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A SELECTION CRITERION OF SOLUTIONS TO A SYSTEM OF

EIKONAL EQUATIONS

GISELLA CROCE AND GIOVANNI PISANTE

1. Introduction

In this article we deal with the following system of eikonal equations:

(1.1)







∣
∣
∣
∣

∂u

∂xi

∣
∣
∣
∣
= 1 , i = 1, . . . , N, a.e. in Ω

u = 0 , on ∂Ω ,

where Ω is an open bounded connected Lipschitz domain of RN . System (1.1) arises
in several nonlinear models in mechanics and material science and the problem of the
existence of solutions has been widely studied. With no attempt to be exhaustive
here we recall some results that have motivated our study.

Examining the pyramidal construction, introduced in [5] and [13], one can easily

see that there exist infinitely many W 1,∞
0 (Ω) solutions of (1.1). Indeed, if Q ⊂ R

N

is a hyperrectangle oriented in such a way that the exterior normal to its faces is
contained in the set

E = {x = (x1, . . . , xN ) ∈ R
N : |x1| = · · · = |xN |},

then the distance function in the l1−norm from the boundary of Q, d1(·, ∂Q), solves
problem (1.1) in Q. In a general domain Ω, Vitali’s theorem allows us to cover Ω,
up to a Lebesgue measure zero set, by a countable union of domains Qi as before.
Then the function defined by d1(·, ∂Qi) in Qi, i ∈ N, and 0 elsewhere, is a W 1,∞(Ω)
solution to system (1.1). Since there are infinitely many Vitali’s coverings of Ω,
problem (1.1) admits infinitely many W 1,∞(Ω) solutions. As a consequence, it is
an interesting question to select and characterize a particular class of solutions or
better one single solution.

Let S(Ω) denote the set of the W 1,∞(Ω) solutions to problem (1.1). One possible
strategy to select a specific function in S(Ω) can be developed using the theory of
viscosity solution, introduced by Crandall and Lions (see [7, 9]). In this approach
one takes advantage of the various useful properties enjoyed by viscosity solutions,
such as maximality, uniqueness and explicit formulas. To do that, note that system
(1.1) is equivalent to

(1.2)

{

F (Du) = 0 , a.e. inΩ

u = 0 , on ∂Ω ,
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where F : RN → R is any continuous function which is zero if and only if |xi| = 1
for every i = 1, . . . , N . One therefore investigates the existence of a viscosity
solution to problem (1.2) with any suitably chosen F . It is well known that for
N = 1, u(x) = d1(x, ∂Ω) is the unique viscosity solution to problem (1.2). In
higher dimensions, some geometrical conditions on the domain come into play.
Indeed in [4] and [14] it is proved that there exists a viscosity solution to (1.2) if
and only if Ω is a hyperrectangle such that the normals to each face lie in E. In this
case, d1(·, ∂Ω) is a viscosity solution. Although the previous result is in some sense
negative, it was nonetheless put to use in [10] to select a special solution to problem
(1.1) (and to more general problems). There the authors construct a Vitali covering
of Ω made up of domains Ωi admitting a viscosity solution and define the relative
viscosity solution over each of these sets. The covering is built in a recursive way,
with the idea of taking, at every step, the largest possible hyperrectangle.

Another strategy to characterize a class of functions in S(Ω) is to use a varia-
tional method, that is, to choose a meaningful functional over S(Ω) and to optimize
it. The minimizers or maximizers, supposing they exist, would be selected solutions
to problem (1.1). There is an evident difficulty to apply this method, since the set
S(Ω) is not convex. For example the natural functionals

v →
∫

Ω

|v|p , p ≥ 1,

have in general neither a minimizer nor a maximizer over S(Ω). Indeed any min-
imizing sequence converges to 0, which does not belong to S(Ω), and the limit
function of maximizing sequences is plus or minus the distance from ∂Ω in the
l1-norm, which usually do not verify (1.1).

In [8] we find the first attempt of selection through a variational method. The au-
thors study numerically a variational problem over the set of non-negative solutions
to problem (1.1): they obtain a maximizing sequence for the problem

(1.3) sup

{∫

Ω

u, u ≥ 0, u ∈ S(Ω)

}

through the numerical minimization of

J (u) := −
∫

Ω

u+
1

2

∫

Ω

|∇u|2 + ε

2

∫

Ω

|∆u|2 + 1

2ε

N∑

i=1

∫

Ω

(∣
∣
∣
∣

∂u

∂xi

∣
∣
∣
∣
− 1

)2

.

Unfortunately, as we said above, there is in general no optimal solution to the
variational problem (1.3). Nevertheless, according to the seminal idea presented
in [8] of selecting "regular solutions", it seems to be natural to minimize in some
way the discontinuity set of the gradient of the solutions. With this aim in mind
let us consider the functions v ∈ S(Ω) such that the distributional gradient of
∂v
∂xi

, i = 1, . . . , N, has no Cantor part locally, that is, ∂v
∂xi

is a SBVloc(Ω) function

(see section 2 for further details). If J ∂v
∂xi

denotes the jump set of ∂v
∂xi

, i = 1, . . . , N ,

one could try to minimize the functional

Jt(v) := Ht

(
N⋃

i=1

J ∂v
∂xi

)

over

E(Ω) =
{

v ∈ S(Ω) :
∂v

∂xi

∈ SBVloc(Ω), i = 1, . . . , N

}

,
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for some t ≥ N − 1. As shown in [6], for t = N − 1, this variational problem is not
well-posed, since JN−1(v) can be infinite for every v ∈ E(Ω), in general. Indeed the
jump set of Dv could have a fractal behaviour near the boundary of Ω. From the

other hand, Ht
(

J ∂v
∂xi

)

= 0 for every i = 1, . . . , N , for every function in E(Ω) and

for every t > N − 1 (see Section 3). The above negative result on the variational
problem

inf

{

HN−1

(
N⋃

i=1

J ∂v
∂xi

)

, v ∈ E(Ω)
}

leads the authors of [6] to consider a weighted HN−1 measure of the jumps. Using
a given increasing sequence Ωn ⊂ Ω of polyhedra whose boundary is composed of
a finite number of hyperplanes with normals lying in E, they define a C0 function
h : Ω → R

+ and minimize

v →
N∑

i=1

∫

J ∂v
∂xi

h(x)dHN−1(x)

over E(Ω). It is obvious that this selection criterion depends on the definition of
the function h and in turn, h depends on the particular sequence of sets Ωn. At the
same time it is clear that the candidate functional should depend on some geometric
properties of the domain Ω.

Our aim in this paper is to find an "optimal" weighted measure of the jump set
of Dv. We propose a family of weights which depends only on the distance from
the boundary of Ω and then minimize the corresponding variational problem.

We assume that Ω ⊂ R
2 is a compatible domain, according to Definition 2.1.

Observe that any convex, open, bounded, Lipschitz subset of R2 such that ∂Ω is
composed of a finite number of C1 curves is compatible. A polygon is a com-
patible domain, as well. This hypothesis is motivated in section 3 through some
enlightening examples. Our main result is the following

Theorem 1.1. Let Ω be a compatible domain of R
2. Let H : R

+ → R
+ be a

continuous, increasing function such that
∫ 1

0

H(t)

t
dt < +∞ .

Let

F(v) =
2∑

i=1

∫

Ω

H(d1(x, ∂Ω))d

∣
∣
∣
∣
D

∂v

∂xi

∣
∣
∣
∣
.

