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AN ISOPERIMETRIC INEQUALITY FOR A NONLINEAR EIGENVALUE

PROBLEM

GISELLA CROCE, ANTOINE HENROT AND GIOVANNI PISANTE

Abstract. We prove an isoperimetric inequality of the Rayleigh-Faber-Krahn type for a
nonlinear generalization of the first twisted Dirichlet eigenvalue. More precisely, we show
that the minimizer among sets of given volume is the union of two equal balls.

1. Introduction

In this note we study a generalized version of the so called twisted Dirichlet eigenvalue
problem. More precisely, for Ω an open bounded subset of RN we set

(1.1) λp,q(Ω) = inf







‖∇v‖Lp(Ω)

‖v‖Lq(Ω)

, v 6= 0, v ∈W 1,p
0 (Ω),

∫

Ω

|v|q−2v dx = 0







.

Among the sets Ω with fixed volume, we are interested in characterizing those which minimize
λp,q(Ω). In other words we look for an isoperimetric inequality of Rayleigh-Faber-Krahn type.
This kind of inequality is related to the optimization of the first eigenvalue for the Dirichlet
problem associated to nonlinear operators in divergence form and have been widely studied
for functionals that do not involve mean constraints. In such cases a rearrangement technique
proves that the minimizing set is a ball and several results concerning its stability are also
available (see for instance [23],[21],[15]). When mean type constraints are considered together
with the Dirichlet boundary condition in an eigenvalue problem, the optimization problem
becomes more difficult, since one is lead to deal with non local problems. Due to the fact
that an eigenfunction for λp,q(Ω) is forced to change sign inside Ω, and hence has at least two
nodal domains, one cannot expect in general to have a radial optimizer.

The adjective twisted was introduced by Barbosa and Bérard in [1], in the study of spectral
properties of the second variation of a constant mean curvature immersion of a Riemannian
manifold. In that framework a Dirichlet eigenvalue problem arose naturally with a vanishing
mean constraint. The condition on the mean value comes from the fact that the variations
under consideration preserve some balance of volume.

Further results in this direction can be found in the paper of Freitas and Henrot [14], where,
dealing with the linear case, the authors solved the shape optimization problem for the first
twisted Dirichlet eigenvalue. In particular they considered λ2,2(Ω), and they proved that the
only optimal shape is given by a pair of balls of equal measure. The one-dimensional case
has also attracted much interest. In [6], Dacorogna, Gangbo and Sub́ıa studied the following
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generalization of the Wirtinger inequality

(1.2) inf

{

‖u′‖Lp((−1,1))

‖u‖Lq((−1,1))
, u ∈W 1,p(−1, 1) \ {0} , u(−1) = u(1) = 0 ,

∫ 1

−1
|u|q−2u dx = 0

}

for p, q > 1 proving that the optimizer is an odd function. Moreover they explained the
connection between the value of λp,p

′

((−1, 1)), where p = p
p−1 , and an isoperimetric inequality.

Indeed, let A ⊂ R
2 whose boundary is a simple closed curve t ∈ [−1, 1] → (x(t), y(t)) with

x, y ∈W 1,p
0 ((−1, 1)). Let

L(∂A) =

∫ 1

−1
(|x′(t)|p + |y′(t)|p)

1

pdt

and

M(A) =
1

2

∫ 1

−1
[y′(t)x(t) − y(t)x′(t)]dt .

Then L2(∂A) − 4λp,p
′

((−1, 1))M(A) ≥ 0. The case of equality holds if and only if A =

{(x, y) ∈ R
2 : |x|p

′

+ |y|p
′

= 1}, up to a translation and a dilation.
Several other results are available in the one-dimensional case, see for instance [5], [4], [2],

[19], [11] and the references therein for further details.
Our aim here, as in [14], is to prove that the optimal shape for λp,q(Ω) is a pair of equal

balls. The main result can be stated as follows.

Theorem 1.1. Let Ω be an open bounded subset of RN . Then, for

(1.3) 1 < p <∞ and

{

1 < q < p∗ , if 1 < p < N
1 < q <∞ , if p ≥ N

we have
λp,q(Ω) ≥ λp,q(B1 ∪B2),

where B1 and B2 are disjoint balls of measure |Ω|/2.

