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TENT SPACES AND LITTLEWOOD-PALEY g-FUNCTIONS

ASSOCIATED WITH BERGMAN SPACES

IN THE UNIT BALL OF C
n

ZEQIAN CHEN AND WEI OUYANG

Abstract. In this paper, a family of holomorphic spaces of tent type in
the unit ball of Cn is introduced, which is closely related to maximal and
area integral functions in terms of the Bergman metric. It is shown that
these spaces coincide with Bergman spaces. Furthermore, Littlewood-
Paley type g-functions for the Bergman spaces are introduced in terms of
the radial derivative, the complex gradient, and the invariant gradient.
The corresponding characterizations for Bergman spaces are obtained
as well. As an application, we obtain new maximal and area integral
characterizations for Hardy-Sobolev spaces.

1. Introduction

There is a mature and powerful real-variable theory for Hardy spaces of
several complex variables which has distilled some of the essential oscillation
and cancellation behavior of holomorphic functions and then found that
behavior ubiquitous. A good introduction to that is [16, 17]; a more recent
and fuller account is in [1, 8, 10, 11, 12, 13] and references therein. However,
the real-variable theory of the Bergman space is less well developed, even in
the case of the unit disc (cf. [9]).

Recently, in [5] the present authors established maximal and area integral
characterizations of Bergman spaces in the unit ball of Cn. The character-
izations are in terms of maximal functions and area functions on Bergman
balls involving the radial derivative, the complex gradient, and the invariant
gradient. Moreover, the characterizations extend to cover Besov-Sobolev
spaces. A special case of this is a characterization of Hp spaces involving
only area functions on Bergman balls.

In this paper, we continue this line of investigation. We will consider the
holomorphic spaces of tent type in the unit ball of Cn, which is closely related
to maximal and area integral functions in terms of the Bergman metric. We
show that these spaces actually coincide with Bergman spaces and hence
obtain real-variable characterizations of them. Consequently, they provide
the natural setting for the study of maximal and area integral functions for
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Bergman spaces in the unit ball of Cn. This motivation aries from the tent
spaces in R

n, that were introduced and developed by Coifman, Meyer and
Stein in [6]. Our proofs involve some sharp estimates of the Bergman kernel
function and Bergman metric. However, since the Bergman metric β is
non-doubling, we will utilize some techniques of non-homogeneous harmonic
analysis developed in [15]. Furthermore, we will introduce Littlewood-Paley
type g-functions for the Bergman spaces in terms of the radial derivative, the
complex gradient, and the invariant gradient, which are variants of the ones
used for Hardy spaces. The corresponding characterization are presented as
well.

This paper is organized as follows. In Section 2 we present some notations
and collect a number of auxiliary (and mostly elementary) facts about the
Bergman metric and kernel functions. We state our main results in Section 3.
Section 4 is devoted to prove one of the main results that the holomorphic
spaces of tent type coincide with Bergman spaces. To this end, the Lp-
boundedness of non-central Hardy-Littlewood maximal function operators
defined in terms of Bergman balls in Bn will be proved by the arguments of
non-homogeneous harmonic analysis developed in [15]. In Section 5, we give
the proof of another main result, that is, Littlewood-Paley type g-function
characterizations of the Bergman spaces. Finally, in Section 6 we give an
application of our main results to obtaining new maximal and area integral
characterizations of Besov spaces, including Hardy-Sobolev spaces.

In what follows, C always denotes a constant depending (possibly) on
n, q, p, γ or α but not on f, which may be different in different places. For
two nonnegative (possibly infinite) quantities X and Y, by X . Y we mean
that there exists a constant C > 0 such that X ≤ CY and by X ≈ Y that
X . Y and Y . X. Any notation and terminology not otherwise explained,
are as used in [21] for spaces of holomorphic functions in the unit ball of Cn.

2. Basic facts and notation

Throughout the paper we fix a positive integer n ≥ 1 and a parameter
α > −1. We denote by C

n the Euclidean space of complex dimension n. For
z = (z1, · · · , zn) and w = (w1, · · · , wn) in C

n, we write

〈z, w〉 = z1w1 + · · ·+ znwn,

where wk is the complex conjugate of wk. We also write

|z| =
√

|z1|2 + · · ·+ |zn|2.
The open unit ball in C

n is the set

Bn = { z ∈ C
n : |z| < 1}.