Then the variational problem

(1.4) inf{F(v), v ∈ E(Ω)}
has a solution.

We point out that the most difficult part of the proof of Theorem 1.1 consists in
showing that the variational problem (1.4) is well-posed, that is, defining a function
v ∈ E(Ω) such that F(v) is finite. This will be done in Proposition 4.4. In section 3
we sketch the proof of Proposition 4.4 in the special case Ω = (0, 1)× (0, 1) where
the computations are much easier than in the general case; we motivate there the
hypothesis on H . After proving that F is finite for at least one function in E(Ω),
we show the existence of a minimizer using the direct methods of the calculus of
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variations, as in [6]. We finally remark that the generalization of our result to
higher dimensions is not immediate, because in that case Proposition 4.4 is much
more complicated. This is why we state our main result in R

2. However, we plan
to address the problem in higher dimensions in a future work.

Acknowledgements We would like to thank T. Champion for some useful discus-
sions. Part of this work was completed during a visit of the first author to Seconda
Università di Napoli and of the second author to the Hokkaido University whose
hospitality is gratefully acknowledged.

2. Notations and preliminaries

This section is divided into two parts. In the first one we will fix the hypotheses
on Ω and the related notations. The second one is devoted to some preliminary
results on functions of bounded variation.

Throughout, given a real number t we will use the notation [t] do denote its
integer part. Given a continuous function f : [a, b] → R, f ∈ C1((a, b)) with
f ′(t) < 0 for every t ∈ (a, b), we set

Tf := {(s, t) ∈ R
2 : a ≤ s ≤ b, f(b) ≤ t ≤ f(s)}.

We will call Tf a triangular domain. The class of all triangular domains will be
denoted by T . We will write T instead of Tf if the function f will be clear by the
context.

In the sequel a special role is played by the family of lines in the plane with slope
±1. We will denote by ℓ± the line with slope ±1, passing through (0, 0). Let L be
the set of lines parallel to ℓ+ or ℓ−. We define

S := {[x, y] : [x, y] ⊂ ℓ , ℓ ∈ L } ,

where [x, y] stands for the segment joining the two points x = (x1, x2), y = (y1, y2).
We will denote by P the class of bounded Lipschitz domains whose boundary can
be written as an at most countable union of segments lying in S; Pf ⊂ P will be
the class of domains whose boundary can be written as a finite union of segments

in S; finally, P∞ = P \ Pf . For a given set A ⊂ R
2, with

◦
A we denote the relative

interior of A with respect to the topology induced by the euclidean metric on R
2.

Let

R =

(
1√
2

− 1√
2

1√
2

1√
2

)

and V =

(
−1 0
0 1

)

be the π
4 counterclockwise rotation and the reflexion with respect to the vertical

axis respectively. We define

T = {R2k+1(T ),V(R2k+1(T )), k = 0, 1, 2, 3, T ∈ T } .
Let us consider the set E := {ν ∈ S1 : |ν1| = |ν2|}. For a given rectifiable curve of
class C1, γ ⊂ R

2, we denote by N : γ 7→ S1 the Gauss map.

Definition 2.1. We say that γ is an admissible boundary curve if the set N−1(E) ⊂
γ has a finite number of connected components. We will denote by Γ the class of ad-
missible boundary curves. A bounded connected Lipschitz set Ω ⊂ R

2 will be called

compatible domain if its boundary ∂Ω is the union of a finite number of admissible

boundary curves.
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We recall that an open bounded set Ω ⊂ R
2 is Lipschitz if for every p ∈ ∂Ω there

exist a radius r > 0 and a map hp : Br(p) → B1(0) such that hp is a bijection,
hp, h

−1
p are Lipschitz functions, hp(∂Ω ∩ Br(p)) = Q0 and hp(Ω ∩ Br(p)) = Q+,

where Br(p) = {x ∈ R
2 : ||x − p|| ≤ r}, Q0 = {x = (x1, x2) ∈ B1(0) : x2 = 0}

and Q+ = {x = (x1, x2) ∈ B1(0) : x2 > 0}. We remark that if Ω is Lipschitz, then
H1(∂Ω) is finite.

We observe that any domain in Pf is compatible, since any segment σ ∈ S is

an admissible boundary curve, being N−1(E) =
◦
σ connected. Any convex, open,

bounded, Lipschitz subset of R2 such that ∂Ω is composed of a finite number of C1

curves is compatible. A polygon is also a compatible domain.

Remark 2.2. If Ω is a compatible domain, then it can be covered by a polygonal
set in Pf and a finite number of domains in T with mutually disjoint interior, i.e.,

Ω = P ∪
N⋃

j=1

Wj(Tj),

where P ∈ Pf , N ∈ N, Tj ∈ T and Wj is a linear transformation of the form
R2kj+1 or V(R2kj+1), with kj ∈ {0, 1, 2, 3}.

As already explained in the introduction, in this article we minimize a weighted
measure of the discontinuity set of the gradient of the solutions to problem (1.1).

To do that, we will use the definition and some results on the spaces BV (Ω) and
SBV (Ω) of functions of bounded variation that we recall here. For simplicity we
will restrict ourselves to the case where Ω is a subset of R2. We refer to [1, 2, 11, 12]
for further details.

Definition 2.3 (BV, SBV function). A BV (Ω) function is an L1(Ω) function such
that its distributional gradient is a finite Radon measure. A SBV (Ω) function is a

BV (Ω) function such that its gradient can be decomposed in the following way:

Dw = Daw +Djw

= ∇wL2 + (w+ − w−)νw H1⌊Jw = ∇wL2 + [w]νwH1⌊Jw
where Daw is absolutely continuous with respect to the Lebesgue measure L2 in R

2

with density ∇w, Djw = [w]νwH1⌊Jw is the jump part of Dw, H1 is the one-
dimensional Hausdorff measure, w+ and w− denote the upper and lower approxi-

mate limits of w, Jw the jump set of w and νw its generalized normal.

We shall handle the solutions v of problem (1.1) belonging to

E(Ω) = {v ∈ S(Ω) : vxi
∈ SBVloc(Ω), i = 1, 2}

where vxi
stands for ∂v

∂xi
, i = 1, 2. Therefore

(2.1) D (vxi
) = 2 νvxi

H1⌊Jvxi
on ω ∀ i = 1, 2

for any open subset ω ⊂ ω ⊂ Ω.
We recall moreover the following result:

Lemma 2.4. If P : R2 → R is the projection (x1, x2) → x2, and E is a measurable

set of R2 then
∫

R

H0(E ∩ P−1{y})dy ≤ H1(E).
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Proof. It is sufficient to apply Theorem 2.10.25 of [12] with f = P , X = R
2, Y = R,

k = 0 and m = 1. �

We end this section with some results on compactness and lower semi-continuity
in the space of functions of bounded variation.

Definition 2.5 (BV norm). The BV norm of a BV (Ω) function w is defined by

‖w‖BV (Ω) = ‖w‖L1(Ω) + |Dw|(Ω) .

Definition 2.6 (weak* convergence in BV ). Let (un)n, u ∈ BV (Ω). We say that

(un)n weakly* converges to u in BV (Ω) if un → u in L1(Ω) and the measures Dun

weakly* converge to the measure Du in M(Ω,R2), that is,

lim
n→∞

∫

Ω

ϕdDun =

∫

Ω

ϕdDu ∀ϕ ∈ C0(Ω) .