The rest of the paper is devoted to the proof of Theorem 1.1 and it is divided into two
steps. In the first one, using the symmetrization technique, we show that it is enough to
minimize the functional λp,q on sets given by the union of two disjoint balls B1 and B2 (not
necessarily equal) and to identify the minimizing pairs. Moreover we write the Euler equation
for a minimizer u of λp,q(B1 ∪ B2), proving that the Lagrange multiplier associated to the
constraint

∫

Ω
|u|q−2u = 0

is zero (cf. Theorem 2.5).
The second step, which consists in showing that the two optimal balls have to be equal, is

more subtle. In the case p = q = 2 solved in [14], the proof is based on the explicit formula
for the (radial) solutions to the Euler equation of the functional and on fine properties of the
zeroes of Bessel functions. Here we use a more geometric argument obtaining as a byproduct
a simpler proof of the results of Freitas and Henrot. More precisely λp,q(B1 ∪B2) is attained
at a function u = u1χB1

− u2χB2
, with u1 and u2 radial positive functions. If we look at

λp,q(B1 ∪ B2) as a function of sets we obtain the following optimality condition from the
domain derivative (cf. Theorem 3.2):

∣

∣

∣

∣

∂u1
∂ν1

∣

∣

∣

∣

=

∣

∣

∣

∣

∂u2
∂ν2

∣

∣

∣

∣

.



AN ISOPERIMETRIC INEQUALITY FOR A NONLINEAR EIGENVALUE PROBLEM 3

From the other hand, the divergence theorem applied to the Euler equation gives that
∣

∣

∣

∣

∂u1
∂ν1

∣

∣

∣

∣

p−1

|∂B1| =

∣

∣

∣

∣

∂u2
∂ν2

∣

∣

∣

∣

p−1

|∂B2| .

This, combined with the previous condition, implies that B1 and B2 have the same measure.

2. The first generalized twisted eigenvalue

We start our study proving that the the value λp,q(Ω) is attained for any choice of a bounded
open set Ω ⊂ R

N .

Lemma 2.1. Assume (1.3). Then λp,q(Ω) > 0 and there exists a bounded function u ∈

W 1,p
0 (Ω) such that

λp,q(Ω) =
‖∇u‖Lp(Ω)

‖u‖Lq(Ω)

and

∫

Ω
|u|q−2u dx = 0 .

Proof. Let

H 1

n

(v) = ‖∇v‖pLp(Ω) −

(

[λp,q(Ω)]p +
1

n

)

‖v‖pLq(Ω)

with n ∈ N, and

G(v) =

∫

Ω
|v|q−2v dx.

By definition of infimum, for every n there exists un such that
∫

Ω
|un|

q−2un dx = 0 , H 1

n

(un) < 0 .

Without loss of generality we can assume that ‖∇un‖Lp(Ω) = 1. By Poincaré inequality,

‖un‖W 1,p(Ω) is uniformly bounded. Since p > 1, up to a subsequence, un converges weakly to

some u ∈W 1,p
0 (Ω). By hypotheses (1.3) on p and q, un → v in Lq(Ω) and then

∫

Ω
|u|q−2u dx = 0.

This implies that
‖∇u‖pLp(Ω) − [λp,q(Ω)]p ‖u‖pLq(Ω) ≤ 0.

By definition of λp,q(Ω), necessarily we have

‖∇u‖pLp(Ω) − [λp,q(Ω)]p ‖u‖pLq(Ω) = 0.

To prove that u 6= 0 and λp,q(Ω) > 0, it is sufficient to pass to the limit in Hn(un) < 0 to get

1 ≤ [λp,q(Ω)]p ‖u‖pLq(Ω) .

We are now going to prove that u is bounded. For ϕ, θ ∈ C∞
0 (Ω), let

Φ(ε, t) =

∫

Ω

|∇u dx+ ε∇ϕ+ t∇θ|p dx− [λp,q(Ω)]p





∫

Ω

|u+ εϕ+ tθ|q dx





p

q

.

Let θ be such that

(q − 1)

∫

Ω
|u|q−2θ dx = 1,
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if such θ does not exist one would have |u|q−2 = 0 which is a contradiction. Then, set

ψ(ε, t) =

∫

Ω

|u+ εϕ+ tθ|q−2(u+ εϕ+ tθ) dx .

The hypotheses on θ imply that ψt(0, 0) = 1. By the implicit function theorem applied to
ψ, there exists a function τ such that ψ(ε, τ(ε))=0 and τ ′(0) = −ψε(0, 0). Since (0, 0) is a
minimizer for Φ, we deduce that

(2.1) Φε(0, 0) + Φt(0, 0)τ
′(0) = Φε(0, 0) − Φt(0, 0)ψε(0, 0) = 0 .

