔ B)
ev

✲ B

T(X)× (X ⋔ B)

ηX × id

❄

t ′
✲ T(X× (X ⋔ B))

T(ev)
✲ T(B).

ηB

❄

(13)

Together with a monadT on E comes the notion of (Eilenberg-Moore-)T-algebra
(B,β ) whereβ : T(B) → B satisfies a unit- and associative law. In particularβ ◦ ηB =
idB. So from the above, we deduce that ifB = (B,β ) is a T-algebra, then precomposing
∫

X : T(X)× (X ⋔ B)→ B with ηX × id just yields the evaluation map (use the description
(1)); let us record this:

[

X× (X ⋔ B)
ηX × id

✲ T(X)× (X ⋔ B)

∫

X✲ B
]

=
[

X× (X ⋔ B)
ev

✲ B
]

. (14)

The T-algebras form a categoryE T , whose maps are calledT-homomorphisms; we shall
also use the termT-linearmaps, because this will allow us to talk aboutT-bilinear maps, a
notion introduced in the strong-monad context in [22] and [13]. We shall recall and expand
some of the theory from loc.cit. As long as the monadT is fixed, we may say “linear”
instead ofT-linear, and similarly for “bilinear”.

The following result (Theorem 2.1 in [10]) is important for our present aims:

the functor part T of a strong monad carries two canonical structures as a monoidal functor;
with respect to each of these,η is a monoidal transformation.

2There is another use of the word “strong” for a natural transformation, namely “all the naturality squares are
pull-backs”. This is not how we use the word here.
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These two monoidal structures are in loc.cit. denotedψ andψ̃, respectively; one is just
the “twisted” version of the other;ψX,Y is the composite

T(X)×T(Y)
t ′X,T(Y)

✲ T(X×TY)
T(t ′′X,Y)

✲ T2(X×Y)
µX×Y

✲ T(X×Y), (15)

andψ̃X,Y similarly is

T(X)×T(Y)
t ′′T(X),Y

✲ T(TX×Y)
T(t ′X,Y)

✲ T2(X×Y)
µX×Y

✲ T(X×Y). (16)

The “nullary” part of both the monoidal structures isη1 : 1→ T(1), where 1 is the unit
object ofE (i.e. the terminal object, in the CCC case).

In distribution theory, ifP anQ are distributions of compact support on spacesX andY
respectively, the distributionψX,Y(P,Q) on X×Y is called thetensor productof P andQ,
cf. [25] III.1.

Recall from [10] that the strong monadT is calledcommutativeif ψ = ψ̃ . In Theorem
3.2 in [10] it is proved that ifT is commutative in this sense, thenµ is a monoidal transfor-
mation (and henceT a monoidal monad, sinceη is in any case a monoidal transformation).

(There is a converse result contained in Theorem 2.3 in [14];it contains the assertion that
the strengtht ′ of T can be reconstructed from the structure of monoidal monad; however,
in the present article, we prefer to have strength as a principle underlying everything –
almost a part of the logic. ForE = Sets, strength is canonically present in all functors and
transformations.

We proceed to describe some of the relationships we need between the various combi-
nators associated to strong monads.

Proposition 1 PrecomposingψX,Y with ηX × T(Y) yields t′′X,Y. Similarly, precomposing
ψ̃X,Y with T(X)×ηY yields t′X,Y.

Diagrammatically, the first assertion says that the outer diagram in the following diagram
commutes; the inner square commutes by naturality, the lefthand triangle commutes since
η is strong, and the right hand triangle commutes by a monad law. So the total diagram is
likewise commutative, and this proves the first assertion ofthe Proposition.

X×T(Y)
t ′′X,Y

✲ T(X×Y)

TX×TY
t ′X,TY

✲

ηX ×TY

✛

T(X×TY)

ηX×TY

❄

T(t ′′X,Y)
✲ T2(X×Y)

ηT(X×Y)

❄

µX×Y

✲ T(X×Y).

id

✲

The proof and diagram for the second assertion are similar.
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Let A= (A,α) andC = (C,γ) beT-algebras. A mapf : A×X → C is called1-linear
(or linear (T-linear)in the first variable), cf. [13], if the following pentagon commutes

T(A)×X
t ′A,X
✲ T(A×X)

T( f )
✲ T(C)

A×X

α ×X

❄

f
✲ C.

γ

❄

(17)

Similarly, a mapX×A→C is called2-linear (or linear in the second variable) if a similar
diagram, now usingt ′′X,A : X×T(A)→ T(X×A) commutes. Finally, if furtherB= (B,β ) is
a T-algebra, a mapA×B→C is calledbilinear if it is both 1-linear and 2-linear.

(One may define the notion ofn-linear mapA1× . . .An → C (where theAis andC are
(underlying objects of) algebras), and in this way, one should get a multicategory; however,
to substantiate this, there are some coherence conditions that need to be worked out.)

Recall that an object of the formT(Z) carries a canonical algebra structure, namely
with structure mapµZ : T2(Z)→ T(Z) (this is thefree T-algebra onZ). The algebras in the
following Proposition are free.

Proposition 2 For any X and Y inE , the map t′X,Y : T(X)×Y → T(X ×Y) is 1-linear.
Similarly t′′X,Y : X×T(Y)→ T(X×Y) is 2-linear.

Proof. The pentagon (17) above, withA= T(X) andX =Y has as top line the mapT(t ′X,Y)◦
t ′T(X),Y, and this is an instance of the tensorial strength for the composite functorT ◦T; and
then the commutativity of the pentagon is seen to be an instance of the assumption thatµ
is a strong natural transformation. The proof of the second assertion follows by suitable
conjugation by twist maps.

A consequence (cf. [13]) is thatψX,Y : T(X)×T(Y) → T(X ×Y) is 1-linear, and that
ψ̃X,Y is 2-linear. If all instances ofψ are 2-linear (or equivalently, bilinear), then the monad
is commutative, and vice versa, cf. loc.cit. Proposition 1.5.

Recall that ifC= (C,γ) is aT-algebra, any mapX →C extends uniquely overηX : X →
T(X) to a linear mapT(X) → C; this is the “free” property ofT(X). We have a closely
related “universal” property ofT(X)×Y:

Proposition 3 Any map f: X×Y →C extends uniquely overηX ×Y : X×Y → T(X)×Y
to a 1-linear map : T(X)×Y →C.

For, there are natural bijective correspondences

hom(X×Y,C)∼= hom(X,Y ⋔C)∼= homT(T(X),Y ⋔C)

(where the second occurrence ofY ⋔ C is the cotensorY ⋔ C in E
T , recalled in (20) be-

low, and where the second bijection is induced by precomposition by ηX); finally, the set
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homT(T(X),Y⋔C) is in bijective correspondence with the set of 1-linear mapsT(X)×Y→
C, by [13] Proposition 1.3 (i).

It is useful to be have an explicit formula for the 1-linear extension off : X×Y →C; it
is the composite

T(X)×Y
t ′X,Y
✲ T(X×Y)

T( f )
✲ T(C)

γ
✲ C. (18)

For, t ′X,Y is 1-linear, by Proposition 2, and the two other maps in (18) are linear, so the
composite is 1-linear. Also, it is easy to see that the restriction of (18) alongηX ×Y gives f
back (use the unit lawt ′X,Y ◦ (ηX ×Y) = ηX×Y, and alsoγ ◦ηC = idC). So (18) satisfies the
two conditions in Proposition 3.

Proposition 4 The mapψX,Y : T(X)×T(Y)→ T(X×Y) is characterized by the following
two properties: it is 1-linear, and its precomposition withηX ×TY is t′′X,Y. Similarly ψ̃ :
T(X)× T(Y) → T(X ×Y) is characterized by the two properties: it is 2-linear, and its
precomposition with TX×ηY is t′X,Y.

Proof. We prove the first assertion. We already observed thatψX,Y satisfies these two
conditions, cf. Propositions 1 and the quotation from [13] after Proposition 2. The converse
follows from Proposition 3.

Assume now thatB = (B,β ) is an algebra, and consider a mapf : X ×B → C which
is 2-linear. It extends, by the above, to a 1-linear mapf : T(X)×B → C, and we may
ask whether thisf inherits from f the property of being 2-linear (and is thus bilinear). A
sufficient condition is commutativity ofT:

Proposition 5 Let T be commutative. Let B= (B,β ) and C= (C,γ) be T-algebras, and
assume that f: X ×B → C is 2-linear. Then its 1-linear extensionf : T(X)×B → C is
bilinear.

Proof. We use the formula (18) withY = B for the extension. It remains to prove 2-linearity
of this map, i.e. to prove commutativity of the following diagram (where the bottom line is
f , according to (18))

TX×TB
t ′′
✲ T(TX×B)

T(t ′)
✲ T2(X×B)

T2 f
✲ T2C

Tγ
✲ TC

TX×B

TX×β

❄

t ′
✲ T(X×B)

T f
✲ TC

γ
✲ C.