Theorem 2.7 (compactness for SBV functions). Let Ω be a bounded open subset

of R2 with H1(∂Ω) < +∞. Let (un)n be a sequence of functions in SBV (Ω) and

assume that:
i) the functions un are uniformly bounded in BV (Ω);
ii) the gradients ∇un are equi-integrable;

iii) there exists a function f : [0,∞) → [0,∞] such that f(t)/t → ∞ as t → 0+ and
∫

Jun

f([un])dH1 ≤ C < ∞ ∀n ∈ N.

Then there exists a subsequence (unk
)k and a function u ∈ SBV (Ω) such that

unk
→ u weakly* in BV (Ω), with the Lebesgue and jump parts of the derivatives

converging separately, i.e., Daunk
→ Dau and Djunk

→ Dju weakly* in M(Ω,R2).

Theorem 2.8 (semicontinuity in BV ). Let Ω be a bounded open subset of R2. Let
(un)n be a sequence of functions in BV (Ω) such that un → u weakly* in BV (Ω).
Then ∫

Ω

f(x)d|Dju|(x) ≤ lim inf
n→∞

∫

Ω

f(x)d|Djun|(x)

for any non-negative continuous function f : Ω → [0,+∞[ .

3. Statement of the main result and remarks

As already explained in the introduction, our strategy to select some particular
or special solutions to (1.1) is based on a variational method, in other words we
search for minimizers of a suitable and meaningful functional defined on E(Ω). We
will motivate the choice of the functional and the conditions imposed on the domain
Ω with the aid of some enlightening examples. Our main result is the following

Theorem 3.1. Let Ω be a compatible domain and H : R+ → R
+ be an increasing,

continuous function such that

(3.1)

∫ 1

0

H(t)

t
dt < ∞ .

Let

F(v) =
2∑

i=1

∫

Ω

H(d1(x, ∂Ω))d(|D vxi
|)(x) .
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Then the variational problem

(3.2) inf{F(v) , v ∈ E(Ω)}
has a solution.

One could ask why we do not minimize the simpler functionals

Ht
(
Jvx1

∪ Jvx2

)
, t ≥ 1

over E(Ω). To give the answer we will distinguish the cases t = 1 and t > 1. The
first case was partially studied in [6], where it was proved the following theorem for
the functional

GΩ(v) :=
2∑

i=1

∫

Ω

d(|Dvxi
|)(x) .

Theorem 3.2. Let P ∈ Pf . Then the variational problem

inf{GP (v), v ∈ E(P )}
has a solution.

If Ω does not belong to Pf , the minimization of GΩ may be not well-posed.
Indeed we recall that in [6] it was proved that if Ω = (0, 1) × (0, 1) then GΩ(v) is
infinite for every v ∈ E(Ω). In Examples 3.3 and 3.4 we consider the case where Ω
is a domain in P∞.

Example 3.3. We define a set Ω ∈ P∞ such that for every v ∈ E(Ω) GΩ(v) = ∞.
We start fixing some notations. For a function f : [a, b] → R

+ we will denote by
Sf the set

Sf = {(x1, x2) ∈ R
2 : a ≤ x1 ≤ b, 0 ≤ x2 ≤ f(x1)}.

For a given N ∈ N, with the symbol gN(a,b) we will denote the step function

gN(a,b) =

N−1∑

j=0

(b − a)
N − j

N
χ[a+j b−a

N
,a+(j+1) b−a

N ) .

Let us consider the sequence of real numbers t0 = 0, tn =
∑n

i=1
1
2i = 2n−1

2n , and
define for n ∈ N the functions

hn =
1

2n
χ[tn−1,tn) , gn = gNn

(tn−1,tn)
,

h =

+∞∑

n=1

hn , f =

+∞∑

n=1

(hn + gn) ,

where Nn will be chosen later. Let Ω be R(
◦
Sf ). We can easily see that, if we set

Cn = R(Sgn+
1

2n
), then

◦
Ci ∩

◦
Cj= ∅ and

R(Sf ) = R(Sh) ∪
∞⋃

n=1

Cn .

Thus the claim will be proved if we show that for every n ∈ N

H1

(

Jvx1
∩

◦
Cn

)

+H1

(

Jvx2
∩

◦
Cn

)

≥ 1 .
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Let σn be the third middle part of the segment
[
R
(
(tn−1, f(tn−1))

)
,R
(
(tn, f(tn))

)]
;

then H1(σn) =
√
2

3 2n . For any 0 < t < H1(σn)
4 consider the segment σt

n = τ−t(σn),
where τw, w ∈ R, denotes the translation in the direction (0, w). Clearly we have

σt
n ⊂

◦
Cn. Now, let rt(s) be a parametrization for σt

n. If wt(s) denotes the restriction
of a function v ∈ E(Ω) to the segment σt

n, we have that

|wt(s)| ≤ d1(rt(s), ∂Ω) = d1(rt(s), ∂Cn) ≤ t+ hn , hn =

√
2

2n+1Nn

.

This implies that w′
t has at least

[
H1(σn)
2(t+hn)

]

jumps. Therefore, by Lemma 2.4

H1
(

Jvx1
∩

◦
Cn

)

≥
∫ H

1(σn)
4

0

[ H1(σn)

2(t+ hn)

]

dt

≥
∫ H

1(σn)
4

0

( H1(σn)

2(t+ hn)
− 1

)

dt

=
H1(σn)

2
ln

(H1(σn)

4hn

+ 1

)

− H1(σn)

4

=

√
2

3 2n+1
ln

(√
2

12
Nn + 1

)

−
√
2

3 · 2n+2
.

A suitable choice of Nn implies the claim.

Example 3.4. We are going to define a domain Ω ∈ P∞ and a function v ∈ E(Ω)
such that GΩ(v) is finite. Let tn be defined as in the previous example. For any

n ∈ N choose hn < 1
2n and consider the domain Ω = R(

◦
Sf ) with f defined by

f =

∞∑

n=1

hnχ(tn−1,tn).

Let Rn = [tn−1, tn] × [0, hn] and define the function v(x) = d1(x, ∂Rn) if x ∈ Rn.
Clearly v is a solution to problem (1.1); moreover R(Sf ) = ∪∞

n=1R(Rn) and

H1(Jvxi
∩R(Rn)) ≤ 4

(

hn +
1

2n

)

≤ 8

2n
.

It follows the following estimate:

GΩ(v) ≤ H1(Jvx1
) +H1(Jvx2

)

≤
∞∑

n=1

[
H1(Jvx1

∩R(Rn)) +H1(Jvx2
∩R(Rn)

]

≤ C

∞∑

n=1

1

2n
< ∞ ,

where C denotes a positive constant independent of n.

We now pass to the case t > 1. The reason why we do not use the functionals
Ht
(
Jvx1

∪ Jvx2

)
for some t > 1, to select a solution to problem (1.1) is clear: for

every v ∈ E(Ω),
Ht
(
Jvx1

∪ Jvx2

)
= 0 , ∀ t > 1.
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Indeed, for a given v ∈ E(Ω)

H1
(
Jvxi

∩ ω
)
< ∞ ,

for every ω ⊂ ω ⊂ Ω and for i = 1, 2. Recall now that Hausdorff measures have the
property that if E is any measurable set such that Hr(E) < +∞, then Hr+ε(E) = 0
for every ε > 0 (see [11]). This implies that Ht

(
Jvxi

∩ ω
)
= 0 for every t > 1. By

definition of measure Ht
(
Jvxi

)
= 0 for every t > 1. We remark that this argument

can be applied also if we work in dimension greater than 2.
The previous observations suggest that, if one wants to isolate the most "regular"

functions in E(Ω), he is in some sense obliged to use a weighted H1 measure. In
this article we define a weight depending only on the distance to the boundary.