By explicit calculations we have

Φε(0, 0) = p

∫

Ω

|∇u|p−2∇u · ∇ϕdx− [λp,q(Ω)]pp ‖u‖p−q
Lq(Ω)

∫

Ω

|u|q−2uϕdx;

Φt(0, 0) = p

∫

Ω

|∇u|p−2∇u · ∇θ dx− [λp,q(Ω)]pp ‖u‖p−q
Lq(Ω)

∫

Ω

|u|q−2uθ dx;

ψε(0, 0) = (q − 1)

∫

Ω

|u|q−2ϕdx ,

the equation (2.1) is indeed equivalent to
∫

Ω

|∇u|p−2∇u · ∇ϕdx− [λp,q(Ω)]p ‖u‖p−q
Lq(Ω)

∫

Ω

|u|q−2uϕdx = µ0(q − 1)

∫

Ω

|u|q−2ϕdx

with

µ0 =

∫

Ω

|∇u|p−2∇u · ∇θ dx− [λp,q(Ω)]p ‖u‖p−q
Lq(Ω)

∫

Ω

|u|q−2uθ dx .

By standard regularity results on elliptic equations (see § 5 of Chapter 2 in [22]) we deduce
that u is bounded. �

Let now u ∈W 1,p
0 (Ω) be such that

λp,q(Ω) =
‖∇u‖Lp(Ω)

‖u‖Lq(Ω)

and

∫

Ω
|u|q−2u dx = 0

and set
Ω+ = {x ∈ Ω : u(x) > 0} , Ω− = {x ∈ Ω : u(x) < 0}.

Our aim is to prove that we can reduce to the case of two balls. We will use a technique
used in [14] based on the Schwarz rearrangement. Here we recall just the definition and the
properties that we will need in the proof. For more details on rearrangement techniques we
refer to [16] and [18].

Definition 2.2. For a measurable set ω ⊂ R
N , we denote by ω∗ the ball of same measure as

ω. If u is a non-negative measurable function defined on a measurable set Ω and u = 0 on
∂Ω, let

Ω(c) = {x ∈ Ω : u(x) ≥ c}.

The Schwarz rearrangement of u is the function u∗ defined on Ω∗ by

u∗ = sup{c : x ∈ Ω(c)∗}.
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The next theorem summarizes some of the main properties of the Schwarz symmetrization.

Theorem 2.3. Let u be a non-negative measurable function defined on a measurable set Ω
with u = 0 on ∂Ω. Then

(1) u∗ is a radially symmetric non-increasing function of |x|;
(2) for any measurable function ψ : R+ → R

∫

Ω
ψ(u) dx =

∫

Ω∗

ψ(u∗) dx ;

(3) if u ∈W 1,p
0 (Ω), then u∗ ∈W 1,p

0 (Ω∗) and
∫

Ω
|∇u|p dx ≥

∫

Ω∗

|∇u∗|p dx.

Using the Schwarz symmetrization and suitable constrained variations we are now able to
reduce our problem to the “radial” one. Indeed we have the following theorem.

Theorem 2.4. Let B± be a ball of same measure as |Ω±|. Then λp,q(Ω) ≥ λp,q(B+ ∪B−).

Proof. Let u+ = u⌊Ω+
and u− = −u⌊Ω−

. By symmetrizing u+ and u− respectivelly, by the
properties of Schwarz rearrangement (cfr. Theorem 2.3) we can write

[λp,q(Ω)]p ≥

∥

∥∇u∗+
∥

∥

p

Lp(B+)
+

∥

∥∇u∗−
∥

∥

p

Lp(B−)
[

∥

∥u∗+
∥

∥

q

Lq(B+)
+

∥

∥u∗−
∥

∥

q

Lq(B−)

]
p

q

.

Moreover, by equimeasurability ensured by Theorem 2.3.(2), using the volume constraint, we
deduce that

0 =

∫

Ω+

|u+|
q−2u+ dx−

∫

Ω−

|u−|
q−2u− dx =

∫

B+

|u∗+|
q−2u∗+ dx−

∫

B−

|u∗−|
q−2u∗− dx .

If we set

λ∗ = inf
A

‖∇f‖pLp(B+) + ‖∇g‖pLp(B−)
[

‖f‖qLq(B+) + ‖g‖qLq(B−)

]
p

q

where A is defined by

A =

{

(f, g) ∈W 1,p
0 (B+)×W 1,p

0 (B−) :

∫

B+

|f |q−2f =

∫

B−

|g|q−2g

}

,

we clearly have

(2.2) [λp,q(Ω)]p ≥ λ∗ .

It is easily seen that λ∗ is attained in (f+, f−), with f+, f− ≥ 0. Without loss of generality
we can moreover assume that

(2.3)

∫

B+

|f+|
q dx+

∫

B−

|f−|
q dx = 1.

For ϕ±, θ± ∈ C∞
0 (B±), define
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Φ(ε, t) =

∫

B+

|∇f+ dx+ ε∇ϕ+ + t∇θ+|
p dx+

∫

B−

|∇f− dx+ ε∇ϕ− + t∇θ−|
p dx+

− λ∗







∫

B+

|f+ + εϕ+ + tθ+|
q dx+

∫

B−

|f− + εϕ− + tθ−|
q dx







p

q

.