γ

❄

Consider the compositeγ ◦Tγ ◦T2 f of the last three arrows in the clockwise composite. By
pure monad- and algebra theory, we have

γ ◦Tγ ◦T2 f = γ ◦T f ◦ µ , (19)
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and having performed this replacement, the definition ofψ̃ appears at the beginning of the
clockwise composite. SinceT was assumed commutative, we may replaceψ̃ by ψ , and
after this replacement, the clockwise composite comes out as the composite

TX×TB
t ′
✲ T(X×TB)

T(t ′′)
✲ T2(X×B)

µ
✲ T(X×B)

T f
✲ TC

γ
✲ C.

Now we can use (19) once more, in the opposite direction, and we end up with the composite

TX×TB
t ′
✲ T(X×TB)

T(t ′′)
✲ T2(X×B)

T2 f
✲ T2C

Tγ
✲ TC

γ
✲ C.

After these manipulations with the clockwise composite, the diagram to be proved commu-
tative has the following shape

TX×TB
t ′
✲ T(X×TB)

T(t ′′)
✲ T2(X×B)

T2 f
✲ T2C

∗

TX×B

TX×β

❄

t ′
✲ T(X×B)

T(X×β )

❄

T f
✲ TC

Tγ

❄

γ
✲ C

Here the pentagon * commutes: it comes about by applying the functorT to the diagram
expressing the assumption thatf : X×B→C is 2-linear. This proves the desired 2-linearity
of f .

For a commutativeT, we get as an immediate corollary that a mapf : X×Y→C (where
C = (C,γ) is a T-algebra) extends uniquely to a bilinearT(X)×T(Y) → C. Since alsof
extends uniquely to a linearT(X×Y)→C, we may conclude thatT(X×Y) may serve as
T(X)⊗T(Y) in E

T , with ψX,Y as the universal bilinear map; but we shall not prove or need
existence of such tensor products for generalT-algebras.

The following is hardly surprising, and the routine proof isomitted:

Proposition 6 If τ is a strong natural transformation from one strong monad T toan-
other one, S, compatible with the monad structures, thenτ will also be compatible with
the monoidal strucuresψT , ψS, i.e. it will be a monoidal transformation. Similarly,τ will
be compatible with the monoidal structuresψ̃T , ψ̃S.

2 Monads and double dualization

Given a commutative monadT on E . Some of the formal properties of the construction
∫

X φ(x) dP(x) is best stated in terms of a transformationτ from T to a certain “double
dualization” monad associated toT. In essence,τX will be exponential adjoint of

∫

X :
T(X)× (X ⋔ B)→ B (whereB is aT-algebra).

11



We assume thatE has equalizers (or sufficiently many – only a few are needed; we study
this question in more detail in Section 9). In this case, the categoryE T of algebras for a
strong monadT = (T,η ,µ , t ′) becomes enriched overE : if (A,α) and(B,β ) are algebras,
the E -valued hom-object[(A,α),(B;β )]T is carved out ofA ⋔ B by an evident equalizer
diagram involvingα andβ , expressing theT-homomorphism condition diagrammatically.
(This goes back to [2].) We write(A,α) ⋔T (B,β ) for this hom object, and often omitα and
β from notation; they are then to be understood from the context. Note that(A,α)⋔T (B,β )
is a subobject ofA⋔ B. In short notation,A⋔T B⊆ A⋔ B.

Also,E T is cotensored overE : if X ∈ E and(B,β ) ∈ E
T , the cotensorX ⋔ (B,β ) is the

objectX ⋔ B in E , equipped with theT-structure

T(X ⋔ B)
λX,B
✲ X ⋔ T(B)

X ⋔ β
✲ X ⋔ B, (20)

using the cotensorial strengthλ of T.
In [12], we proved that ifT is a commutative monad, then(A,α) ⋔T (B,β ), as a subob-

ject of A⋔ B, is actually a sub-Talgebra(with the algebra structure ofA⋔ B given by the
recipe above, withX = A). This in fact makesE T into a closed category in its own right,
cf. Theorem 2.2 in [12]. (It is even asymmetricclosed category, in the sense suggested in
loc.cit. ; this was substantiated in [5], [6].)

The notion of cotensor andE -valued hom are related by an (E -strong) adjointness, as
is well known, cf. [9] (3.42). This implies that forB= (B,β ) in E

T , we have contravariant
functors

− ⋔ (B,β ) : E → E
T

and
− ⋔T (B,β ) : E

T → E

which are strongly adjoint to each other on the right, so thatwe get a strong monad onE ,
with functor partX 7→ (X ⋔ (B,β )) ⋔T (B,β ), or with slight abuse of notation

X 7→ (X ⋔ B) ⋔T B, (21)

a “restricted double dualization” functor (terminology from [16]). These double dualization
monads are rarely commutative (even for commutativeT); and their categories of algebras
are often hard to analyze.

In case whereE is the category of sets, andT(X) is the monad whose algebras are
boolean algebras,(X ⋔ 2) ⋔T 2 is the set of ultrafilters onX, and the category of algebras
for (− ⋔ 2) ⋔T 2 is the category of compact Hausdorff spaces (Manes’ Theorem, cf. [8]
III.2.4).

If T is the identity functor, andD ∈ E is any object, we have the “plain” double-
dualization monad(− ⋔ D) ⋔ D, studied in detail in [11]. It is the “full algebraic theory
of D”, if we identify monads on the category of sets with infinitary Lawvere theories (as is
done in [23], or [26]).

It is easy to see thatB itself is an algebra for the (unrestricted) double dualization monad
(− ⋔ B) ⋔ B; the structure is the mapevid : (B ⋔ B) ⋔ B → B which is “evaluation at the
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identity mapidB ∈ B⋔ B”. In particular

evid ◦ δB = idB. (22)

Another significant example: ifR is a commutative ring object inE , there is (under
suitable completeness conditions onE ) a monadT whose category of algebras are theR-
module objects. SoR itself is aT-algebra (in fact,R= T(1)), and we have the restricted
double dualization monad(− ⋔ R) ⋔T R. In some examples(X ⋔ R) ⋔T R can be analyzed
as an internal version ofdistributions with compact supportonX (distributions in the sense
of Schwartz); see [24] Prop. II.3.6 for some toposes ofC∞ spaces. An algebraic analysis is
given in [16] for the case whereR is the generic commutative ring.

We return to the general case of a restricted double dualization monadX 7→ (X ⋔ B) ⋔T

B, whereT is a strong monad onE andB= (B,β ) a T-algebra. The unit for this monad is
denotedδ , so

δX : X → (X ⋔ B) ⋔T B.

Post-composing with the inclusion(X ⋔ B) ⋔T B ⊆ (X ⋔ B) ⋔ B gives the combinatorδX

considered in Section 1. IfE is the category of sets, it is the map which takesx ∈ X to
the T-algebra mapδX(x) : X ⋔ B → B, “evaluating atx ∈ X”. This “evaluation atx” is a
T-homomorphism, thus an element in(X ⋔ B) ⋔T B. In distribution terms, it is the Dirac
distribution onX at x, whence the notationδ . Theµ of the monad(− ⋔ B) ⋔T B can also
ultimately be described in terms ofδ . We describe it when, and to the extent we need it, in
the proof of Theorem 1 below.

These double-dualization monads depend on the choice of theobject (T-algebra)B. The
most important case for us is whereB is (T(1),µ1) (later on, we shall denote this particular
T-algebra by the letterR; it plays the role of a number line). Recall that for anyX ∈ E , the
algebra(T(X),µX) is thefree T-algebra onX. In particular,T(1) is the free algebra in one
generator.

The construction of the restricted double dualization monad (21) does not depend on
commutativity of the given monadT, however, the following does. So letT be acom-
mutativemonad onE , and letB = (B,β ) be aT-algebra. Then by [12],A ⋔T B carries
structure of aT-algebra wheneverA = (A,α), B = (B,β ) areT-algebras. Therefore, the
mapδ : X → (X ⋔ B) ⋔T B extends uniquely to aT-homomorphism on the freeT-algebra
T(X), so that we have a canonicalT-homomorphism

τX : T(X) ✲ (X ⋔ B) ⋔T B.

Its relationship to
∫

X is made explicit in Proposition 7 below.

Theorem 1 Let T be a commutative monad. Then the mapsτX form a strongly natural
morphismτ : T ⇒ (− ⋔ B) ⋔T B; it is a morphism of monads, and it is compatible with the
canonical monoidal structures on the functors in question.

(This holds, whether one takesψ or ψ̃ as the monoidal structure on the double dualization
monad; and forT, there is anyway only one canonical monoidal struture, sinceT is assumed
commutative.)

13



Proof. By construction,τ ◦ δ = η , so τ is compatible with the units of the two monads
in question. Let us prove compatibility with theµ , µ (the latter being the multiplication
of the double dualization monad in question). The unit and counit of the adjunction that
gave rise to the monad(− ⋔ B) ⋔T B areδX : X → (X ⋔ B) ⋔T B in E (already considered),
andεA : A→ (A⋔T B) ⋔ B in E

T , given by essentially the same recipe which gaveδ (the
counit goes the “wrong way” because of the contravariant nature of the two adjoint functors
in question). Since the multiplication of a monad arising from an adjoint pair is an instance
of the counit of it, we conclude thatµ does indeed live inE T . Therefore, the two maps to
be compared to prove thatτ is compatible withµ ,µ are two mapsT2(X)→ (X ⋔ B) ⋔T B
both of which areT-linear. By Proposition 3, it therefore it suffices to see that they agree
when precomposed withηTX. Here is the relevant diagram:

TX
ηTX
✲ T(TX)

T(τ)
✲ T((X ⋔ B) ⋔T B)

τ
✲ ((((X ⋔ B) ⋔T B) ⋔ B) ⋔T B)

TX

µX

❄

τ
✲ (X ⋔ B) ⋔T B

µX

❄

.