The boundary of Bn will be denoted by Sn and is called the unit sphere in
C
n, i.e.,

Sn = { z ∈ C
n : |z| = 1}.



Bergman spaces 3

For α ∈ R, the weighted Lebesgue measure dvα on Bn is defined by

dvα(z) = cα(1− |z|2)αdv(z)
where cα = 1 for α ≤ −1 and cα = Γ(n + α + 1)/[n!Γ(α + 1)] if α > −1,
which is a normalizing constant so that dvα is a probability measure on Bn.
In the case of α = −(n+ 1) we denote the resulting measure by

dτ(z) =
dv

(1− |z|2)n+1
,

and call it the invariant measure on B
n, since dτ = dτ ◦ ϕ for any automor-

phism ϕ of Bn.
For α > −1 and p > 0 the (weighted) Bergman space Ap

α consists of
holomorphic functions f in Bn with

‖f‖p, α =

(∫

Bn

|f(z)|pdvα(z)
)1/p

< ∞.

Thus,

Ap
α = H(Bn) ∩ Lp(Bn, dvα),

where H(Bn) is the space of all holomorphic functions in Bn. When α = 0
we simply write Ap for Ap

0. These are the usual Bergman spaces. Note that
for 1 ≤ p < ∞, Ap

α is a Banach space under the norm ‖ ‖p, α. If 0 < p < 1,
the space Ap

α is a quasi-Banach space with p-norm ‖f‖pp,α.
Recall that D(z, γ) denotes the Bergman metric ball at z

D(z, γ) = {w ∈ Bn : β(z, w) < γ}
with γ > 0, where β is the Bergman metric on Bn. It is known that

β(z, w) =
1

2
log

1 + |ϕz(w)|
1− |ϕz(w)|

, z, w ∈ Bn,

whereafter ϕz is the bijective holomorphic mapping in Bn, which satisfies
ϕz(0) = z, ϕz(z) = 0 and ϕz ◦ ϕz = id. If Bn is equipped with the Bergman
metric β, then Bn is a separable metric space. We shall call Bn a separable
metric space instead of (Bn, β).

For the sake of convenience, we collect some elementary facts on the
Bergman metric and holomorphic functions in the unit ball of Cn as follows.

Lemma 2.1. (cf. Theorem 1.12 in [21]) Let c > 0. Suppose α > −1. Then

Jc,α(z) :=

∫

Bn

dvα(w)

|1− 〈z, w〉|n+1+α+c
≈ (1− |z|2)−c

as |z| → 1−.

Lemma 2.2. (cf. Lemma 1.24 in [21]) For any real α and positive γ there
exists a constant Cγ > 0 such that

C−1
γ (1− |z|2)n+1+α ≤ vα(D(z, γ)) ≤ Cγ(1− |z|2)n+1+α

for all z ∈ Bn.
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Lemma 2.3. (cf. Lemma 2.10 in [21]) Let a and b be two real numbers.
We define an integral operator S by

Sf(z) = (1− |z|2)a
∫

Bn

(1− |w|2)b
|1− 〈z, w〉|n+1+a+b

f(w)dv(w).

Then for −∞ < t < ∞ and 1 ≤ p < ∞, S is bounded on Lp(Bn, dvt) if and
only if −pa < t+ 1 < p(b+ 1).

Lemma 2.4. (cf. Lemma 2.20 in [21]) For each γ > 0,

1− |a|2 ≈ 1− |z|2 ≈ |1− 〈a, z〉|
for all a and z in Bn with β(a, z) < γ.

Lemma 2.5. (cf. Lemma 2.24 in [21]) Suppose γ > 0, p > 0, and α > −1.
Then there exists a constant C > 0 such that for any f ∈ H(Bn),

|f(z)|p ≤ C

vα(D(z, γ))

∫

D(z,γ)
|f(w)|pdvα(w), ∀z ∈ Bn.