In the following example we are going to motivate hypothesis (3.1) on H and
to illustrate the ideas behind the proof of Theorem 3.1, in the case where Ω is a
square. Due to the simple geometry of the domain, we can perform several steps
of the proof avoiding almost all the technical difficulties that we need to deal with
in the general case and that are addressed in the next section.

Example 3.5. Let Ω = (−1, 1) × (−1, 1). We are going to define a "reasonable"
function v ∈ E(Ω) and impose that F(v) is finite. Since the weight H in the
definition of F depends only on the distance from the boundary, our aim is to
investigate how fast the discontinuity of ∂v

∂xi
, i = 1, 2 develops near the boundary.

With this information we will be able to define an appropriate weight H .
We define v as follows. Let R be the triangle with vertices in (−1, 1), (1, 1)

and (0, 0). Then Ω is union of the counter-clockwise ±π
2 and π-rotations of R.

Therefore it is sufficient to define v in R. We fill R with squares belonging to Pf ;
consequently they can be identified once we know the position of the upper vertex
and the length of the diagonal. Let Ω0 be the square in Pf with upper vertex in
(0, 1) and length of the diagonal equal to 1. For n ∈ N and i = 1, . . . , 2n−1 let
Qi

n be the square in Pf with upper vertex in
(
2i−1
2n , 1

)
and length of the diagonal

equal to 1
2n . We set Q−i

n = V(Qi
n). With this notation we can define the following

covering of R made up by squares with mutually disjoint interior:

R =

∞⋃

n=0

Ωn , Ωn :=

2n−1
⋃

i=1

Qi
n ∪Q−i

n .

Observe that the north corner of each square belongs to γ = [(−1, 1), (1, 1)]. Now
we define the solution v as

v0(0) = d1(x, ∂Ω0)χΩ0 , vin(x) = d1(x, ∂Q
i
n)χQi

n
,

v−i
n (x) = d1(x, ∂Q

−i
n )χQ

−i
n

, vn(x) =

2n−1
∑

i=1

[vin(x) + v−i
n (x)] ;

v(x) =

∞∑

n=0

vn(x).

It is clear from the definition that v ∈ E(Ω) and that the distributional gradient of
Dv is supported on the sides and the diagonals of the squares we used to fill R. In



10 GISELLA CROCE AND GIOVANNI PISANTE

order to estimate them, let us fix some notations. Let

Rm =

{

(x1, x2) ∈ R :
1

m+ 1
< x2 ≤ 1

m

}

.

We denote by:

• S the union of the sides of the squares Q±i
n ,

• Dv the union of the vertical diagonals of the squares Q±i
n ,

• Dh the union of the horizontal diagonals of the squares Q±i
n ,

for n ∈ N and i = 0, . . . , 2n−1. Therefore F(v) is finite if the three following
quantities

∫

Dh

H(d1(x, γ))dH1 ,

∫

Dv

H(d1(x, γ))dH1 ,

∫

S
H(d1(x, γ))dH1

are finite. The first quantity is very simple to estimate, if one remarks that the
horizontal diagonals appear only at heigth 1

2n , n ∈ N, and their total length is 1 for
every n ∈ N. Therefore

∫

Dh

H(d1(x, γ))dH1 ≤
∞∑

n=1

H

(
1

2n

)

.

Using the Cauchy’s condensation criterion, the last series is finite if and only if

(3.3)

∞∑

n=1

H

(
1

n

)
1

n
< ∞ .

To estimate the sides and the vertical diagonals we will use a different strategy. We
observe that the number Nm of squares which intersect Rm is bounded by m+ 1.
Indeed if x0 is the north corner of a square intersecting Rm, the distance from x0

to the next north corner of a square intersecting Rm is at least 2
m+1 . Therefore

Nm =
H1(γ)

2
m+1

= m+ 1 .

Now, let Q be a square intersecting Rm. The the H1 measure of the intersection
of the vertical diagonal of Q with Rm is less or equal to 1

m
− 1

m+1 = 1
m(m+1) and

the H1 measure of the intersection of one of the sides of Q with Rm is bounded by√
2
(

1
m

− 1
m+1

)

=
√
2

m(m+1) . Therefore

∫

Dv

H(d1(x, γ))dH1 ≤
∞∑

m=1

H

(
1

m

)

Nm

1

m(m+ 1)
≤

∞∑

m=1

H

(
1

m

)
1

m

and
∫

S
H(d1(x, γ))dH1 ≤ 2

∞∑

m=1

H

(
1

m

)

Nm

√
2

m(m+ 1)
≤ 2

√
2

∞∑

m=1

H

(
1

m

)
1

m
.

Hence we find the same condition on H as in (3.3):

∞∑

m=1

H

(
1

m

)
1

m
< ∞ .
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4. Proof of the main result

In this section we are going to prove Theorem 3.1. The proof can be divided
into two parts: in the first we show that the variational problem (3.2) is well-posed
(see Proposition 4.4); in the second one we prove that there exists a minimizer of
the functional F in E(Ω).

We are going to concentrate on the first step, that is, we are going to construct
a function v ∈ E(Ω) such that F(v) is finite. For this purpose, recalling that Ω is a
compatible domain, according to Remark 2.2, we have

(4.1) Ω = P ∪
N⋃

j=1

Wj(Tj)

where P ∈ Pf , Tj ∈ T and Wj(Tj) = R2kj+1(Tj) or V(R2kj+1(Tj)) for some
kj ∈ {0, 1, 2, 3}.

With the aim of setting v in each domain Wj(Tj) we will define a special count-
able covering of the interior of a triangular domain made up by squares. We start
by introducing three operators defined in T . For a given

T = {(x1, x2) : a ≤ x1 ≤ b, h(b) ≤ x2 ≤ h(x1)} ∈ T ,

let x0
1 be such that h(x0

1) = x0
1 + h(b)− a and define

q(T ) := (a, x0
1)× (h(b), h(b) + x0

1 − a);
u(T ) := {(x1, x2) ∈ T : a < x1 < x0

1, h(b) + x0
1 < x2 < h(x1)};

r(T ) := {(x1, x2) ∈ T : a+ x0
1 < x1 < b, h(b) < x2 < h(x1)}.

We explicitly observe that u and r have values in T while q maps any triangular
domain to a square in R(Pf ).

Definition 4.1 (of the covering of T ). Let for m ∈ N

Sm := {σ = (α1, . . . , αm) : αi ∈ {u, r}} ,

be the set of all the m-permutations of the two letters u and r. For σ ∈ Sm, using

the notation

σ(T ) = α1 ◦ α2 ◦ · · · ◦ αm(T ),

we set

Qm,σ
T = q(σ(T )) ; σ ∈ Sm.

We finally define the following family of squares contained in T :

Q(T ) := {Qm,σ
T : m ∈ N ∪ {0} , σ ∈ Sm}.