Let (θ+, θ−) be such that

(q − 1)

∫

B+

|f+|
q−2θ+ dx− (q − 1)

∫

B−

|f−|
q−2θ− dx = 1 .

Such choice of (θ+, θ−) is possible, since, if not, one would have |f+|
q−2 = |f−|

q−2 = 0, that
contradicts (2.3). If we define the functional

ψ(ε, t) =

∫

B+

|f+ + εϕ+ + tθ+|
q−2(f+ + εϕ+ + tθ+) dx+

−

∫

B−

|f− + εϕ− + tθ−|
q−2(f− + εϕ− + tθ−) dx ,

the hypotheses on (θ+, θ−) imply that ψt(0, 0) = 1. By the implicit function theorem applied
to ψ, there exists a function τ such that ψ(ε, τ(ε))=0 and τ ′(0) = −ψε(0, 0). Since (0, 0) is a
minimizer for Φ,

Φε(0, 0) + Φt(0, 0)τ
′(0) = Φε(0, 0) − Φt(0, 0)ψε(0, 0) = 0 ,

that is,

µ0(q − 1)







∫

B+

|f+|
q−2ϕ+ dx−

∫

B−

|f−|
q−2ϕ− dx






=

∫

B+

|∇f+|
p−2[∇f+] · ∇ϕ+ dx+

+

∫

B−

|∇f−|
p−2∇f− · ∇ϕ− dx− λ∗







∫

B+

|f+|
q−2f+ϕ+ dx+

∫

B−

|f−|
q−2f−ϕ− dx







with

µ0 =

∫

B+

|∇f+|
p−2∇f+ · ∇θ+ dx+

∫

B−

|∇f−|
p−2∇f− · ∇θ− dx+

− λ∗







∫

B+

|f+|
q−2f+θ+ dx+

∫

B−

|f−|
q−2f−θ− dx






.

It follows that w = f+χB+
− f−χB−

satisfies on B+ ∪B− the equation

(2.4) − div(|∇w|p−2∇w) = λ∗|w|q−2w + µ0(q − 1)|w|q−2 .
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Now we observe that multiplying (2.4) by w, one has
∫

B+∪B−

|∇w|p dx

∫

B+∪B−

|w|q dx

= λ∗ ≥ inf











∫

B+∪B−

|∇v|p dx , v :

∫

B+∪B−

|v|q−2v dx = 0, ‖v‖Lq(B+∪B−) = 1











= [λp,q(B+ ∪B−)]
p .

The above inequality and (2.2) imply that λp,q(Ω) ≥ λp,q(B+ ∪B−). �

We are now going to write the Euler equation for λp,q(Ω) in the case where Ω is the union
of two disjoint balls. We will make use of a technique introduced in [6] to carefully choose
the variations.

Theorem 2.5. Let Ω = B1 ∪B2 where B1 and B2 are two disjoint balls. Let u ∈W 1,p
0 (Ω) be

a bounded function such that

∫

Ω

|u|q−2u dx = 0 and λp,q(Ω) =
‖∇u‖Lp(Ω)

‖u‖Lq(Ω)

. Then

(2.5) − div(|∇u|p−2∇u) = [λp,q(Ω)]p ‖u‖p−q
Lq(Ω) |u|

q−2u .

Proof. We set

G(v) =

∫

Ω
|v|q−2v dx , F (v) =

∫

Ω
|∇v|p dx− [λp,q(Ω)]p

[
∫

Ω
|v|q dx

]p/q

.

Let ϕ ∈ C∞
0 (Ω) and t ∈ (0, 1). Let

Ψ : R → R

β → G(u+ tϕ+ β) .

Then Ψ is continuous, Ψ(−1 − ‖u+ tϕ‖L∞(Ω)) < 0 and Ψ(1 + ‖u+ tϕ‖L∞(Ω)) > 0. By

continuity there exists βt ∈ R such that Ψ(βt) = G(u+ tϕ+ βt) = 0.

Let t ∈ (0, 1) fixed. We set ct =
βt
t
. We are going to prove the existence of a sequence

tn → 0 such that ctn has a finite limit as n → ∞ (up to a subsequence). If there exists a
sequence tn → 0 and xtn ∈ Ω such that ϕ(xtn) + ctn = 0, then we have the result, since ϕ
is bounded. If there exists δ > 0 such that, for every 0 < t < δ, ϕ(x) + ct 6= 0 for every
x ∈ Ω, let us show that ϕ(x) + ct must change sign in Ω. Otherwise, by the strict convexity
of s→ |s|q (and then by the strict monotonicity of s→ |s|q−2s) we should have