Lemma 2.6. (cf. (2.20) after the proof of Lemma 2.27 in [21]) For each
γ > 0,

|1− 〈z, u〉| ≈ |1− 〈z, v〉|
for all z in B̄n and u, v in Bn with β(u, v) < γ.

Lemma 2.7. (cf. Lemma 3.3 in [21]) Suppose β is a real constant and
g ∈ L1(Bn, dv). If

f(z) =

∫

Bn

g(w)dv(w)

(1− 〈z, w〉)β , z ∈ Bn,

then
∣∣∣∇̃f(z)

∣∣∣ ≤
√
2|β|(1− |z|2) 1

2

∫

Bn

|g(w)|dv(w)
|1− 〈z, w〉|β+ 1

2

for all z ∈ Bn.

Lemma 2.8. Suppose p > 0, α > −1, and b > nmax{1, 1/p} + (α + 1)/p.
Then there exists a sequence {ak} in Bn such that Ap

α consists exactly of
functions of the form

(2.1) f(z) =
∞∑

k=1

ck
(1− |ak|2)(pb−n−1−α)/p

(1− 〈z, ak〉)b
, z ∈ Bn,

where {ck} belongs to the sequence space ℓp and the series converges in the
norm topology of Ap

α. Moreover,∫

Bn

|f(z)|pdvα(z) ≈ inf
{∑

k

|ck|p
}
,

where the infimum runs over all decompositions of f described above.

Lemma 2.8 is the atom decomposition for Bergman spaces due to Coifman
and Rochberg [7] (see also [21], Theorem 2.30).
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3. Statement of main results

The basic functional used below is the one mapping functions in Bn to
functions in Bn, given by

(3.1) A(q)
γ (f)(z) =

(∫

D(z,γ)
|f(w)|qdτ(w)

) 1

q

if 1 < q < ∞, and

(3.2) A(∞)
γ (f)(z) = sup

w∈D(z,γ)
|f(w)|, when q = ∞.

Then, given 0 < p < ∞, 1 < q ≤ ∞, and α > −1, γ > 0, the “holomorphic
space of tent type” T p

q,γ(Bn, dvα) in Bn is defined as the set of all f ∈ H(Bn)

so that A
(q)
γ (f) ∈ Lp

α, equipped with a norm (or, quasi-norm)

‖f‖T p
q,γ(Bn,dvα) = ‖A(q)

γ (f)‖p,α.

We will show that the space T p
q,γ(Bn, dvα) is independent of the choice of γ,

that is, T p
q,γ1(Bn, dvα) = T p

q,γ2(Bn, dvα) for any 0 < γ1, γ2 < ∞. We simply
write T p

q,α = T p
q,γ(Bn, dvα) as follows. When p ≥ 1, T p

q,α are Banach spaces
under the norm ‖f‖T p

q,α
. If 0 < p < 1, the space T p

q,α is a quasi-Banach space

with p-norm ‖f‖T p
q,α

.

The case of q = ∞ and 0 < p < ∞ was studied in [5]. Actually, the
resulting tent type spaces T p

∞,α are proved to be Bergman spaces Ap
α.

It is well known that the Hardy-Littlewood maximal function operator has
played important role in harmonic analysis. To cater our estimates, we use
a variant of the non-central Hardy-Littlewood maximal function operator
acting on the weighted Lebesgue spaces Lp

α(Bn), namely,

(3.3) M (q)
γ (f)(z) = sup

z∈D(w,γ)

(
1

vα(D(w, γ))

∫

D(w,γ)
|f |qdvα

) 1

q

for 1 ≤ q < ∞. We simply write Mγ(f)(z) := M
(1)
γ (f)(z).

Now we are ready to formulate one of the main results of the present
work.

Theorem 3.1. Suppose γ > 0, 1 ≤ q < ∞, and α > −1. Let 0 < p < ∞.
Then for any f ∈ H(Bn), the following conditions are equivalent:

(1) f ∈ Ap
α.

(2) A
(q)
γ (f) is in Lp(Bn, dvα).

(3) M
(q)
γ (f) is in Lp(Bn, dvα).