The counterclockwise composite givesτX , by the unit law for the monadT. The top com-
posite may be rewritten, using naturality ofη , into the composite

TX
τX
✲ (X ⋔ B) ⋔T B

η
✲ T((X ⋔ B) ⋔T B)

τ
✲ ((((X ⋔ B) ⋔T B) ⋔ B) ⋔T B);

but τ ◦η is δ , by construction ofτ, andδ composed withµ is an identity map (one of the
monad laws for the double dualization monad here). So the clockwise composite likewise
ends up asτX . Soτ is indeed a morphism of monads. Since everything is compatible with
the strengths, we conclude from Proposition 6 thatτ also preserves the monoidal structure.

Remark. This theorem is analogous to Theorem 3.2 in [11]; there, however, one considers
thefull double dualization monad(− ⋔ B) ⋔ B for anunstructuredobjectB.

The transformationτ in the Theorem is in fact an exponential adjoint version of the
“integral” studied in Section 1:

Proposition 7 The mapτX : T(X)→ (X ⋔ B) ⋔ B has for its exponential adjoint the map
∫

X,B : T(X)× (X ⋔ B)→ B.

Proof. Sinceτ is the T-linear extension ofδ : X → (X ⋔ B) ⋔ B, τ may be described
explicitly as the composite

TX
T(δ )

✲ T((X ⋔ B) ⋔ B)
λ
✲ (X ⋔ B) ⋔ TB

id ⋔ β
✲ (X ⋔ B) ⋔ B. (23)

Thus, the exponential adjoint ofτ appears as the clockwise composite in (8) composed with
β . On the other hand, if one follows the counterclockwise composite in (8) byβ , we see
from (1) that we have the map

∫

X,B-
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Let (B,β ) be aT-algebra. By the Theorem, we have for eachX ∈ E a mapτX : T(X)→
(X ⋔ B) ⋔T B, defined in terms ofβ , and with good properties, in particular, it isT-linear.
ForX = B, we have in particularτB : T(B)→ (B⋔ B) ⋔T B. We have also a mapevid : (B⋔

B) ⋔T B→ B “evaluation atidB”, and thus get by composition a mapT(B)→ B.

Proposition 8 The composite

T(B)
τB
✲ (B⋔ B) ⋔T B

evid
✲ B

equalsβ : T(B)→ B.

Proof. Both maps to be compared areT-linear, so it suffices to see that they agree when
precomposed withηB. We haveβ ◦ηB = idB, by the unit law forT-algebras. On the other
hand,

evid ◦ τB◦ηB = evid ◦ δB

by construction ofτ, andevid ◦δB = idB, as we observed above (22) for unrestricted double
dualization intoB; it holds then, by restriction, also for the restricted double dualization
monad.

Theorem 1 allows us to describeτX×Y(ψ(P,Q)) in terms ofτX(P) andτY(Q), and simi-
larly for ψ̃ ; note the formal similarity with Fubini’s Theorem.

Theorem 2 Let P∈ T(X) and Q∈ T(Y), and letφ ∈ (X×Y) ⋔ B. ThenτX×Y(ψ(P,Q))(φ)
andτX×Y(ψ̃(P,Q))(φ) appear as the left and right hand side, respectively, of the following
equation (which thereforeholds for all P,Q,φ when T is assumed to be a commutative
monad)

∫

X

(

∫

Y
φ(x,y) dQ(y)

)

dP(x) =
∫

Y

(

∫

X
φ(x,y) dP(x)

)

dQ(y). (24)

Proof. We first argue thatτX×Y(ψX,Y(P,Q))(φ) ∈ B is given by the expression on the left
hand side. We denote the combinators for the strong monadS= (− ⋔ B) ⋔T B by t ′, ψ , etc.
Then by Theorem 1

τX×Y(ψ(P,Q)) = ψX,Y(τX(P),τY(Q)).

Therefore, it is a matter of analyzingψX,Y for the monadS, and this is pureλ -calculus;
in fact, S can easily be proved to be a submonad of the full double dualization monad
D = (− ⋔ B) ⋔ B. We claim that the monoidal structureψ for this monad is given, in
elementwise terms, as follows, forP∈ (X ⋔ B)⋔ B, Q∈ (Y ⋔ B)⋔ B) andφ ∈ (X×Y) ⋔ B:

ψ(P,Q)(φ) = P[x 7→ Q[y 7→ φ(x,y)]].

This is an elementwise reformulation of the following (writing ψ for ψ etc.:

Proposition 9 The monoidal structureψX,Y : D(X)×D(Y) → D(X ×Y) on the functor
D = (− ⋔ B) ⋔ B may be described as follows: for P∈ D(X) and Q∈ D(Y), the value of
ψX,Y(P,Q) on φ ∈ (X×Y) ⋔ B is given as the composite

(X×Y) ⋔ B
∼=
✲ X ⋔ (Y ⋔ B)

X ⋔ Q
✲ X ⋔ B

P
✲ B. (25)
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Similarly, the value of̃ψ(P,Q) on φ is given as the composite

(X×Y) ⋔ B
∼=
✲ Y ⋔ (X ⋔ B)

X ⋔ P
✲ Y ⋔ B

Q
✲ B.

Proof. One may prove this by brute force, byλ -calculus, but sinceD(D(X×Y)) is involved,
this means that a four times dualization intoB is involved, and this is not easy to handle;
some ML type program on a computer would be useful here! However, we can use the fact
thatψ is characterized by being linear in the first variable, and torestrict along the unit (here:
δ ) to t ′′, cf. Proposition 4. So we shall prove that (25), as a functionof P,Q, satisfies these
two criteria. We shall be content with arguing elementwise (synthetically). So consider
P ∈ D(X) (so P : X ⋔ B → B) andQ ∈ D(Y) (so Q : Y ⋔ B → B). Then (25) returns with
P, Q as input the composite described. We must argue that it, for fixedQ, depends linearly
onP; recall that “linear” presently means “D-linear”, i.e. “homomorphisms ofD-algebras”.
The function ofP given by (25) is the map

(X ⋔ B) ⋔ B
s⋔ B

✲ ((X×Y) ⋔ B) ⋔ B,

wheres is the map

(X×Y) ⋔ B
∼=
✲ X ⋔ (Y ⋔ B)

X ⋔ Q
✲ X ⋔ B.

Now any object of formU ⋔B is canonically aD-algebra, and any morphismV ⋔B→U ⋔B
of the forms⋔ B (for s : U →V) is aD-algebra homomorphism, since−⋔ B : E → (E D)op

is the left adjoint of the two adjoint functors that togetherproduced the monadD.
To prove the other condition, “precomposing withη”, consider what happens if one puts

P= δX(x) = evaluation atx, wherex∈ X (recall thatη now is Dirac delta formation). Then
P gets replaced byevx, so the value of (25) is

(X×Y) ⋔ B
∼=
✲ X ⋔ (Y ⋔ B)

X ⋔ Q
✲ X ⋔ B

evx
✲ B.

But evx ◦ (X ⋔ Q) = Q◦ evx, and precomposingevx with the isomorphism(X ×Y) ⋔ B ∼=
X ⋔ (Y ⋔ B) yieldsQ◦ (ũx ⋔ B), and thus we arrive at (the value oft ′′X,Y at (x,Q)), as given
at the beginning of Section 1 (replacingT by (− ⋔ B) ⋔ B).

3 Monads and actions by monoids

Exploiting the fact that the functorT carries two monoidal structures, we get in particular
thatT(1) carries two natural monoid structures, namely, first,

T(1)×T(1)
ψ1,1
✲ T(1×1)∼= T(1) (26)

and, secondly, the one obtained by replacingψ with ψ̃. They of course agree whenT
is commutative. The monoid multiplicationm (26) may be described equivalently as the
composite

T(1)×T(1)
t ′1,T(1)

✲ T(1×T(1))∼= T2(1)
µ1
✲ T(1). (27)
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This follows by recalling the construction ofψ in terms oft ′, t ′′ andµ , and noting thatt ′′1,1
may be eliminated, since it equals the composite of two “trivial” isomorphisms 1×T(1)∼=
T(1) ∼= T(1× 1), cf. [10] Lemma 1.8 (in fact, in the cartesian closed case, one has more
generally commutativity of

X×TY
t ′′X,Y
✲ T(X×Y)

TY

pr

❄

=
✲ TY

T(pr)

❄

where pr denotes the projection). From either description (26) or (27) follows that the
multiplication ofT(1) is 1-linear. (It is not necessarily 2-linear, even whenT(1) happens to
be commutative. However, ifT is commutative, the multiplication is bilinear.)