Remark 4.2. We remark that Q(T ) is a covering of
◦
T composed of squares with

mutually disjoint interiors belonging to R(Pf ). It may be useful to think of Q(T )
as being constructed in steps, starting from m = 1 and adding at step m the squares
Qm,σ

T with σ ∈ Sm. Since the cardinality of Sm, ♯(Sm), is equal to 2m, we add 2m

squares at the m-th step. Therefore the first steps of the construction are:
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Step 0. We start with Q0
T = q(T ) ;

Step 1. we add Q1,u
T = q(u(T )) and Q1,r

T = q(r(T )) ;

Step 2. we add Q
2,(u,u)
T = q(u(u(T ))), Q

2,(u,r)
T = q(u(r(T ))),

Q
2,(r,u)
T = q(r(u(T ))), Q

2,(r,r)
T = q(r(r(T )))

Step 3. we add Q
3,(u,u,u)
T = q(u(u(u(T )))), Q

3,(u,u,r)
T = q(u(u(r(T )))),

· · · · · ·
In the sequel, when ♯(Sm) will play a role, we will use for Qm,σ

T the notation Qm,k
T ,

k ∈ {1, . . . , 2m}.
We are now in a position to define the candidate function v : Ω → R

+ such
that F(v) is finite, which is the natural generalization of the construction made in
Example 3.5.

Definition 4.3 (of the candidate function). Let w be a minimizer of the functional
GP . For a fixed j ∈ {1, . . . , N}, let

vjm(x) =
∑

σ∈Sm

d1

(

x, ∂
(

Wj(Q
m,σ
Tj

)
))

χQ
m,σ
Tj

(x) ;

vj(x) =
∑

m∈N

vjm(x).

We define

v(x) = w(x)χP (x) +

N∑

j=1

vj(x).

In the following we will prove that problem (3.2) is well-posed. We remark that
in Ω \ P , Dvx1 and Dvx2 are supported on the sides of each square Wj(Q

m,σ
Tj

) and

on its vertical and horizontal diagonals respectively. For this reason, we denote by
D+

T and D−
T the union of all the diagonals of the squares in Q(T ) parallel to ℓ+ and

ℓ− respectively, and by ST the union of all the sides of the squares in Q(T ).

Proposition 4.4. The function v ∈ E(Ω) defined in 4.3 satisfies F(v) < +∞.

Proof. First we note that according to (4.1) we can estimate F(v) as follows:

F(v) =

2∑

i=1

∫

P

H(d1(x, ∂Ω))d|Dwxi
|(x) +

2∑

i=1

∫

Ω\P
H(d1(x, ∂Ω))d|D vxi

(x)|(x)

≤
2∑

i=1

∫

P

C d|Dwxi
|(x) +

2∑

i=1

∫

⋃
N
j=1 Wj(Tj)

H(d1(x, ∂Ω))d|D vxi
(x)|(x)

where we have used that for some positive constant C, H(d1(x, ∂Ω)) ≤ C for all
x ∈ Ω.

The first term of the last estimate is finite, due to the choice of w. Therefore it
is sufficient to estimate

2∑

i=1

N∑

j=1

∫

Wj(Tj)

H(d1(x, ∂Ω))d|D vxi
(x)|(x) .
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The construction of v, the properties of the rigid motion Wj and the duality
between the metrics d1 and d∞ imply that we can restrict ourselves to prove that
there exists a positive constant M such that

(4.2)

∫

STj
∪D−

Tj
∪D+

Tj

H(d∞(x,W−1
j (∂Ω)))dH1 ≤ M ∀ j ∈ {1, . . . , N}.

The last estimate is a consequence of Lemmata 4.8, 4.6 and 4.7. �

In the next lemmata we aim to prove (4.2). We will estimate separately the
integral on the sets STj

, D−
Tj

and D+
Tj

. From now on we will work on a single

triangular domain Tj ; since the proofs are independent of j, we will simply write T
instead of Tj. Up to a dilatation and a rigid motion, we can assume in the sequel
that

T = {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ h(x1)} .
with h(1) = 0, h(0) ≤ 1 and h′(t) < 0 for every t ∈ (0, 1). We will denote by γ
the curve W−1

j (∂Ω) and we observe explicitly that the graph of the function h is a
proper subset of γ. We define

Ln =

{

x ∈ T :
1

n+ 1
< d∞(x, γ) ≤ 1

n

}

,

for n ∈ N.
Let Q ∈ Q(T ) having a not empty intersection with Ln and assume that Q

touches γ in (x1, h(x1)). Let en(Q), nn(Q), dn(Q) denote respectively the length
of the intersection of the east side, north side, diagonal parallel to ℓ+ of Q with Ln.
Then it is easily to verify that

(4.3) en(Q) ≤ h

(

x1 +
1

n+ 1

)

− h

(

x1 +
1

n

)

+
1

n(n+ 1)
,

(4.4) nn(Q) ≤ h−1

(

h (x1) +
1

n+ 1

)

− h−1

(

h (x1) +
1

n

)

+
1

n(n+ 1)

and

(4.5) dn(Q) ≤ 1

n(n+ 1)
.

Lemma 4.5. Let Nn be the number of squares in Q(T ) which intersect Ln. Then
there exists a positive constant c depending only on γ such that

(4.6) Nn ≤ c(n+ 1).

Proof. Let (x0
1, x

0
1) be the north-east corner of q(T ). Define

xj
1 = h−1

(

x0
1 −

j

1 + n

)

, j = 1, . . . ,m ≤ (n+ 1) .

Fix i ∈ {0, . . . ,m} and note that if on the portion of γ lying between (xi
1, h(x

i
1))

and (xi+1
1 , h(xi+1

1 )) there are two points, say p and q, which are north-east vertex
of squares, Qp and Qq in Q(T ), then Ln ∩Qp or Ln ∩Qq is empty.

Consequently the number of squares in r(T ) which intersect Ln can be at most
n+1. With the same argument one can prove that the same estimate holds for the
number of squares in u(T ) which intersect Ln. �
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Lemma 4.6. There exists a positive constant M such that
∫

D+
T

H(d∞(x, γ))dH1 ≤ M.

Proof. The proof easily follows from (4.5), (4.6) and the hypotheses on H . Indeed
one has

∫

D+
T

H(d∞(x, γ))dH1 ≤ C

∞∑

n=1

H

(
1

n

)
1

n
< +∞ ,

for some positive constant C independent of n. �

Lemma 4.7. There exists a positive constant M such that

(4.7)

∫

D−

T

H(d∞(x, γ))dH1 ≤ M.

Proof. If Li denotes the total length of the diagonals parallel to ℓ− of the squares
added at the i-th step of the construction of v, then

(4.8) Li ≤ 2H1(γ).

Indeed Li is nothing but the length of the non flat parts of the graph of a piece-
wise affine function defined on the interval (0, 1) and whose derivative is 0 or −1
everywhere but on a finite number of points.

The proof is divided into several steps. We will denote by rn the length of the
side of Qn,σ

T with σ = (r, . . . , r
︸ ︷︷ ︸

n

) and Rn =
∑n

i=1 ri; un will denote the length of the

side of Qn,σ
T with σ = (u, . . . , u

︸ ︷︷ ︸

n

).