∫

Ω
|u+ tϕ+ βt|

q−2(u+ tϕ+ βt) dx >

∫

Ω
|u|q−2u dx

or
∫

Ω
|u+ tϕ+ βt|

q−2(u+ tϕ+ βt) dx <

∫

Ω
|u|q−2u dx ,

that is,

0 =

∫

Ω
|u+ tϕ+ βt|

q−2(u+ tϕ+ βt) dx >

∫

Ω
|u|q−2u dx = 0

or

0 =

∫

Ω
|u+ tϕ+ βt|

q−2(u+ tϕ+ βt) dx <

∫

Ω
|u|q−2u dx = 0
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which is a contradiction.
Then, for 0 < t < δ, on a subset of Ω one has ϕ(x) + ct > 0 and on its complement

ϕ(x) + ct < 0. This implies that |ct| ≤ ‖ϕ‖L∞(Ω). Therefore there exists 0 < tn < δ such that

tn → 0 and ctn → c as n→ +∞.
We have

< F ′(u), ϕ >= p

∫

Ω
|∇u|p−2∇u · ∇ϕdx− p[λp,q(Ω)]p ‖u‖p−q

Lq(Ω)

∫

Ω
|u|q−2uϕdx .

On the other hand,

0 ≤ lim
n→∞

F (u+ tn(ϕ+ ctn))− F (u)

tn
=

=< F ′(u), ϕ > −c p [λp,q(Ω)]p ‖u‖p−q
Lq(Ω)

∫

Ω
|u|q−2u dx =< F ′(u), ϕ > .

The previous inequality implies that
∫

Ω
|∇u|p−2∇u · ∇ϕdx = [λp,q(Ω)]p ‖u‖p−q

Lq(Ω)

∫

Ω
|u|q−2uϕdx

for every ϕ ∈ C∞
0 (Ω).

�

3. The shape optimization problem

In this section we are going to find a geometrical necessary condition for a set Ω to be a
minimizer of λp,q(Ω), where Ω is the union of two disjoint balls. We will exploit the deriv-
ative with respect to the domain of the set functional λp,q(Ω) and investigate an optimality
condition, i.e. we will identify the domains with vanishing domain derivative. Here we briefly
recall, for the reader’s convenience, the ideas underlying the concept of domain derivative and
we refer for instance to [17] and [25] for a detailed description of the theory and for further
details on its applicability.

Roughly speaking the domain derivative can be understood in the following way. Let Ω be
a bounded smooth domain in R

n, V : Rn → R
n be a sufficiently smooth vector field, t ≥ 0

and denote by Ωt the image of Ω under the map I + tV , where I stands for the identity. Let
us consider the boundary value problem

(3.1)

{

A(t, u) = 0 in Ωt

u = 0 on ∂Ωt

and an integral functional given by

J (t) :=

∫

Ωt

C(u) dx,

with A and C are differential operators acting on a space of functions defined in Ωt. Under
suitable regularity hypotheses, the function t → ut, that associates to t the solution of problem
(3.1), is differentiable and its derivative in zero, denoted by u̇ := u′t(0), satisfies the following
conditions

(3.2)

{

∂tA(0, u0) + ∂tA(0, u0)u̇ = 0 in Ω

u̇ = −
∂u0
∂ν

V · ν on ∂Ω
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where ν is the outward unit normal to ∂Ω. Moreover, we can calculate the domain derivative
for t = 0 of the functional J in the direction V as

(3.3) J ′(0) =

∫

Ω
∂uC u̇ dx+

∫

∂Ω
C(u0)V · ν dHN−1.

The results of the previous section ensure us that we can restrict our study to the sets
Ω = B1 ∪ B2 where B1 and B2 are two disjoint balls of radius R1 and R2 respectively such
that |B1∪B2| = ωN , where ωN is the measure of the unit ball in R

N . Let u be the minimizer
function realizing the value λp,q(Ω). Using the Schwarz rearrangement as in Theorem 2.4 we
can assume that λp,q(B1 ∪ B2) is attained at a function u = u1χB1

− u2χB2
, with u1 and u2

non negative radial functions on B1 and B2 respectively.
For this kind of domains, by Theorem 2.5, u satisfies (2.5). By scaling invariance, it is not

restrictive to deal with solutions that satisfy the condition

(3.4)

∫

Ω
|u|q dx = 1 .

Thus we are lead to consider u satisfying (3.4), the constraint
∫

Ω
|u|q−2v dx = 0

and the Dirichlet eigenvalue problem
{

−div(|∇u|p−2∇u) = [λp,q(Ω)]p|u|q−2u in Ω
u = 0 on ∂Ω .