The uniteof the monoidT(1) is η1 : 1→ T(1), also sometimes denoted 1.
Any object of the formT(X) carries a left action byT(1), and also a right action by

T(1), the latter (which will be our main concern) given by

T(X)×T(1)
ψX,1
✲ T(X×1)∼= T(X).

This action is unitary and associative, using the monoid structure onT(1) given byψ ; if
one prefers, one can replace simultaneouslyψX,1 andψ1,1 by the corresponding̃ψs. (For
the left action byT(1), one uses eitherψ for both the action and the monoid structure, or
usesψ̃ for both the action and the monoid structure.) We stick to right action, defined by
ψ , as in the displayed formula. It is immediate to see that iff : X →Y is any map, then the
mapT( f ) : T(X)→ T(Y) is equivariant for the action.

The action of the monoidT(1) on T(X) may be discussed (for some of its aspects)
in more generality as follows: LetT = (T,η ,µ , t ′) be a strong monad onE , and letR=
(R,e,m) be a monoid inE (with e : 1→ R the unit andm : R×R→ R the multiplication).
There is an evident notion of aT-linear right action ofR on T, namely a family of unitary
and associative actions (natural inX ∈ E ) ⊢X: T(X)×R→ T(X), with ⊢X 1-linear.

A 1-linear action by a monoidR on the monadT is by Proposition 3 determined by its
restriction (for eachX) alongηX ×R, i.e. by mapsρX : X×R→ T(X), natural inX. So the
unit and associativity constraints for the action can be encoded in terms ofρ . We have

Proposition 10 The 1-linear extension of a mapρ : X ×R→ T(X) satsfies the unit con-
straint iff

(

X ∼= X×1
X×e

✲ X×R
ρ
✲ T(X)

)

= ηX ,

17



and it satisfies the associativity constraint iff the following diagram commutes:

X×R×R
ρ ×R

✲ T(X)×R
t ′X,R
✲ T(X×R)

T(ρ)
✲ T2(X)

X×R

X×m

❄

ρ
✲ T(X).

µX

❄

(28)

Proof. We leave the proof of the first assertion to the reader. Assumenow that (28)
commutes. To prove that the action is associative means proving equality of two maps
T(X)×R×R→ T(X), both of which are 1-linear. So it suffices to prove that thesetwo
maps agree when precomposed withηX ×R×R. The resulting diagram is then seen to
be (28); note that the three last arrows in the clockwise composite in (28) is just the ac-
tion, by the explicit formula (18) for how a mapX×R→ T(X) extends to a 1-linear map
T(X)×R→ T(X). – We leave to the reader the proof that associativity of the action implies
commutativity of (28) (and we shall not need this implication).

We return to the special case of the right action by the monoidT(1) onT(X). We denote
this action simply by a dot,P·λ , for P∈ T(X) andλ ∈ T(1). We think ofT(1) as “scalars”.

We ask the question whether not onlyfree T-algebras, but generalT-algebras carry an
action byT(1). For this, we need commutativity ofT; we have the following (which is not
used in the sequel).

Proposition 11 Let T be a commutative monad, and let(A,α) be a T-algebra. Then A
carries a unique action by the monoid T(1), in such a way thatα : T(A)→A is equivariant.
The action is unitary and associative, and any homomorphismof T -algebras is equivariant.

Proof. By general monad theory, we have thatα : T(A) → A sits in a canonical absolute
coequalizer diagram inE

T2(A)⇒ T(A)→ A,

where the two parallel maps areT(α) andµA respectively. The mapT(α) is equivariant
for the action, without any assumptions onT. We shall use commutativity ofT to prove
equivariance ofµA. When this is established, it is clear that the action descends alongα
from T(A) to A, and the rest is then easy. Equivariance ofµA means that the right hand
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region in the following diagram commutes:

TA×1
ηTA×η1

✲ T2A×T1
µA×T1

✲ TA×T1

TA

pr ∼=

❄

T(TA×1)

ψTA,1

❄

ηTA×1
✲

T(A×1)

ψA,1

❄

T2A

∼= T(pr)

❄

µA

✲

ηTA
✲

TA

∼= T(pr)

❄

Herepr denotes the relevant projections. The triangle commutes becauseη is a monoidal
transformation. The (slanted) square commutes by naturality. So the counterclockwise
composite equalspr : TA×1→ TA. The top line composite is justTA×η1. The clockwise
composite of the total diagram isT(pr)◦ψA,1 ◦ (TA×η1); this, however, is again justpr :
TA×1→ TA, by a general law for the relationship betweenη , ψ and the unit isomorphisms
(here thepr), cf. [10], diagram (2.3). So we conclude that the total diagram commutes.
Now, the two composites in the right hand region are bothT-bilinear, because theψs are
T-bilinear by commutativity ofT. So to prove commutativity of the right hand region,
it suffices to prove that it commutes after precomposotion with η ×η , which is what the
commutativity of the total diagram expresses. This proves the Proposition.

It is easy to see that if the monadT is M×− for a non-commutative monoidM in the
category of sets, thenµA will not be equivariant; so for Proposition 11, one cannot dispense
with the commutativity assumption for the monadT.

Even though the projectionpr : A× 1
∼=
→ A appears in the above construction and ar-

gument, all the constructions and arguments work in generalsymmetric monoidal closed
categories, using the unit objectI instead of 1, and using the unit isomorphisms (part of
the data of a monoidal closed category)A⊗ I ∼= A instead ofpr. The construction in the
following Sections, however, depend in a crucial way of the assumption that our category is
cartesianclosed.

4 Action of functions on distributions

We consider a strong (not necessarily commutative) monadT on E . But from now, we
assume not only thatE is symmetric monoidal closed, but that it iscartesianclosed (as the
notation in the previous sections anticipated). Then the object 1 is terminal, and we have the
notion of the total; forP∈ T(X), its total is T(!)(P) ∈ T(1), where ! :X → 1 is the unique
such map.
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Recall thatT(1) carries a canonical monoid structure,m,e, with m defined in terms of
ψ1,1, cf. (26).

Proposition 12 Let P∈ T(X) and Q∈ T(Y). Then the total ofψX,Y(P,Q) is the product by
m of the totals of P and Q.

This is an immediate consequence of the definition ofm together with naturality ofψ with
respect to the maps ! :X → 1 and ! :Y → 1.

The spaceX ⋔ T(1) inherits a monoid structuremX , eX in a standard (“pointwise”) way.
We shall equip any freeT-algebraT(X) with a (right) T-linear action⊢ by the monoid
X ⋔ T(1). The construction does not depend on commutativity of the monadT. We shall
construct a map

T(X)× (X ⋔ T(1))
⊢
✲ T(X) (29)

It is defined as the unique 1-linear extension overηX ×T(1) of the following composite
map:

ρ := X× (X ⋔ T(1))
〈pr,ev〉

✲ X×T(1)
t ′′X,1
✲ T(X×1)∼= T(X). (30)

Here,pr denotes the projectionX× (X ⋔ T(1))→ X to the first factor, andevdenotes the
evaluation mapX× (X ⋔ T(1))→ T(1). The composite map displayed is actually 2-linear,
so if the monadT happens to be commutative, the 1-linear extension of it to⊢ will be
bilinear, by Proposition 5.

By Proposition 1, it is clear that an alternative description of ρ is:

X× (X ⋔ T1)
〈pr,ev〉

✲ X×T1
ηX × id

✲ TX×T1
ψX,1
✲ T(X×1)∼= TX.

The action⊣ of X ⋔ T(1) on T(X) presented here (“action byfunctionson distribu-
tions”) restricts to the action ofT(1) on T(X) (“by scalarson distributions”) considered
in Section 3, via the monoid map !⋔ T(1) : 1 ⋔ T(1) → X ⋔ T(1) induced by ! :X → 1;
expressed synthetically, ifφ : X → T(1) has constant valueλ ∈ T(1), thenP ⊢ φ = P ·λ ,
where⊢ denotes the action ofX ⋔ T(1), and the dot denotes the action ofT(1) onT(X).

Theorem 3 The action⊢: T(X)× (X ⋔ T(1))→ T(X) is associative and unitary.

Proof. Our proof is not quite straightforward; there ought to be a better one. To prove the as-
sociativity assertion, we should compare two mapT(X)× (X ⋔ T(1)× (X ⋔ T(1)→ T(X)
which both are 1-linear, so it suffices to prove that their precomposite withηX × id are
equal. This is achieved by a contemplation of the following diagram. (For the arrow de-
noted “〈pr,ev〉”, the middle factorT1 does not participate in the〈pr,ev〉-formation (so ele-
mentwise, the map takes(x,λ ,φ) to (x,λ ,φ(x))); also, isomorphismsX×∼= X are omitted
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from notation.)