Step 1. Let h ∈ C1((0, 1)). Assume that there exists 0 < ε < 1 such that
−1 + ε < h′(t) < 0 for every t ∈ (0, 1). Let d−n be the intersection of Ln with the

diagonal parallel to ℓ− of a square Q ∈ Q(T ). Let xQ
1 = min

(x1,x2)∈d
−
n

x1. Assume that

(xQ
1 , x

Q
2 ) ∈ d−n . Then

h

(

xQ
1 +

1

n

)

− 1

n
≤ xQ

2 ≤ h

(

xQ
1 +

1

n+ 1

)

− 1

n+ 1
,

since (xQ
1 , x

Q
2 ) ∈ Ln. The intersection between d−n , belonging to the line x2 =

−x1 + xQ
1 + xQ

2 , and the lower boundary of Ln, that is, x2 = h
(
x1 +

1
n

)
− 1

n
, gives

x1 − xQ
1 = xQ

2 +
1

n
− h

(

x1 +
1

n

)

≤ h

(

xQ
1 +

1

n+ 1

)

− 1

n+ 1
+

1

n
− h

(

x1 +
1

n

)

.

Lagrange’s theorem implies that

x1 − xQ
1 ≤ |h′(ξ)|

[

x1 − xQ
1 +

1

n
− 1

n+ 1

]

+
1

n
− 1

n+ 1

for some ξ ∈
[

xQ
1 + 1

n+1 , x1 +
1
n

]

. Using the hypothesis on h we get

x1 − xQ
1 ≤ (1 − ε)

(

x1 − xQ
1 +

1

n2

)

+
1

n2
,
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that is,

x1 − xQ
1 ≤ 2− ε

ε

1

n2
.

This implies that

H1(d−n ) ≤
√
2
2− ε

ε

1

n2

for a given square Q such that Q ∩Ln 6= ∅. Using estimate (4.6) on the number of
squares intersecting Ln, the previous inequality gives
∫

D−

T

H(d∞(x, γ))dH1 ≤ c1(ε, γ)
∞∑

n=1

H

(
1

n

)
1

n2
(n+ 1) ≤ c2(ε, γ)

∞∑

n=1

H

(
1

n

)
1

n
.

where c1(ε, γ) and c2(ε, γ) denote two positive constants depending only on γ and
ε. Hypothesis (3.1) on H implies that the last sum is finite.

The case where −1+ε < h′(t) < 0 for every t ∈ (0, 1) can be handled in a similar
way.

Step 2. Assume that there exists 0 < ε < 1 such that |h′(t) + 1| ≤ ε for every
t ∈ [0, 1]. We are going to prove by induction that the length of the side li,k,

k = 1, . . . , 2i of any square Qi,k
T added at the i-th step of the covering of Definition

4.1 satisfies:

(4.9)
1

(2 + ε)i
≤ li,k ≤ 1

(2− ε)i
∀ k = 1, . . . , 2i .

To to that, observe that the length of the side l̃ of q(T̃ ), for a given domain T̃ =
{(x1, x2) : a < x1 < b, c < x2 < h(x1)}, can be estimated by

(4.10)
max{b− a, h(a)− c}

2 + ε
≤ l̃ ≤ min{b− a, h(a)− c}

2− ε
.

Indeed, it is sufficient to compute the intersections between the lines x2 = x1+c−a
and x2 = (−1 ± ε)(x1 − b) + c or x2 = (−1 ± ε)(x1 − a) + h(a). This implies that
the length l0,1 of the side of q(T ) satisfies

(4.11)
1

2 + ε
≤ l0,1 ≤ 1

2− ε
.

Now, suppose that estimate (4.9) holds for i−1. At step i we add 2i squares and any
of these is confined in a domain belonging to T with one of his sides that coincides
with the side of one of the squares added in the previous step. Thus, to prove that
estimate (4.9) holds for i, it suffices to use (4.10) with 1

(2+ε)i−1 ≤ l̃ ≤ 1
(2−ε)i−1 .

We need to estimate the l∞-distance from γ of the diagonal d− parallel to ℓ−
of a square Q ∈ Q(T ). Assume that the length of the side of Q is l. Let xQ =

(xQ
1 , x

Q
2 ) ∈ γ be the north-east corner of Q. Then the l∞-distance from γ of d− is

smaller than the l∞-distance of d− from the piecewise affine function

x2(x1) =

{

(−1 + ε)(x1 − xQ
1 ) + xQ

2 , if x1 > xQ
1

(−1 + ε)(x1 − xQ
1 ) + xQ

2 , if x1 ≤ xQ
1

.

This gives

(4.12) d∞(d−, γ) ≤ 1 + ε

2− ε
l.
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Using the previous estimates and (4.8) we obtain

∫

D−

T

H(d∞(x, γ)) dH1 ≤
∞∑

n=1

LnH

(
1 + ε

(2 − ε)n+1

)

≤ 2H1(γ)

∞∑

n=1

H

(
1 + ε

(2 − ε)n+1

)

.

In order to prove that the last sum is finite, we start by observing that, by the
monotonicity of H ,

H

(
1 + ε

(2− ε)n+1

)

≤ H

(
2

[(2− ε)n]

)

.

We now let

un = [(2− ε)n] and an = H

(
2

n

)
1

n

and we apply the Schlömilch’s generalization of the condensation criterion for series
to deduce the desired convergence. We recall that, if an is a positive non increasing
sequence of real numbers and un a strictly increasing sequence of natural numbers
such that for some positive constant C

(4.13)
un+1 − un

un − un−1
≤ C ∀n ∈ N

then

∞∑

n=0

an is finite if and only if

∞∑

n=0

(un+1 − un)aun
is finite. In our case we

observe that the convergence of the series

∞∑

n=0

an is assured by hypothesis (3.1) on

H . Moreover for every n ≥ n(ε)

c(ε)[(2 − ε)n] ≤ un+1 − un ≤ (2− ε)n+1 + 1− (2− ε)n

≤
(
[(2− ε)n] + 1

)
(1 − ε) + 1

≤ [(2− ε)n] + 2− ε

for some positive constant c(ε) independent of n. This implies that hypothesis
(4.13) is satisfied. Therefore there exists a positive constant C such that

∞∑

n=0

H

(
2

[(2− ε)n]

)

=

∞∑

n=0

H

(
2

[(2 − ε)n]

)
1

[(2− ε)n]
[(2 − ε)n]

≤ C +
1

c(ε)

∞∑

n=n(ε)

(un+1 − un)aun
< ∞ .

Step 3. Assume that h ∈ C1([0, 1]) and fix 0 < ε < 1. The uniform continuity of
h′ implies that there exists δ > 0 such that if |t− s| < δ then |h′(t)− h′(s)| < ε/4.

Let n′ ∈ N be such that the length of the side of Qn′,σ
T is less than δ for every

σ ∈ Sn′ . Let (xσ
1 , x

σ
2 ) be the north-east corner of Qn′,σ

T . For any σ ∈ Sn′ , if
|h′(xσ

1 ) + 1| ≤ ε/2, then

|h′(x1) + 1| ≤ |h′(x1)− h′(xσ
1 )|+ |h′(xσ

1 ) + 1| < ε
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and if |h′(xσ
1 ) + 1| > ε/2, then

|h′(x1) + 1| ≥ |h′(xσ
1 ) + 1| − |h′(x1)− h′(xσ

1 )| >
ε

4
.