Observe that in dimension 1, the minimizer of λp,q((a, b)) is an anti-symmetric function
with respect to (a+b

2 , 0), as proved in [6]. Therefore in the sequel we will assume that N ≥ 2.
Clearly an optimal set, i.e. a set that minimizes λp,q(Ω), will be a critical set with respect

to the domain variations. If we prove that the eigenvalue has a domain derivative λ̇p,q(Ω),

which will be true if λp,q(Ω) is a simple eigenvalue, then λ̇p,q(Ω) = 0 (see for example [17] for
further details and proof of the differentiability of a simple eigenvalue). This motivates the
next theorem.

Theorem 3.1. Let Ω = B1 ∪ B2, where B1 and B2 are two disjoint balls. Then λp,q(Ω)
is a simple eigenvalue, i.e. there exists a unique function u = u1χB1

− u2χB2
, modulo a

multiplicative constant, that realizes

λp,q(Ω) =
‖∇u‖Lp(Ω)

‖u‖Lq(Ω)

,

∫

Ω
|u|q−2u dx = 0.

Proof. Let u = u1χB1
− u2χB2

and û = û1χB1
− û2χB2

be two functions at which λp,q(Ω)
is attained. We can assume that ui and ûi, for i = 1, 2, are radial by Lemma 4.1 in the
appendix. Moreover u1, u2, û1, û2 are nonnegative and

(3.5)

∫

B1

uq−1
1 dx =

∫

B2

uq−1
2 dx ,

∫

B1

û1
q−1 dx =

∫

B2

û2
q−1 dx .

Without loss of generality we can assume that ‖u‖Lq(Ω) = ‖û‖Lq(Ω) = [λp,q(Ω)]
p

q−p . Therefore

(3.6)

∫

B1

uq1 dx+

∫

B2

uq2 dx =

∫

B1

û1
q dx+

∫

B2

û2
q dx .
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We remark that, by Theorem 2.5, letting r = |x|, we have that u1 = u1(r) and û1 = û1(r)
satisfy on [0, R1], the Cauchy problem

{

−(rN−1|φ′|p−2φ′)′ = rN−1|φ|q−1

φ(0) = c , φ′(0) = 0

with possibly different constants c for u1(0) and û1(0), and a similar result holds for u2 = u2(r)
and û2 = û2(r) on [0, R2].

Assume, without loss of generality, that u1(0) > û1(0). By Lemma 4.2 in the appendix,
u1(r) ≥ û1(r) on [0, R1]. Therefore

∫

B1

uq−1
1 dx >

∫

B1

û1
q−1 dx ,

∫

B1

uq1 dx >

∫

B1

û1
q dx .

By (3.5)

(3.7)

∫

B2

uq−1
2 dx >

∫

B2

û2
q−1 dx ;

using (3.6) we deduce that

(3.8)

∫

B2

uq2 dx <

∫

B2

û2
q dx .

If u2(0) ≥ û2(0), by Lemma 4.2, we have u2(r) ≥ û2(r) on [0, R2] and this is in contradiction
with (3.8). If, on the other hand, u2(0) < û2(0), again using Lemma 4.2 we have u2(r) ≤ û2(r)
on [0, R2] and this contradicts (3.7). Then u1(0) = û1(0). Finally, another application of
Lemma 4.2 gives us that u1 = û1 and by (3.6) we get also u2 = û2. �

Now, by (3.2) (cf. [9, 3]) we have that u̇1 and u̇2 solve, in B1 and B2 respectively, the
equation

(3.9) − div

(

(p− 2)|∇u|p−1∇u · ∇u̇

|∇u|3
∇u+ |∇u|p−2∇u̇

)

= pλp−1λ̇uq−1 + (q − 1)λpuq−2u̇

where we use the notation λ instead of λp,q(B1 ∪ B2). We are in position to prove the
optimality condition for the radial problem associated to λp,q(B1 ∪B2).

Theorem 3.2. Consider the following minimization problem

(3.10) inf{λp,q(B1 ∪B2) : (B1, B2) disjoint balls, |B1 ∪B2| = ωN} .

Let the pair (B̃1, B̃2) be critical for (3.10). Then, denoted by u = u1χB̃1
−u2χB̃2

the function

at which λp,q(B̃1 ∪ B̃2) is attained, we have
∣

∣

∣

∣

∂u1
∂ν1

∣

∣

∣

∣

=

∣

∣

∣

∣

∂u2
∂ν2

∣

∣

∣

∣

.

Proof. We will denote B1 ∪B2 by Ω. We recall that u1 and u2 satisfy (3.9). Multiplying by
u and integrating we obtain

(3.11) (p− 1)

∫

Ω
|∇u|p−2∇u · ∇u̇ dx = pλp−1λ̇

∫

Ω
|u|q dx+ (q − 1)λp

∫

Ω
|u|q−2uu̇ dx.
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Since we are working with normalized functions, the domain derivative of ‖u‖qLq(Ω) has to be

zero, i.e. by (3.4), using (3.3), we deduce that
∫

Ω
|u|q−2uu̇ dx = −

∫

∂Ω
|u|q V · ν dHN−1 .