X× (X ⋔ T1)× (X ⋔ T1)
〈pr,ev〉× id

✲ X×T1× (X ⋔ T1)
tX,1,X⋔T1

✲ T(X× (X ⋔ T1))

X× (X ⋔ T1)

X×mX

❄

X×T1×T1

“〈pr,ev〉”

❄

tX,1,T1

✲ T(X×T1)

T〈pr,ev〉

❄

X×T1

X×m

❄

〈pr,ev〉
✲

T2X

T(t ′′X,1)

❄

TX;

µX

❄

t ′′X,1
✲

the left hand region commutes, by definition ofmX in terms ofm, and the upper right hand
square is essentially just a twisted version of the naturality square fort ′′ w.r.to the map
〈pr,ev〉 : X× (X ⋔ T(1)) → X×T(1), recalling that th combinatort in (9) came about by
a twisting oft ′′X×Z,Y (here withY = 1 andZ = T(1)). The lower right hand region deserves
a more detailed argument. Let us prove its commutativity, without using identifications like
X×1∼= X. Consider namely

X×T1×T1
tX,1,T1

✲ T(X×1×T1)

X×T(1×T1)

X× t ′1,T1

❄

∗

X×T2(1×1)

X×T(t ′′1,1)

❄ t ′′X,T(1×1)
✲ T(X×T(1×1))

T(t ′′X,1×1)
✲ T2(X×1×1)

T(t ′′X×1,1)

❄

X×T(1×1)

X× µ1×1

❄

t ′′X,1×1

✲ T(X×1×1).

µX×1×1

❄

(31)

After the identification of 1×1 with 1, the left hand column is (X times) the defining con-
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struction ofm; and after the identification ofX×1×1, the lower right hand object isT(X).
The lower region commutes becauseµ is a strong natural transformation, thus compatible
with the tensorial strengths ofT2 andT; and the upper region * is an instance of the gener-
alized associativity of the tensorial strengthst ′, t ′′. In more detail, writingY andZ for 1, to
keep them apart, consider

X×TY×TZ
X× t ′Y,TZ

✲ X×T(Y×TZ)
t ′′X,Y×TZ

✲ T(X×Y×TZ)

X×T2(Y×Z)

X×T(t ′′Y,Z)

❄

t ′′X,T(Y×Z)

✲ T(X×T(Y×Z))

T(X× t ′′Y,Z)

❄

T2(X×Y×Z).

T(t ′′X,Y×Z)

❄

The top composite istX,Y,Z, by (11). The right hand vertical composite isT(t ′′X×Y,Z), by the
associative law fort ′′. So the clockwise composite in this diagram equals the clockwise
composite of * in (31) (when we putY = Z = 1) ; and the counterclockwise similarly equals
the counterclockwise in *. This proves the associativity.

To prove the unitary law, we must prove thatid × eX : T(X)× 1→ T(X)× (X ⋔ T1)
followed by⊢ is the identity map ofT(X) (modulo the identificationT(X)× 1∼= T(X)).
The two mapsT(X)×1 → T(X) to be compared are 1-linear, so it suffices to prove that
they agree when precomposed withηX. Consider the diagram

X×1
X×eX

✲ X× (X ⋔ T1)
ηX × id

✲ TX× (X T1)

X×T1

〈pr,ev〉

❄

t ′′
✲

X×η1
✲

T(X×1)

⊢

❄

The square commutes by the construction of⊢, and the triangle commutes by the pointwise
nature ofeX in terms ofe=η1. Finally, the lower composite isηX×1. After the identification
of X×1 with X, we thus getηX, and this proves the unitary law.

We next address naturality questions for the action⊢, both with respect toX, and with
respect to the monadT. It does not immediately make sense to ask for plain naturality of ⊢
w.r.toX, since the domainT(X)× (X ⋔ T(1)) depends both covariantly and contravariantly
onX, but we do have

Proposition 13 (Frobenius reciprocity) If f : X →Y is any map, the map T( f ) : T(X)→
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T(Y) is Y⋔ T(1)-equivariant, where Y⋔T(1) acts on T(X) via the monoid homomorphism
f ∗ : Y ⋔ T(1)→ X ⋔ T(1).

Here, f ∗ is short for f ⋔ T(1) : Y ⋔ T(1) → X ⋔ T(1). The statement can be expressed
diagrammatically as commutativity of the right hand regionin the diagram

X× (Y ⋔ T1)
ηX × id

✲ TX× (Y ⋔ T1)
TX× f ∗

✲ TX× (X ⋔ T1)
⊢

✲ TX

Y× (Y ⋔ T1)

f × id

❄

ηY × id
✲ TY× (Y ⋔ T1)

T( f )× id

❄

⊢
✲ TY

T( f )

❄

.

In this region, both composites are 1-linear, so as in the proof of Proposition 11, it suffices
to prove commutativity of the diagram when precomposed withηX × id. Then theηs may
trivially be pushed to the right, using naturality ofη and bifunctorality of×. When theηs
come next to the⊢s, we can use the defining equations (30) to eliminate⊢, so that the total
diagram above is rewritten as

X× (Y ⋔ T1)
id× f ∗

✲ X× (X ⋔ T1)
〈pr,ev〉

✲ X×T1
t ′′X,1
✲ T(X×1) ∼= T(X)

Y× (Y ⋔ T1)

f × id

❄

〈pr,ev〉
✲ Y×T1

f × id

❄

t ′′Y,1
✲ T(Y×1)

T( f × id)

❄

∼= T(Y)

T( f )

❄

.

Here, the left hand region commutes for pure “λ -calculus” reasons, and the rest commutes
by naturality. This proves the Proposition.

We next consider the naturality w.r.to morphisms of monadsτ : T → S. This is simpler:

Proposition 14 Let τ : T ⇒ S be a morphism of strong monads. ThenτX : T(X) → S(X)
is X ⋔ T(1)-equivariant, where S(X) is equipped with action by X⋔ T(1) via the monoid
homomorphism X⋔ τ1 : X ⋔ T(1)→ X ⋔ S(1).

In diagrammatic terms, this says that the following diagramcommutes:

TX× (X ⋔ T1)
⊢

✲ TX

SX× (X ⋔ S1)

τX × (X ⋔ τ1)

❄

⊢
✲ SX

τX

❄

.
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For, it is standard monad theory that a monad morphismτ : T ⇒ S induces a “forgetful”
functorE S→ E

T , compatible with the “underlying” functors; and thenτX : T(X)→ S(X)
is aT-homomorphism; similarly for “T-homomorphisms in the first variable”, like the left
hand vertical map in the displayed diagram. Since both composites thus areT-linear in the
first variable, it suffices by Proposition 3 to see that we get acommutative diagram when
we precompose the displayed diagram byηX × id, and this is straightforward.

We address the question of the relation between the action⊢: T(X)× (X ⋔ T(1)) →
T(X) of functions on distributions, andT(1)-valued integration

∫

X : T(X)× (X ⋔ T(1))→
T(1). We express this elementwise, and leave the diagrammatic description to the reader.
We first note

Proposition 15 Let P∈ T(X) and letφ ∈ X ⋔ T(1). Then
∫

X φ(x) dP(x) equals the total of
P⊢ φ .

Proof. We are comparing the value atP,φ of two mapsT(X)× (X ⋔ T(1))→ T(1). Both
are 1-linear, so it suffices to see that they agree when precomposed withηX × id : X× (X ⋔

T(1))→ T(X)× (X ⋔ T(1)). Precomposing
∫

X yields by (14) the evaluation mapX× (X ⋔

T(1))→ T(1). For the other composite, we recall the description of⊢ as 1-linear extension
of the mapρ : X× (X ⋔ T(1))→ T(X) in (30), here appearing as the top composite in

X× (X ⋔ T1)
〈pr,ev〉

✲ X×T1
t ′′
✲ T(X×1) ∼= T(X)

T1

ev

❄

∼=
✲ 1×T1

! × id

❄

t ′′
✲ T(1×1)

T(! × id)

❄

∼= T(1).

T(!)

❄

The clockwise composite is the total in question, the counterclockwise is again the evalua-
tion map. This proves the Proposition.

Combining with Theorem 3, we therefore have the following integration theoretic signif-
icance of the action⊢; again, we express it in elementwise terms. The monadT is assumed
commutative.

Theorem 4 For P∈ T(X) andφ1 andφ2 in X ⋔ T(1), we have
∫

X
φ1(x) d(P⊢ φ2)(x) =

∫

X
(φ1 ·φ2)(x) dP(x).

Proof. The left hand side is, by the Proposition, the total of the distribution (P ⊢ φ2) ⊢ φ1,
and the right hand side is by the Proposition the total of the distributionP ⊢ (φ1 · φ2). The
result now follows from the associative law (Theorem 3) for the action of the (commutative)
monoidX ⋔ T(1) onT(X).

This Theorem can also be obtained by using the naturality of the various combinators
with respect to transformation of monads, as expressed in Proposition 14; namely, one uses
the transformationτ : T ⇒ (− ⋔ T(1)) ⋔T T(1) considered in Theorem 1.
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5 Tensor product and convolution

If P∈ T(X) andQ∈ T(Y), one hasψ(P,Q) ∈ T(X×Y). This is, for classical distributions,
the “tensor product” of the distributionsP andQ. One has alsõψ(P,Q), which agrees with
ψ(P,Q) if the monad is commutative. We henceforth stick to the commutative case.

If now m : X×Y → Z is a map, we may form theconvolutionof P andQ alongm; this is
T(m)(ψ(P,Q)) ∈ T(Z). Thus in element-free terms, convolution formation alongm is the
composite

T(X)×T(Y)
ψ
✲ T(X×Y)

T(m)
✲ T(Z).