Let N(n′) = 1 +
∑n′

i=0 2
i = 2n

′+1. Using (4.8) we have

∫

D−

T

H(d∞(x, γ)) dH1 ≤ n′H1(γ) +

N(n′)
∑

i=1

∫

D−

Ti

H(d∞(x, γ))

where, up to dilatations, Ti, with i = 1 . . . N(n′), are triangular domains satisfying
the hypotheses of Step 1 or 2. This implies that

∫

D−

T

H(d∞(x, γ)) dH1 is finite.

Step 4. Assume that h ∈ C1((0, 1)) and lim
t→0

h′(t) = −∞ or lim
t→1

h′(t) = −∞.

Surely there exists n′′ ∈ N such that the intervals [0, un′′ ], [Rn′′ , 1] do not contain

any x1 such that h′(x1) = −1. Let N(n′′) =
∑n′′

i=0 2
i − 2 = 2n

′′+1 − 3. Using (4.8)
we get the following estimate:

∫

D−

T

H(d∞(x, γ)) dH1 ≤ n′′H1(γ) +

N(n′′)
∑

i=1

∫

D−

Ti

H(d∞(x, γ))

where, up to dilatations, Ti, with i = 1 . . .N(n′′), are triangular domains satisfying
the hypotheses of Step 3. This implies that

∫

D−

T

H(d∞(x, γ)) dH1 is finite.

�

Lemma 4.8. There exists a positive constant M such that
∫

ST

H(d∞(x, γ))dH1 ≤ M.

Proof. First we observe that, since T is a triangular domain, up to inverting the
coordinate axes, we can assume that we are in one of the following cases:

Case 1. There exist two constants c1, c2 > 0 such that −c1 ≤ h′(t) ≤ −c2 < 0
for every t ∈ [0, 1].

Case 2. There exists a constant c1 < 0 such that c1 ≤ h′(t) < 0 for every
t ∈ (0, 1) and h′(1) = 0.

Case 3. There exists a constant c1 < 0 such that c1 ≤ h′(t) < 0 for every
t ∈ (0, 1) and lim

t→1
h′(t) = −∞.

Step 1. Assume that we are in the hypotheses of Case 1. We observe that h
and h−1 are Lipschitz functions, say with Lipschitz constant c̃; then (4.3) and (4.4)
together with estimate (4.6) imply that

∫

ST

H(d∞(x, γ))dH1 ≤
∞∑

n=1

H

(
1

n

)
c̃

n(n+ 1)
c(n+ 1)

where c depends only on γ. The last sum is finite due to hypothesis (3.1) on H .

Step 2. Assume that we are in the hypotheses of Case 2. It is sufficient to
estimate ∫

ST ∩r(T )

H(d∞(x, γ))dH1,
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since Step 1 implies that

∫

ST∩u(T )

H(d∞(x, γ))dH1

is bounded. To this purpose, we define the following sequence of points. Let
x0
1 ∈ (0, 1) be such that h(x0

1) = x0
1. We set

xj
1 = h−1

(

x0
1 −

j

n

)

, j = 1, . . . , [x0
1n] =: Mn.

There exists at most one point (x̃j
1, h(x̃

j
1)) with xj

1 ≤ x̃j
1 < xj+1

1 , j = 1, . . . ,Mn− 1,
which is the north-east vertex of a square Qj ∈ Q(T ) such that Ln ∩ Qj is not
empty. For such a square, since |h′| is bounded, one has

(4.14) en(Q
j) ≤

[

1 + sup
x1∈[0,1]

|h′ (x1)|
]

1

n2
≤ C1

1

n2

for some positive constant C1. As well

nn(Q
j) ≤ 1

n(n+ 1)



1 + sup
x2∈[h(x̃j

1)+
1

n+1 ,h(x̃
j
1)+

1
n
]

|(h−1)′(x2)|





≤ 1

n2

[

1 + sup
x2∈[h(xj+1

1 ),h(xj−1
1 )]

1

|h′(h−1(x2))|

]

≤ 1

n2

[

1 + sup
x2∈[h(xj+1

1 ),h(xj
1)]

1

|h′(h−1(x2))|
+ sup

x2∈[h(xj
1),h(x

j−1
1 )]

1

|h′(h−1(x2))|

]

.

We remark that

Mn∑

j=1

1

n

[

sup
x2∈[h(xj

1),h(x
j−1
1 )]

1

|h′(h−1(x2))|

]

is a particular Riemann sum for

∫ x0
1− 1

n

1
n

1

|h′(h−1(x2))|
dx2

which is finite. Therefore there exists n0 ∈ N such that

(4.15)

Mn∑

j=1

1

n

[

sup
x2∈[h(xj

1),h(x
j−1
1 )]

1

|h′(h−1(x2))|

]

≤
∫ x0

1

0

1

|h′(h−1(x2))|
dx2 + 1 ≤ C2
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for every n ≥ n0, for some positive constant C2 independent of n. Estimates (4.14)
and (4.15) give

∫

S∩r(T )

H(d∞(x, γ))dH1 ≤

≤
∞∑

n=n0

H

(
1

n

) Mn∑

j=1

{

2

n2
sup

x2∈[h(xj
1),h(x

j−1
1 )]

1

|h′(h−1(x2))|
+

C1 + 1

n2

}

+

+

n0∑

n=1

H

(
1

n

)

H1(S ∩ r(T ) ∩ Ln)

≤ C2

∞∑

n=1

H

(
1

n

)
1

n
+ (C1 + 1)

∞∑

n=1

H

(
1

n

)
1

n
+ C3 ,

where we have used that for n ≤ n0, H

(
1

n

)

≤ H

(
1

n0

)

and H1(S ∩ r(T ) ∩ Ln)

is finite, since vxi
, i = 1, 2 is SBVloc(T ). The last sum is finite due to hypothesis

(3.1) on H .

Step 3. Assume that we are in the hypotheses of Case 3. As in the previous step
it is sufficient to estimate

∫

ST∩r(T )

H(d∞(x, γ))dH1.

Let x0
1 ∈ (0, 1) be such that h(x0

1) = x0
1. Let us consider the following sequence

of points:

xj
1 = x0

1 +
j

n
, j = 1, . . . ,Mn = [n(1− x0

1)] .

There exists at most one point (x̃j
1, h(x̃

j
1)) with xj

1 ≤ x̃j
1 < xj+1

1 , j = 1, . . . ,Mn−
1, which is the north-east vertex of a square Qj ∈ Q(T ) such that Ln ∩ Qj is not
empty.

For such a square, since |(h−1)′| is bounded, one has

(4.16) nn(Q
j) ≤

[

1 + sup
x1∈[0,h(0)]

∣
∣(h−1)′(x1)

∣
∣

]

1

n2
≤ C1

1

n2

for some positive constant C1. As well

en(Q
j) ≤ 1

n(n+ 1)



1 + sup
x1∈[x̃j

1+
1

n+1 ,x̃
j
1+

1
n
]

|h′(x1)|





≤ 1

n2

[

1 + sup
x1∈[xj

1,x
j+2
1 ]

|h′(x1)|
]

≤ 1

n2

[

1 + sup
x2∈[xj

1,x
j+1
1 ]

|h′(x1)|+ sup
x2∈[xj+1

1 ,x
j+2
1 ]

1

|h′(x1)|

]

.