Moreover,

‖f‖Ap
α
≈ ‖f‖T p

q,α
≈ ‖M (q)

γ (f)‖p,α,
where the comparable constants depend only on γ, q, α, p, and n.
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Note that the Bergman metric β is non-doubling on B
n and so (Bn, β, dvα)

is a non-homogeneous space. The proof of the above theorem will involve
some techniques of non-homogeneous harmonic analysis developed in [15]
(see Section 4 below).

In order to state the characterizations of Bergman spaces in terms of
Littlewood-Paley type g-functions, we require some more notation. For any
f ∈ H(Bn) and z = (z1, . . . , zn) ∈ Bn we define

Rf(z) =

n∑

k=1

zk
∂f(z)

∂zk

and call it the radial derivative of f at z. The complex and invariant gradients
of f at z are respectively defined as

∇f(z) =
(∂f(z)

∂z1
, . . . ,

∂f(z)

∂zn

)
and ∇̃f(z) = ∇(f ◦ ϕz)(0).

Given 1 < q < ∞. We define for each f ∈ H(Bn) and z ∈ Bn :

(i) The radial Littlewood-Paley g-function

G
(q)
R

(f)(z) =

(∫ 1

0
|(1 − r)Rf(rz)|q dr

1− r

) 1

q

.

(ii) The complex gradient Littlewood-Paley g-function

G
(q)
∇

(f)(z) =

(∫ 1

0
|(1− r)∇f(rz)|q dr

1− r

) 1

q

.

(iii) The invariant gradient Littlewood-Paley g-function

G
(q)

∇̃
(f)(z) =

(∫ 1

0
|∇̃f(rz)|q dr

1− r|z|

) 1

q

.

We state another main result of this paper as follows.

Theorem 3.2. Suppose 1 < q < ∞ and α > −1. Let 0 < p < ∞. Then, for
any f ∈ H(Bn) the following conditions are equivalent:

(1) f ∈ Ap
α.

(2) G
(q)
R

(f) is in Lp(Bn, dvα).

(3) G
(q)
∇

(f) is in Lp(Bn, dvα).

(4) G
(q)

∇̃
(f) is in Lp(Bn, dvα).

Moreover, the following three quantities

‖G(q)
R

(f)‖p,α, ‖G(q)
∇

(f)‖p,α, ‖G(q)

∇̃
(f)‖p,α,

are all comparable to ‖f − f(0)‖p,α, where the comparable constants depend
only on q, α, p, and n.
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Remark 3.1. Evidently, the results still hold true when we replace 1− r by

1− r|z| in the definitions of both G
(q)
R

(f) and G
(q)
∇

(f). This is so because

(1− |z|2)|Rf(z)| ≤ (1− |z|2)|∇f(z)| ≤ |∇̃f(z)|, ∀z ∈ Bn.

However, this is not the case if one uses 1 − r instead of 1 − r|z| in the

definition of G
(q)

∇̃
(f). In fact,

∫ 1

0
|∇̃f(rz)|2 dr

1− r
= ∞, ∀z ∈ Bn,

if f(z) = z1, but f ∈ Ap
α for all 0 < p < ∞ and α > −1.

4. Proof of Theorem 3.1

The goal of this section is to prove Theorem 3.1. To this end, we need to
prove the boundedness of non-central Hardy-Littlewood maximal function
operator Mγ as follows.

Lemma 4.1. Let α > −1 and γ > 0. The non-central Hardy-Littlewood
maximal function operator Mγ is bounded on Lp

α(Bn) for each 1 < p ≤ ∞
and acts from L1

α(Bn) to L1,∞
α , where

L1,∞
α =

{
f : ‖f‖L1,∞

α
, sup

λ>0
λvα

(
{z ∈ Bn : |Mγf(z)| > λ}

)
< ∞

}
.

This can be obtained by using the following celebrated Vitali covering
lemma, which can be founded in [15].

Lemma 4.2. Fix some R > 0. Let X be a separable metric space, E any
subset of X, and let {B(x, rx)}x∈E be a family of balls of radii 0 < rx < R.
Then there exists a countable subfamily {B(xj, rj)}∞j=1(where xj ∈ E and

rj := rxj
) of disjoint balls such that E ⊂ ∪j{B(xj , 3rj)}∞j=1.