It is T-bilinear.
We have encountered special cases already, namely the (right) action ofT(1) on T(X),

which is convolution along the isomorphismX×1→ X. The multiplication makingT(1)
into a monoid is the special case whereX = 1, so this multiplication is likewise a convolu-
tion.

The convolutions that are most important in functional analysis are the convolutions
along the addition map+ : V ×V → V for an abelian monoidV; this will be a map∗ :
T(V)×T(V)→ T(V) makingT(V) in to an abelian semigroup. Assuming that the monad
T is of the kind studied in Section 7 below, all objectsT(X) carry a natural addition structure
+, and∗ and+ together will makeT(V) into a commutative rig. Distributivity of∗ over+
follows fromR-bilinearity of∗.

6 Physical quantities as torsors

To motivate the following, consider the 1-dimensional vector spacek over a fieldk. Then
a k-linear isomorphismk → k is multiplication by an invertible scalarr ∈ k, andr in fact
defines a natural isomorphismρ : T ⇒ T, whereT is the free-vector space monad, namely
ρX : T(X)→ T(X) is the homothety “multiplication byr”. This transformation is compati-
ble with theµ of the monad, since each instance ofρ is a linear map; but it is not compatible
with η , sinceρ1(1) = r ∈ k is not necessarily 1∈ k.

Proposition 16 Letρ : T ⇒ S be a strong natural transformation between endofunctors on
E . Then for any pair of objects X,Y, the following diagram commutes:

TX× (X ⋔ TY) ✲ T2Y

SX× (X ⋔ SY)

ρX × (X ⋔ ρY)

❄

✲ S2Y

ρ2
Y

❄

where the horizontal maps are “strength in the righthand factor, followed by evaluation”,
and where natural transformationρ2 denotes the natural transformation T2 ⇒ S2 derived
from ρ .
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Thus the top arrow is

TX× (X ⋔ TY)
TX× stT

✲ TX× (TX ⋔ T2Y)
ev

✲ T2Y,

wherestT is the strength (enrichment) ofT; similarly the bottom arrow one is obtained
from the strengthstS of S. The natural transformationρ2 is more explicitly given byρ2

Y =
S(ρY) ◦ ρTY. The proof of this Proposition is in principle elementary; it uses thatρ is a
strongnatural transformation, which means in particular (cf. [3]II.6.2.8) that diagrams of
the form

X ⋔Y
stT

✲ TX ⋔ TY

SX⋔ SY

stS

❄

ρX ⋔Y
✲ TX ⋔ SY

TX ⋔ ρY

❄

commute (the equivalence of this notion of strong natural transformation with the one of
(12) is proved in [10] Lemma 1.1).

Let B= (B,β ) be aT-algebra. Recall from Section 1 that we have a map
∫

X
: T(X)× (X ⋔ B)→ B.

Similarly for S. Inspecting the explicit construction (2) (with(T(1);µ1) for (B,β )), we note
that the construction depends onµ , but it does not depend onη . Therefore, the following is
not surprising:

Proposition 17 Let T and S be strong monads onE , and letρ : T ⇒ S be a strong natural
transformation, compatible with theµs, but not necessarily with theηs. Then the

∫

X-
formation for the monads T and S is compatible withρ , in the sense that the following
diagram commutes:

T(X)× (X ⋔ T(1))

∫

X ✲ T(1)

S(X)× (X ⋔ S(1))

ρX × (X ⋔ ρ1)

❄

∫

X

✲ S(1).

ρ1

❄

Proof. Use the explicit form (2) for the
∫

X in question; then the desired diagram comes
about from the diagram in Proposition 16 by puttingY = 1, and concatenating it with the
commutative square expressing compatibility ofρ with theµs of the monads:

ρ1◦ µT
1 = µS

1 ◦ρ2
1,

26



whereµT andµS denote the multiplication of the monadsT andS, respectively.

Let T be a commutative monad onE . Consider another strong endofunctorM on E ,
equipped with an actionν by T,

ν : T(M(X))→ M(X)

natural inX, and withν satisfying a unitary and associative law. Then everyM(X) is a
T-algebra by virtue ofνX : T(M(X)) → M(X), and morphisms of the formM( f ) areT-
linear. LetM andM′ be strong endofunctors equipped with suchT-actions. There is an
evident notion of when a strong natural transformationλ : M ⇒ M′ is compatible with the
T-actions, so we have a category ofT-actions. The endofunctorT itself is an object in
this category, by virtue ofµ . We say thatM is a T-torsor if it is isomorphic toT in the
category ofT-actions. Note that no particular such isomorphism is chosen; this is just like
a 1-dimensional vector space overk: it is isomorphic tok, but no particular isomorphism is
chosen.

Our contention is that the category ofT-torsors is a mathematical model of (not neces-
sarily pure) quantities of typeT (which is the corresponding pure quantity). Thus ifT is the
freeR-vector space monad, the functorM which to a spaceX ∈ E associates the space of
distributions of electric charges overX, is aT-torsor.

The following Proposition expresses that isomorphisms of actionsλ : T ∼= M are de-
termined byλ1 : T(1) → M(1); in the example, the latter data means: choosing aunit of
electric charge.

Proposition 18 If g and h: T ⇒M are isomorphisms of T -actions, and if g1 = h1 : T(1)→
M(1), then g= h.

Proof. By replacingh by its inverseM → T, it is clear that it suffices to prove that ifρ : T →
T is an isomorphism ofT-actions, andρ1 = idT(1), thenρ is the identity transformation. As
a morphism ofT-actions,ρ is in particular astrongnatural transformation, which implies
that right hand square in the following diagram commutes forany X ∈ E ; the left hand
square commutes by assumption onρ1:

X×1
X×η1

✲ X×T(1)
t ′′
✲ T(X×1)

X×1

=

❄

X×η1

✲ X×T(1)

X×ρ1

❄

t ′′
✲ T(X×1)

ρX×1

❄

Now both the horizontal composites areηX×1, by general theory of tensorial strengths. Also
ρX×1 is T-linear. Then uniqueness ofT-linear extensions overηX×1 implies that the right
hand vertical map is the identity map. Using the natural identification of X×1 with X, we
then also get thatρX is the identity map ofT(X).
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7 Monads and biproducts

Let T be a commutative monad. We summarize some of the relations between the covariant
functorT : E → E , and the contravariant− ⋔ T(1) : E → E . The latter is actually valued
in the category of commutative monoids inE .

• There is aT-bilinear pairingT(X)× (X ⋔ T(1)) → T(1), namely the exponential
adjoint

∫

X of the mapτX : T(X)→ (X ⋔ T(1)) ⋔T T(1).

• There is an associative and unitaryT-bilinear action⊢ of X ⋔ T(1) onT(X); it satis-
fies a “Frobenius reciprocity” naturality condition.

These are two of the axioms laid down by Lawvere in his description of relations be-
tween extensive quantities and intensive quantities, except for theT-bilinearity, cf. e.g. [19],
Lecture IV; in Lawvere’s axiomatics, one deals rather with bilinearity in the sense of an ad-
ditive structure.

We shall in the present Section describe a simple categorical property of the monadT,
which will guarantee that “T-linearity implies additivity”, even “R-linearity” in the sense of
a rig R∈ E (“rig"= commutative semiring), namelyR= T(1). This condition will in fact
imply thatE T is a “linear category”.

We begin with some standard general category theory, namelya monadT = (T,η ,µ) on
a category which has finite products and finite coproducts. (No distributivity is assumed.)
SoE has an initial object /0. IfT( /0) ∈ E is a terminal object, then the object(T( /0),µ /0) is
a zero object inE T , i.e. it is both initial and terminal. It is initial becauseT, as a functor
E → E

T , is a left adjoint, hence preserves initials; and sinceT( /0) = 1, it is also terminal (the
terminal object inE T being 1∈ E , equipped with the unique mapT(1)→ 1 as structure).
This zero object inE T we denote 0. Existence of a zero object in a category implies that
the category has distinguished zero maps 0A,B : A → B between any two objectsA andB,
namely the unique mapA → B which factors through 0. ForE T , we can even talk about
the zero map 0X,B : X → B, whereX ∈ E andB = (B,β ) ∈ E

T , namelyηX followed by
the zero map 0T(X),B : T(X) → B. We have a canonical mapX +Y → T(X)×T(Y): the
compositeX → X+Y → T(X)×T(Y) is (ηX ,0X,T(Y)) (here, the first map is the coproduct
inclusion map ). Similarly, we have a canonical mapY → T(X)×T(Y). Using the universal
property of coproducts, we thus get a canonical mapφX,Y : X+Y→T(X)×T(Y). It extends
uniquely overηX+Y : X+Y → T(X+Y) to aT-linear map

ΦX,Y : T(X+Y)→ T(X)×T(Y),

andΦ is natural inX and inY. We say thatT : E → E
T takes binary coproducts to products

if ΦX,Y is an isomorphism (inE or equivalently inE
T ) for all X, Y in E . Note that the

definition presupposed thatT( /0) = 1; it is the zero object inE T , so that ifT takes binary
coproducts to products, it in fact takes finite coproducts toproducts, in a similar sense. So
we can also use the phrase “T takes finite coproducts to products” for this property ofT.