We remark that
Mn∑

j=1

sup
x1∈[xj

1,x
j+1
1 ]

|h′(x1)|
1

n
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is a Riemann sum for
∫ 1− 1

n

x0
1

|h′(t)|dt

which is finite. Then there exists n0 ∈ N such that

1

n

Mn∑

j=1

sup
x1∈[xj

1,x
j+1
1 ]

|h′(y)| <
∫ 1

x0
1

|h′(t)|dt+ 1 ≤ C2

for every n ≥ n0, for some positive constant C2 independent of n. Therefore,
arguing as in the previous step, we have

∫

S∩r(T )

H(d∞(x, γ))dH1

≤
∞∑

n=n0

H

(
1

n

) Mn∑

j=1

{

2

n2
sup

x1∈[xj
1,x

j+1
1 ]

|h′(x1)|+
C1 + 1

n2

}

+

n0∑

n=1

H

(
1

n

)

H1(S ∩ r(T ) ∩ Ln)

≤ C2

∞∑

n=1

H

(
1

n

)
1

n
+ (C1 + 1)

∞∑

n=1

H

(
1

n

)
1

n
+ C3 < ∞ ,

where C3 denotes a positive constant independent of n. �

We have therefore shown that the functional F is well-defined. We are now
in position to show Theorem 3.1. The proof follows quite easily from the direct
methods of the calculus of variations. Note that this technique was already used in
[6]. We start recalling a lemma proved in [6].

Lemma 4.9. Let Ω be an open bounded connected subset of R
N with Lipschitz

boundary. Then

−d1(·, ∂Ω) ≤ v ≤ d1(·, ∂Ω) on Ω

for every function v ∈ S(Ω).

Proof. (of Theorem 3.1) Let (vn)n ⊂ E(Ω) be a minimizing sequence. Lemma
4.9 assures that (vn)n is uniformly bounded in L∞(Ω). Moreover vn is uniformly

Lipschitz in Ω since Ω is Lipschitz and |∇vn| ≤
√
2 a.e. in Ω for every n. Therefore,

up to a subsequence, vn → v∞ in C0(Ω) and vn → v∞ weakly* in W 1,∞(Ω) for

some v∞ ∈ W 1,∞
0 (Ω).

We are now going to show that v∞ belongs to E(Ω). Since (vn)n is a minimizing
sequence, there exists C > 0 such that F(vn) ≤ C for every n ∈ N. For a fixed
m ∈ N we can say that

C ≥ F(vn) ≥ α(m)

2∑

i=1

∫

Bm

d(|Dvnxi
|)(x), ∀n ∈ N

where

Bm =

{

x ∈ Ω : d1(x, ∂Ω) >
1

m

}

.
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Let us fix i ∈ {1, 2}. Note that ∂vn

∂xi
∈ SBV (Bm) and takes only the two values ±1

for every n. This implies that
∥
∥
∥
∥

∂vn

∂xi

∥
∥
∥
∥
BV (Bm)

= L2(Bm) + 2H1(Jvn
xi

∩Bm) ≤ L2(Bm) + 2C.

We can apply Theorem 2.7 to the sequence

(
∂vn

∂xi

)

n

:

• hypothesis i) has been verified in the previous estimate;

• hypothesis ii) is verified as ∇∂vn

∂xi
= 0 a.e. in Ω;

• hypothesis iii) can be verified choosing f ≡ 1: in this way
∫

Jvnxi
∩Bm

f

([
∂vn

∂xi

])

dH1(x) = H1(Jvn
xi

∩Bm) ≤ C.

Consequently
∂vn

∂xi

→ gi weak* in BV (Bm) for some gi ∈ SBV (Bm) . Since
∂vn

∂xi

→
∂v∞

∂xi

weak* in L∞(Ω), we infer that
∂v∞

∂xi

∈ SBV (Bm). Moreover
∂vn

∂xi

→ ∂v∞

∂xi

in

L1(Bm) and so

∣
∣
∣
∣

∂v∞

∂xi

∣
∣
∣
∣
= 1 a.e. in Bm. This being true for every i and for every

Bm, we deduce that v∞ belongs to E(Ω).
To show that v∞ is a minimizer of F , we remark that

lim inf
n→∞

∫

Bm

H(d1(x, ∂Ω))d(|Dvnxi
|)(x) ≥

∫

Bm

H(d1(x, ∂Ω))d(|Dv∞xi
|)(x)

for every Bm, due to Theorem 2.8. This implies that

lim inf
n→∞

∫

Ω

H(d1(x, ∂Ω) d(|Dvnxi
|)(x) ≥ sup

Bm

∫

Bm

H(d1(x, ∂Ω) d(|Dv∞xi
|)(x)

=

∫

Ω

H(d1(x, ∂Ω) d(|Dv∞xi
|)(x) .

Therefore lim inf
n→∞

F(vn) ≥ F(v∞), i.e., v∞ minimizes F . �

References

[1] G. Alberti and C. Mantegazza, A note on the theory of SBV functions, Boll. Un. Mat. Ital.

B(7) 11 (2) (1997), pp. 375-382.
[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity

problems, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press,
New York, 2000.

[3] G. Bellettini, B. Dacorogna, G. Fusco and F. Leonetti, Qualitative properties of Lipschitz
solutions of eikonal type systems, Adv. Math. Sci. Appl. 16 (2006), pp. 259-274.

[4] P. Cardaliaguet, B. Dacorogna, W. Gangbo and N. Georgy, Geometric restrictions for the
existence of viscosity solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), pp.
189-220.

[5] A. Cellina, On minima of a functional of the gradient, sufficient conditions, Nonlinear Analysis

20 (1993), pp. 343-347.

[6] T. Champion and G. Croce, A particular class of solutions of a system of eikonal equations
Adv. Math. Sci. Appl. 16 (2006), pp. 377-392.

[7] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans.

Amer. Math. Soc. 282(2) (1984), pp. 1-42.



22 GISELLA CROCE AND GIOVANNI PISANTE

[8] B. Dacorogna, R. Glowinski and T.-W. Pan, Numerical methods for the solution of a system
of eikonal equations with Dirichlet boundary conditions, C. R. Math. Acad. Sci. Paris 336(6)
(2003), pp. 511-518.

[9] B. Dacorogna and P. Marcellini, Implicit partial differential equations, Progress in Nonlinear
Differential Equations and their Applications 37, 1999.

[10] B. Dacorogna and P. Marcellini, Viscosity solutions, almost everywhere solutions and explicit
formulas, Trans. Amer. Math. Soc. 356(11) (2004), pp. 4643–4653 (electronic).

[11] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Studies in
Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

[12] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften,
Band 153, Springer-Verlag New York Inc., New York, 1969.

[13] G. Friesecke, A necessary and sufficient condition for nonattainment and formation of mi-
crostructure almost everywhere in scalar variational problems, Proc. Royal Soc. Edinburgh

124A (1994), pp. 437-471.
[14] G. Pisante, Sufficient conditions for the existence of viscosity solutions for nonconvex Hamil-

tonians, SIAM J. Math. Anal. 36(1) (2004), pp. 186–203 (electronic).

Laboratoire de Mathématiques Appliquées du Havre, Université du Havre, 25, rue
Philippe Lebon, 76063 Le Havre (FRANCE), Dipartimento di Matematica, Seconda
Università degli studi di Napoli, Via Vivaldi, 43, 81100 Caserta (ITALY)

E-mail address: gisella.croce@univ-lehavre.fr, pisante@unina.it


	1. Introduction
	2. Notations and preliminaries
	3. Statement of the main result and remarks
	4. Proof of the main result
	References