Proof of Lemma 4.1. The boundedness of Mγ on L∞
α (Bn) is obvious. Let

Eλ := {z ∈ Bn : Mγ(f)(z) > λ} . For each z ∈ Eλ, there exist some wz ∈ Bn

such that
∫

D(wz ,γ)
|f |dvα > λvα(D(wz , γ)).

Note that z ∈ D(wz, γ) ⊂ Eλ and Eλ = ∪z∈Eλ
D(wz, γ). Applying Lemma

4.2 and Lemma 2.2, we choose the corresponding collection of pairwise dis-
joint Bergman metric ball D(wi, γ) and have

vα(Eλ) ≤
∑

i

vα(D(wi, 3γ))

≤ Cγ

∑

i

vα(D(wi, γ)) ≤
C

λ

∑

i

∫

D(wi,γ)
|f |dvα.
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This yields that

vα(Eλ) ≤
C

λ

∫

Bn

|f |dvα,

that is Mγ is bounded from L1
α(Bn) to L1,∞

α .
The boundedness of Mγ on Lp

α(Bn) for 1 < p < ∞ then follows from the
Marcinkiewicz interpolation theorem. �

Remark 4.1. Given 1 < q < ∞. Since M
(q)
γ (f) = (Mγ(|f |q))1/q , M (q)

γ is
bounded on Lp

α(Bn) for each q < p ≤ ∞.

Let 1 ≤ p < ∞ and let E be a complex Banach space. We write Lp
α(Bn, E)

for the Banach space of strongly measurable E-valued functions on Bn such
that

(∫

Bn

‖f(z)‖pEdvα(z)
) 1

p

< ∞.

Recall that f : Bn 7→ E is said to be holomorphic if for each x∗ ∈ E∗,
x∗f is holomorphic in Bn. It is known that (for example, see [14]) if f is
holomorphic in this weak sense, then it is holomorphic in the stronger sense
that f is the sum of a power series

f(z) =
∑

J∈Nn
0

xJz
J , z ∈ Bn,

where xJ ∈ E. (As usual, N0 = N ∪ {0}.) The class of all such functions is
denoted by H(Bn, E). We writeAp

α(Bn, E) for the class of weighted E-valued
Bergman space of functions f ∈ H(Bn, E) ∩ Lp

α(Bn, E).
Then, by merely repeating the proof of the scalar case (e.g., Theorem 3.25

in [21]), we have the following interpolation result.

Lemma 4.3. Let E be a complex Banach space. Suppose α > −1 and
1 ≤ p0 < p1 < ∞. If

1

p
=

1− θ

p0
+

θ

p1

for some 0 < θ < 1, then

[Ap0
α (Bn, E),Ap1

α (Bn, E)]θ = Ap
α(Bn, E)

with equivalent norms.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemmas 2.2, 2.4, and 2.5, we have, for any
f ∈ H(Bn),

|f(z)| .
(

1

(1− |z|2)n+1+α

∫

D(z,γ)
|f |qdvα

)1/q

. A(q)
γ (f)(z) ≤ M (q)

γ (f)(z),
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for all z ∈ Bn. Then we have that (3) implies (2), (2) implies (1) in Theorem
3.1. By Remark 4.1 we conclude that (1) implies (3) when q < p < ∞.
Then, we need only to prove that for each 0 < p ≤ q,

‖M (q)
γ (f)‖p,α . ‖f‖p,α, ∀f ∈ Ap

α.

On the other hand, by Lemmas 2.2 and 2.4, we know that

M (q)
γ (f)(z) . A

(q)
2γ (f)(z), ∀z ∈ Bn.

It then remains to show that ‖A(q)
γ (f)‖p,α . ‖f‖p,α for 0 < p ≤ q.

At first, we prove the case 0 < p ≤ 1. For any f ∈ Ap
α with the atomic

decomposition (2.1), one has by Lemma 2.6

A(q)
γ (f)(z) =

(∫

D(z,γ)
|f |qdτ

) 1

q

≤
∞∑

k=1

|ck|
(∫

D(z,γ)

(1− |ak|2)q(pb−n−1−α)/p

|1− 〈w, ak〉|qb
dτ

) 1

q

≤
∞∑

k=1

|ck|
(1− |ak|2)(pb−n−1−α)/p

|1− 〈z, ak〉|b
.