We define an “addition” map inE T ; it is a map+ : T(X)×T(X) to T(X), namely the
composite

T(X)×T(X)
Φ−1

X,Y
✲ T(X+X)

T(∇)
✲ T(X)
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where∇ : X +X → X is the codiagonal. So in particular, ifini denotes theith inclusion
(i = 1,2) of X into X+X, we have

idTX = TX
T(ini)

✲ T(X+X)
ΦX,X

✲ TX×TX
+

✲ TX. (32)

Under the identificationT(X)∼= T(X+ /0)∼= T(X)×1, the equation (32) can also be read:
T(!) : T( /0)→ T(X) is right unit for+, and similarly one gets that it is a left unit.

We leave to the reader the easy proof of associativity and commutativity of the map
+ : T(X)×T(X)→ T(X). It follows thatT(X) acquires structure of an abelian monoid in
E

T (and also inE ).

Proposition 19 Every T-linear map T(X)→ T(Y) is compatible with the abelian monoid
structure.

Proof. This means that we should prove commutativity of the square *in the following
diagram

T(X+X)
Φ
✲ T(X)×T(X)

f × f
✲ T(Y)×T(Y)

∗

T(X)

+

❄

f
✲ T(Y)

+

❄

for f any T-linear map; sof is not necessarily of the formT(g), but it has the property
that it preserves 0. To prove commutativity of the diagram *,it suffices to precompose
with the linear isomorphismΦ. Now the two maps to be compared are bothT-linear, and
T(X+X) is a coproduct inE T , so it suffices to see that their composite with the inclusion
T(ini) : T(X)→ T(X+X) (wherei = 1 or= 2) are equal. Now( f × f )◦Φ◦T(ini) is seen
to be f , using that 0 is neutral for the addition.

Recall that we have theT-bilinear actionT(X)×T(1) → T(X). It follows from the
Proposition that it is additive in each variable separately.

We have in particular theT-bilinear commutative multiplicationm : T(1)× T(1) →
T(1), likewise bi-additive,m(x+ y,z) = m(x,z)+m(y,z), or in the notation one also wants
to use,

(x+ y) ·z= x ·z+ y ·z,

so thatT(1) carries structure of a rig (= commutative semiring). This rig we also denote
R. The category of modules over a rigR is the category of abelian monoids equipped with
a bi-additive action byR, and maps which preserve the addition and the action. We may
summarize:

Proposition 20 Each T(X) is a module over the rig R= T(1); each T-linear map T(X)→
T(Y) is an R-module morphism.
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It is more generally true thatT-linear mapsA→ B (for A andB∈ E
T ) areR-module maps.

We shall not use this fact; it is proved in analogy with the proof of Proposition 11.

Let us finally note

Proposition 21 If T takes finite coproducts to products, then so does the associated
Schwartz monad S= (− ⋔ T(1)) ⋔T T(1).

Proof (sketch). We have

( /0⋔ T(1)) ⋔T T(1)∼= 1⋔T T(1)∼= 1

the last isomorphism because 1= 0 is an initialT-algebra. Similarly,

S(X)×S(Y) = [(X ⋔ T(1)) ⋔T T(1)]× [(Y ⋔ T(1)) ⋔T T(1)]

= [(X ⋔ T(1))⊕ (Y ⋔ T(1))] ⋔T T(1)

because⊕ is coproduct inE T ,

= [(X+Y) ⋔ T(1)] ⋔T T(1)

because⊕ is product inE

= S(X+Y).

8 Expectation and other moments

We consider now a commutative monadT = (T,η ,µ , t ′) onE (a CCC with coproducts and
finite inverse limits), such that(T,η ,µ) takes finite coproducts to products. ThusE

T is a
semi-additive category with biproducts⊕; all its objects are modules over the rigR= T(1),
and all morphisms areR-linear (as well asT-linear, of course). We callR the rig ofscalars.

Talking synthetically, we call the elements ofT(X) concretedistributions onX. We also
have the objectS(X)= (X ⋔R)⋔T Rof Schwartz distributions onX, i.e.T-linear functionals
X ⋔ R→ R; and we have the mapτX : T(X)→ S(X) taking concrete distributions onX to
such functionals. We have by Proposition 7 that

∫

X φ(x) dP(x) is the value of the functional
τX(P) : X ⋔ R→ R on φ : X → R (φ a “test function” onX, in Schwartz terminology).
The total of P is theT(X → 1)(P) ∈ T(1) = R, and may be written as

∫

X 1X dP(x) where
1X : X → R is the constant function with the multiplicative unit 1= e= η1 of R.

For concrete distributionsP on the spaceR itself, (soP∈ T(R)) there are other charac-
teristic scalars, called “moments”, namely some of the values of the functionalτR(P) : R⋔

R→ Ron some particular functionsR→ R. In view of the universal role which the identity
map has in e.g. Yoneda’s Lemma, it is no surprise that the value of this functional onidR

plays a particular role. It is theexpectationof P, denotedE(P) ∈ R,

E(P) :=
∫

R
x dP(x).
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We have

Proposition 22 Let P∈ T(R). Then any value of the functionalτR(P) : (R⋔ R)→ R is the
expectation of some P′ ∈ T(R): for anyφ ∈ R⋔ R and P∈ T(R),

τR(P)(φ) = E(T(φ)(P)).

Proof. By naturality ofτ with respect toφ : R→ R,

τR◦T(φ) = [(φ ⋔ R) ⋔T R]◦ τR.

When postcomposed withevid : (R⋔ R) ⋔T T → R, the left hand side givesE(T(φ)(P)),
the right hand side givesτR(P)(φ), becauseevid ◦ ((φ ⋔ R) ⋔T R) = evφ .

Note that for anyT-algebraB = (B,β ), andP ∈ T(B), we haveE(P) =
∫

Bx dP(x) =
β (P); this is just a reformulation of (4).

SinceR is a rig, we have for each natural numbern a mapR→R, elementwise described
by x 7→ xn. The nth momentαn(P) of P ∈ T(R) is defined as

∫

Rxn dP(x), thusα0(P) is
the total ofP, andα1(P) the expectation ofP. Note thatα1(P) = E(P) = µ1(P), where
µ1 : T2(1)→ T(1) = R comes from the monad-multiplicationµ : T2 ⇒ T(1) = R.

In [4] (5.5.6), one finds the formulaE{X +Y} = E{X}+E{Y} whereX,Y is a joint
distribution of two simultaneous random variables, valuedin R. The formula looks decep-
tively just like it were a consequence of linearity ofE : T(R)→ R (= µ1 : T2(1)→ T(1));
but recall thatX,Y is not a pair of distributions; rather, it is meant to denote asimultaneous
distribution, i.e. an elementP∈ T(R×R), andX+Y refers to the distribution∈ T(R) ob-
tained by applyingT(+) : T(R×R)→ T(R) to P. So the formula is not a simple linearity.
It is rather a formulation of the following:

Proposition 23 The following diagram * commutes:

T2(2)
T(Φ)

✲ T(R×R)
T(+)

✲ T(R) = T2(1)

∗

T(2)

µ2

❄

Φ
✲ R×R

β

❄

+
✲ R= T(1)

❄

µ1

whereβ is the coordinatewise T-algebra structure on R×R.

Proof. Write T(1) for R, and write 1+1 for 2, and letΦ be the comparison isomorphism,
expressing thatT takes finite coproducts to products. Then the left hand square commutes,
sinceΦ is T-linear, and the outer diagram commutes by naturality ofµ with respect to the
map∇ : 2→ 1. (Here, of course,∇ is the unique map 2→ 1, but we write it for systematic
reasons; in fact, the Proposition and the proof immediatelygeneralizes whenR is replaced
by Rn, in which case∇ : 2n→ n is not so trivial.)
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For comparison with the quoted formula from [4], ifX,Y denotesP, the clockwise
composite takesP to E{X+Y}, and the counterclockwise takes it intoE{X}+E{Y}.

If P∈ T(R) has total 1, the physical significance ofE(P) ∈ R is “center of gravity” of
P (thinking of P as a mass distribution). However, physically it is clear that the center of
gravity of a mass distribution on the lineRdoes not the depend on the location of the origin
0∈ R, but only of theaffinestructure ofR, in other words, it is invariant under affine maps
R→ R. Here, we may take “affine mapR→ R” to mean maps of the formx 7→ a · x+b
wherea andb are scalars∈ R.

Proposition 24 Let P∈ T(R) have total 1. Then for any affineφ : R→ R, φ(E(P)) =
E(T(φ)(P)).

Proof. We may writeφ ∈ R⋔ Ras a linear combination of the identity mapid : R→ R, and
1 : R→ R (the map with constant value 1∈ R), φ(x) = a·x+b. By Proposition 22, we have

E(T(φ)(P)) = τR(P)(φ) = τR(P)(a · id+b ·1).

Then sinceτR(P) is T-linear, it isR-linear (Proposition 20), so we may continue the equation

= a · τR(P)(id)+b · τR(P)(1),

which isa ·E(P)+b ·1, the last term sinceP has total 1.