As u vanishes on ∂Ω,

(3.12)

∫

Ω
|u|q−2uu̇ dx = 0 .

Moreover, by Theorem 2.5, u satisfies

−div(|∇u|p−2∇u) = λp|u|q−2u ;

this implies that

(3.13)

∫

Ω
|∇u|p−2∇u · ∇u̇ dx =

∫

∂Ω
u̇

∣

∣

∣

∣

∂u

∂ν

∣

∣

∣

∣

p−2 ∂u

∂ν
dHN−1 + λp

∫

Ω
|u|q−2uu̇ dx.

Combining (3.12) and (3.13), (3.11) reduces to

λ̇
p

p− 1
λp−1 =

∫

∂Ω
u̇

∣

∣

∣

∣

∂u

∂ν

∣

∣

∣

∣

p−2 ∂u

∂ν
dHN−1 .

We recall that on ∂Ω, by (3.2), we have

u̇ = −
∂u

∂ν
V · ν;

as a consequence

λ̇
p

p− 1
λp−1 = −

∫

∂Ω

∣

∣

∣

∣

∂u

∂ν

∣

∣

∣

∣

p

V · ν dHN−1.

It follows that

λ̇p,q(Ω) = 0 ⇐⇒

∫

∂Ω
V · ν

∣

∣

∣

∣

∂u

∂ν

∣

∣

∣

∣

p

dHN−1 = 0.

Since Ω = B1 ∪B2 and since u is radial on B1 and on B2, this is equivalent to
∣

∣

∣

∣

∂u1
∂ν1

∣

∣

∣

∣

p ∫

∂B1

V · ν dHN−1 +

∣

∣

∣

∣

∂u2
∂ν2

∣

∣

∣

∣

p ∫

∂B2

V · ν dHN−1 = 0 .

For variations V preserving the volume, we must choose V such that

∫

Ω
div(V ) dx = 0. We

deduce

λ̇p,q(Ω) = 0 ⇐⇒

∣

∣

∣

∣

∂u1
∂ν1

∣

∣

∣

∣

p

−

∣

∣

∣

∣

∂u2
∂ν2

∣

∣

∣

∣

p

= 0 ,

that implies the claim. �

Using the previous analysis and the Pohozaev type identity (4.3) in the appendix, we will
uniquely identify the critical domain for λp,q(Ω).

Theorem 3.3. The only critical domain among union of balls of given volume for λp,q(Ω) is
the union of two balls of same measure.
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Proof. Let u = u1χB1
− u2χB2

be the function at which λp,q(B1 ∪ B2) is realized, satisfying
(3.9). By the divergence theorem applied to (2.5) one has

∣

∣

∣

∣

∂u1
∂ν1

∣

∣

∣

∣

p−1

|∂B1| =

∣

∣

∣

∣

∂u2
∂ν2

∣

∣

∣

∣

p−1

|∂B2| .

By the above equality and Theorem 3.2 we easily deduce that

(3.14)

∣

∣

∣

∣

∂u1
∂ν1

∣

∣

∣

∣

p−2 ∂u1
∂ν1

|∂B1| =

∣

∣

∣

∣

∂u1
∂ν1

∣

∣

∣

∣

p−2 ∂u1
∂ν1

|∂B2| .

We are going to show, arguing by contradiction, that ∂u1

∂ν1
6= 0 on ∂Ω. Indeed, if this is not

true, thanks to the regularity given by Lemma 4.1, we can use Theorem 4.3 to infer that

[λp,q(Ω)]p
(

N − p

p
−
N

q

)

= −
p− 1

p

∣

∣

∣

∣

∂u1
∂ν1

∣

∣

∣

∣

p [∫

∂B1

(x · ν)dHN−1 +

∫

∂B2

(x · ν)dHN−1

]

= 0

which gives in turns that N−p
p − N

q = 0. The last equality contradicts hypotheses (1.3) on

p, q,N .
Therefore (3.14) is equivalent to |∂B1| = |∂B2| and so the two balls B1 and B2 have the

same radius. �

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. We recall that by Theorem 2.4 we have

λp,q(Ω) ≥ λp,q(B+ ∪B−) .

Moreover, using Theorem 3.3, we infer that

λp,q(B+ ∪B−) ≥ λp,q(B′
1 ∪B

′
2)

where B′
1 and B′

2 are disjoint balls such that |B′
1| = |B′

2| =
|B+∪B−|

2 .
We now observe that, if, Ω1 and Ω2 are two sets, with Ω1 ⊆ Ω2, then λ

p,q(Ω1) ≥ λp,q(Ω2).
Indeed, it suffices to consider a function u1 in which λp,q(Ω1) is attained and defining 0 in
Ω2 \ Ω1. Therefore

λp,q(B′
1 ∪B

′
2) ≥ λp,q(B1 ∪B2) ,

where B1 and B2 are disjoint balls of measure |Ω|
2 . Combining the previous inequalities we

end up with

λp,q(Ω) ≥ λp,q(B1 ∪B2) .