Hence, by Lemma 2.1,
∫

Bn

|A(q)
γ (f)|pdvα ≤

∞∑

k=1

|ck|p(1− |ak|2)pb−n−1−α

∫

Bn

1

|1− 〈z, ak〉|pb
dvα

.
∞∑

k=1

|ck|p.

This concludes that
∫

Bn

|A(q)
γ (f)|pdvα . inf

{ ∞∑

k=1

|ck|p
}
. ‖f‖p

Lp
α
.

For the remaining case 1 < p ≤ q we adopt the interpolation. Set E =
Lq(Bn, χD(0,γ)dτ) and consider the operator

T (f)(z, w) = f(ϕz(w)), f ∈ H(Bn).

Note that ϕz(D(0, γ)) = D(z, γ) and the measure dτ is invariant under any
automorphism of Bn (cf. Proposition 1.13 in [21]), we have

‖T (f)(z)‖E =

(∫

Bn

∣∣f(ϕz(w))
∣∣qχD(0,γ)(w)dτ(w)

) 1

q

=

(∫

Bn

|f(w)|qχD(z,γ)(w)dτ(w)

) 1

q

= A(q)
γ (f)(z).
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On the other hand,

‖Tf‖q
Lq
α(Bn,E)

=

∫

Bn

‖T (f)(z)‖qEdvα

=

∫

Bn

|A(q)
γ (f)(z)|qdvα

≈

∫

Bn

|f |qdvα.

Then, we conclude that T is bounded from Aq
α into Lq

α(Bn, E). Thus, com-
bining with the case of p = 1 proved above, we conclude from Lemma 4.3
that T is bounded from Ap

α into Lp
α(Bn, E) for any 1 < p < q, that is,

‖A(q)
γ (f)‖p,α ≤ C‖f‖p,α, ∀f ∈ Ap

α,

where C depends only on γ, n, p, q and α. This completes the proof of The-
orem 3.1. �

5. Proof of Theorem 3.2

In this section, we will prove Theorem 3.2. Since

(1− |z|2)|Rf(z)| ≤ (1− |z|2)|∇f(z)| ≤ |∇̃f(z)|, ∀z ∈ Bn,

we have that (4) implies (3), and (3) implies (2) in Theorem 3.2. It remains
to show that (2) implies (1) and (1) implies (4).

Proof of (2) ⇒ (1). Recall that for any f ∈ Hp(Sn) (the holomorphic
Hardy space on Sn),
∫

Sn

|f(ζ)− f(0)|pdσ(ζ) ≈
∫

Sn

(∫ 1

0
|(1− s)Rf(sζ)|q ds

1− s

) p

q
dσ(ζ).

(e.g., see [1].) Then, noting that fr(z) = f(rz),
∫

Bn

|f(z)− f(0)|pdvα(z)

=2n

∫ 1

0

∫

Sn

|f(rζ)− f(0)|pdσ(ζ)r2n−1(1− r2)αdr

≈2n

∫ 1

0

∫

Sn

(∫ 1

0
|(1− s)Rfr(sζ)|q

ds

1− s

) p

q
dσ(ζ)r2n−1(1− r2)αdr

=

∫

Bn

(∫ 1

0
|(1− s)Rf(sz)|q ds

1− s

) p

q
dvα(z).

This completes the proof that (2) ⇒ (1).

Proof of (1) ⇒ (4). We first consider the case 0 < p ≤ 1. To this end, we
write

fk(z) =
(1− |ak|2)(pb−n−1−α)/p

(1− 〈z, ak〉)b
.
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An immediate computation yields that

∇fk(z) =
bak(1− |ak|2)(pb−n−1−α)/p

(1− 〈z, ak〉)b+1

and

Rfk(z) =
b〈z, ak〉(1− |ak|2)(pb−n−1−α)/p

(1− 〈z, ak〉)b+1

Then we have

|∇̃fk(rz)|2 =(1− |rz|2)(|∇fk(rz)|2 − |Rfk(rz)|2)

=b2(1− |rz|2)(1− |ak|2)2(pb−n−1−α)/p |ak|2 − |〈rz, ak〉|2
|1− 〈rz, ak〉|2(b+1)

Notice that

(5.1) |1− tλ| ≈ (1− t) + |1− λ|, 0 ≤ t ≤ 1, 0 ≤ |λ| ≤ 1.