The notion of moments make sense not only for distributions on R= T(1), but for
instance also for distributions onR2 = T(2). Thus ifP∈ T(2), we have for anyφ : R2 → R
the scalar

∫

R2 φ(z) dP(z). Since the dummy variablezhere ranges overR2, it is more natural
to write it z= (x,y), wherex andy range overR, and thus the scalar in question is written
∫

R2 φ(x,y) dP(x,y). Themixed second order momemtof P is the scalar obtained by taking
φ to be the multiplication mapR×R→ R, so is

∫

R2 x · y dP(x,y). It is in terms of this that
one can define thecorrelationcoefficient ofP.

9 Examples.

The simplest example is whereE is the category of sets (strength is automatic here), and
T is the free-commutative-monoid monad. This is related to the notion of “multiset”, since
T(X) also may be seen as the set of multi-subsets ofX; an element ofT(X) consists in an
assignementP of multiplicities {n(x) ∈ N | x∈ X}, with nx = 0 for all but a finite number
of xs, “P is if compact support”. ThenT(1) = N, andX ⋔ T(1) is the set of assignements
φ of multiplicities {n(x) ∈ N | x ∈ X}, but without the requirement of compact support.
ConsiderX = T(1) = N. One can easily see thatT(N) may be identified with the set
of polynomials in one variable with coefficients fromN, and then convolution along the
addition mapN×N→N becomes identified with multiplication of polynomials. (Similarly
for finite productsNk.)

An example where the conceptual machinery (strength) has tobe brought in explicitly
is the following, which was one of the motivations for the present research: Consider the

32



categoryE of convenient vector spaces and the smooth (i.e.C∞ but not necessarily linear)
maps in between. It is a cartesian closed category, cf. [18] and [1], and there exists free
vector spaces (R-modules) in it, hence a commutative monadT. The categoryE does
(probably) not have equalizers, at least it is clear that thezero set of a nonlinear map, say
V → R, does not have a natural vector space structure. On the otherhand, the equalizer of
two parallellinear maps inE does exist. The following piece of general theory shows that
thereforeE hasenoughequalizers to form the subobjectA⋔T B⊆ A⋔ B, which was crucial
in the construction of restricted double dualization monads (as in Section 2), and in [12].

We recall from [2], or [12] the two parallel maps whose equalizer, if it exists, gives
A ⋔T B ⊆ A ⋔ B, (whereA = (A,α) andB = (B,β ) are twoT-algebras). The two maps
A⋔ B→ T(A) ⋔ B areα ⋔ B, on the one hand, and the composite

A⋔ B
st
✲ T(A) ⋔ T(B)

T(A) ⋔ β
✲ T(A) ⋔ B. (33)

The mapα ⋔ B is clearlyT-linear. For the map (33), this is not immediately clear; in fact,
it depends on commutativity of the monadT:

Proposition 25 Let T be a commutative monad, and A= (A,α) and B= (B,β ) two T-
algebras. Then the composite (33) is T-linear.

Proof. In the diagram

T(A⋔ B)
T(st)

✲ T(TA⋔ TB)
T(id ⋔ β )

✲ T(TA⋔ B)

A⋔ TB

λ

❄

st
✲ TA⋔ T2B

λ

❄

id ⋔ Tβ
✲ TA⋔ TB

λ

❄

A⋔ B

id ⋔ β

❄

st
✲ TA⋔ TB

id ⋔ µ

❄

id ⋔ Tβ

❄

id ⋔ β
✲ TA⋔ B,

id ⋔ β

❄

the vertical outer edges are theT-algebra structures onA ⋔ B andTA⋔ B, respectively,
expressed in terms of the cotensorial strengthλ . We are thus required to prove that the
outer square commutes.Three of the inner squares commute for obvious reasons (ignore for
the moment the arrowid ⋔ µ), but the upper left square does not. Now the associative law
for the structureβ allows us to replace the “doubled” arrowid ⋔ Tβ with id ⋔ µ . But for
a commutative monadT, the upper left hand square postcomposed withid ⋔ µ commutes;
this condition is in fact equivalent to commutativity ofT, as stated in [12] Definition 2.1 (in
loc.cit., it is presented as an alternative equivalent definition of commutativity ofT in terms
of the cotensorial strengthλ ). From this follows that the outer diagram above commutes,
and this proves the Proposition.
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A concrete description of the monadT for vector spaces overR in this category was
given in [1]. The authors in fact prove that it is“carved it out” by topological means from a
Schwartz type double dualization monad, described also in [18]. They provide a categorical
study of this monad along different lines than ours, namely in terms of an “exponential
modality” (essentially the comonad ! considered in linear logic).

10 Probability theory

To justify some measure- and probability- theoretic terminology, one may think of an ele-
mentX ⋔ T(1) not just as a “test function”, in the sense of Schwartz distribution theory,
but as a generalized “measurable subset” ofX, or as a generalized “event” in the “outcome
space”X. The connection is that a subsetX′ ⊂ X (for suitableE and suitableT) gives rise
to a functionX → T(1), namely the characteristic function (whose value is 1 forx ∈ X′,
and 0 else). Like forX ⋔ T(1), the set of subsets ofX depends contravariantly onX, via
inverse image formation. Instead of theT-linearity requirement for Schwartz distributions
X ⋔ T(1)→ T(1), there are other well known algebraic requirements for measures, viewed
as functions from the boolean algebra of subsets ofX to the rigT(1). This shall not concern
us in detail here; the observation is just that test functions onX may be viewed as generalized
measurable subsets/events inX, and thereby it gives us access to terminology and notions
borrowed from measure theory or probability theory. We already anticipated this import of
terminology when we, forP∈ T(R), used the word “expectation ofP” for

∫

Rx dP(x).

A strong monadT on a CCCE is calledaffineif T(1) = 1. For algebraic theories, this
was introduced in [26]. For strong monads, it was proved in [13] that this is equivalent
to the assertion that for allX,Y, the mapψX,Y : T(X)×T(Y) → T(X ×Y) is split monic
with (T(pr1),T(pr2)) : T(X×Y)→ T(X)×T(Y) a retraction. In [21], it was proved that
if E has finite limits, any commutative monadT has a maximal affine submonadT0, the
“affine part ofT”. It is likewise a commutative monad. Speaking in elementwise terms,
T0(X) consists of those concrete distributions whose total is 1∈ T(1). We consider in the
following a commutative monadT and its affine partT0.

Probability distributions have by definition total 1∈ R, (recall thatR denotes the rig
T(1)) and take values in the interval from 0 to 1. We do not in the present article con-
sider any order relation onR, so there is no “interval from 0 to 1”; so we are stretching
terminology a bit when we use the word “probability distribution onX” for the elements of
T0(X), but we shall do so. So a “probability distribution” is here just a concrete distribution
P∈ T(X) with total 1, or in the notation from Section 1,

∫

X
1X dP(x) = 1

where 1X : X → R is the function with constant value 1∈R. Since the object 1 is terminal, it
is clear that for anyf : X →Y, if P∈ T(X) is a probability distribution, then so isT( f )(P) ∈
T(Y). (Alternatively:T0 is a subfunctor ofT.)

If P∈ T0(X) andQ∈ T0(Y), thenψ(P,Q) ∈ T0(X×Y), cf. Proposition 12; this also fol-
lows since the inclusion of strong monadsT0 ⊆ T is compatible with the monoidal structure
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ψ . From this in turn follows that e.g. probability distributions are stable under convolution.
The assertion thatψX,Y for the monadT0 is split monic, quoted above, may in termino-

logy from probability theory be rendered: “the distribution for independent random vari-
ables may be reconstructed from marginal distributions”; recall that ifQ∈ T(X×Y), then
its marginal distributions areT(pri)(Q) (i = 1,2). If Q is a probability distribution, then so
are its marginal distributions.

The subobjectT0(X) ⊆ T(X) is clearly not stable under the multiplication by scalars
λ ∈ R; in fact, formation of totals is the mapT(!) : T(X) → T(1) = R, hence isT-linear,
and therefore commutes with multiplication by scalars. In particular,T0(X) ⊆ T(X) is not
stable under multiplication⊢ by functionsφ ∈ X ⋔ R. However, this multiplication still
plays a role in the formulation of probability theory presented here. LetP∈ T0(X), and let
φ ∈ X ⋔ R be such thatλ :=

∫

X φ(x) dP(x) is invertible in the multiplicative monoid ofR.
Then we haveP⊢ φ ∈ T(X). We may form the element inT(X)

Pφ := (P⊢ φ) ·λ−1;

this is a probability distribution. For by Theorem 4, its total is calculated asλ−1 multiplied
on

∫

X
1X d(P⊢ φ)(x) =

∫

X
1X ·φ(x) dP(x) =

∫

X
φ(x) dP(x) = λ .

So we get 1.
Let us think ofφ in the above consideration as a (generalized) “event”A, writing A for

φ ; also, let us writeP(B) for
∫

X B(x) dP(x), for generalB∈X ⋔R. Then we haveλ = P(A),
and the value ofP ⊢ A on the “event”B is P(A ·B). Now A ·B is the eventA∩B (for the
case of characteristic functions of subsets ofX). So PA is P(A∩B)/P(A), the classical
“conditional probability ofB givenA”.
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