This proves the claim. �

Remark 3.4. One could ask about the limit as p → 1 of λp,q(Ω). Observe that the limit, as
p→ 1, of

αp(Ω) = inf

{

‖∇v‖Lp(Ω)

‖v‖Lp(Ω)

, v 6= 0, v ∈W 1,p
0 (Ω)

}

is the Cheeger constant, defined by

inf
D⊂Ω

HN−1(∂D)

|D|

with D varying on all smooth subdomains of Ω whose boundary does not touch ∂Ω, as proved
by Kawohl and Fridman [20]. The limit of λp,q(Ω) as p→ 1 seems to be much more difficult,
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due to the presence of the parameter q not necessarily equal to p and the non-local constraint
∫

Ω
|u|q−2q = 0.

4. Appendix

We recall here some results about quasilinear elliptic equations. The first (see [7] and the
references therein) gives the radial simmetry of positive solutions to p-laplacian equations.

Theorem 4.1. Let u ∈ W 1,p
0 (B) be a positive solution to −div(|∇u|p−2∇u) = λ|u|q−2u,

where B is a ball. Then u ∈ C1,α(B) for some α > 0 and u is radial.

The next result is a useful comparison lemma for solutions of an initial value problem for
the ordinary differential equation arising when one writes in radial coordinates the Euler-
Lagrange equation of λp,q(Ω). This result is widely discussed for example in [12] and [10] and
used in this form in [13].

Lemma 4.2. Under hypotheses (1.3) and N > 1, the Cauchy problem

(4.1)

{

−(rN−1|φ′|p−2φ′)′ = rN−1|φ|q−1

φ(0) = c , φ′(0) = 0

has at most a positive solution on [0, R] of class C1([0, R]) ∩C2((0, R)). Moreover, let φ1, φ2
be two positive solutions with c = c1 and c2 respectively; if c1 < c2, then φ1 ≤ φ2 on [0, R].

The proof of the previous lemma goes exactly as the one of the Lemmata 3.1 and 3.3 of
[10]. The only comment to make concers the slightly restrictive hypotheses on the values of
p and q that we find in [10]. We observe that we need to check that setting u(0) = α, we can
invert the unique solution of (4.1) u = u(t, α) and this is ensured by Propositions 1.2.6 and
A2 in [12]. Once we have this, the only hypothesis that has to be satisfied for the applicability
of the results in [10] is the following inequality

[(N − p)|s|q−2s+ (N − p)s(q − 1)|s|q−2 −Np|s|q−2s]|s|q−2s

≤ (q − 1)|s|q−2[(N − p)|s|q − Np
q |s|q] ,

that is,

(4.2) (N − p)q ≤ Np .

If N − p ≤ 0, clearly we have (4.2) for any q. If on the contrary we have N − p > 0, then
(4.2) is satisfied exatly for q ≤ p∗ as in our hypotheses.

We finally recall the following generalization of the Pohozaev identity, established in [24]
and [8].

Theorem 4.3. Let G(u) =

∫ u

0
g(s) ds where g : R → R is a continuous function. Let

Ω ⊂ R
N , N ≥ 2, be an open bounded set of class C1. Let u ∈W 2,p(Ω)∩W 1,p

0 (Ω) be a solution
to

{

−div(|∇u|p−2∇u) = g(u) in Ω
u = 0 on ∂Ω .

Then

(4.3) −
p− 1

p

∫

∂Ω
|∇u|p(x · ν)dHN−1 =

∫

Ω

[

N − p

p
|∇u|p −NG(u)

]

dx .
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(Berlin) [Mathematics & Applications]. Springer, Berlin, 2005. Une analyse géométrique. [A geometric
analysis].

[18] B. Kawohl. Rearrangements and convexity of level sets in PDE, volume 1150 of Lecture Notes in Mathe-
matics. Springer-Verlag, Berlin, 1985.

[19] B. Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete
Contin. Dyn. Syst., 6(3):683–690, 2000.

[20] B. Kawohl and V. Fridman. Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and
the Cheeger constant. Comment. Math. Univ. Carolin., 44(4):659–667, 2003.



AN ISOPERIMETRIC INEQUALITY FOR A NONLINEAR EIGENVALUE PROBLEM 15

[21] B. Kawohl, M. Lucia, and S. Prashanth. Simplicity of the principal eigenvalue for indefinite quasilinear
problems. Adv. Differ. Equ., 12(4):407–434, 2007.
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