Set ε0 =
(α+1)q

2p . Then by (5.1) one has

G
(q)

∇̃
(fk)(z) =b(1− |ak|2)(pb−n−1−α)/p

×
(∫ 1

0

(1− |rz|2)q/2(|ak|2 − |〈rz, ak〉|2)q/2
|1− 〈rz, ak〉|q(b+1)

dr

1− r|z|

) 1

q

.(1− |ak|2)(pb−n−1−α)/p

×
(∫ 1

0

dr

|1− r〈z, ak〉|qb+q/2(1− r|z|)1−q/2

) 1

q

.(1− |ak|2)(pb−n−1−α)/p

×
(∫ 1

0

dr

|1− r〈z, ak〉|qb−ε0(1− r|z|)1+ε0

) 1

q

.(1− |ak|2)(pb−n−1−α)/p

×
(∫ 1

0

dr
[
(1− r) + |1− 〈z, ak〉|

]qb−ε0(1− r|z|)1+ε0

) 1

q

.(1− |ak|2)(pb−n−1−α)/p

×
(∫ 1

0

dr

|1− 〈z, ak〉|qb−ε0
[
(1− r) + (1− |z|)

]1+ε0

) 1

q

.(1− |ak|2)(pb−n−1−α)/p (1− |z|)−ε0/q

|1− 〈z, ak〉|b−ε0/q
.
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Hence, for any f ∈ Ap
α with the atomic decomposition (2.1),

∫

Bn

|G(q)

∇̃
(f)(z)|pdvα

≤
∞∑

k=1

|ck|p
∫

Bn

|G(q)

∇̃
(fk)(z)|pdvα

.
∞∑

k=1

|ck|p(1− |ak|2)pb−n−1−α

∫

Bn

(1− |z|2)α−ε0p/q

|1− 〈z, ak〉|pb−ε0p/q
dv(z)

.
∞∑

k=1

|ck|p(1− |ak|2)pb−n−1−α(1− |ak|2)−pb+n+1+α

.
∞∑

k=1

|ck|p,

the last second inequality is obtained by Lemma 2.1 (notice that α−ε0p/q >
−1). The proof of the case 0 < p ≤ 1 is complete.

Now we turn to consider the case 1 < p < ∞. In this case, f has the
integral representation

f(z) =

∫

Bn

f(w)dvα(w)

(1− 〈z, w〉)n+1+α

for all z ∈ Bn. By Lemma 2.7 one has

∣∣∣∇̃f(rz)
∣∣∣ ≤

√
2(n+ 1 + α)(1 − |rz|2) 1

2

∫

Bn

|f(w)|(1 − |w|2)αdv(w)
|1− 〈rz, w〉|n+1+α+ 1

2

.

Given ε0 =
(α+1)q

2p as above. Then one has by (5.1) again

G
(q)

∇̃
(f)(z) =

(∫ 1

0
|∇̃f(rz)|q dr

1− |rz|

)1/q

.

(∫ 1

0
(1− |rz|)q/2−1

∣∣∣∣∣

∫

Bn

|f(w)|(1 − |w|2)αdv(w)
|1− 〈rz, w〉|n+1+α+ 1

2

∣∣∣∣∣

q

dr

)1/q

≤
∫

Bn

(∫ 1

0

(1− |rz|)q/2−1|f(w)|q(1− |w|2)qα

|1− 〈rz, w〉|q(n+1+α+ 1

2
)

dr

)1/q

dv(w)

.

∫

Bn

|f(w)|(1 − |w|2)α

×
(∫ 1

0

(1− |rz|)q/2−1

[
(1− r) + |1− 〈z, w〉|

]q(n+1+α)−ε0(1− r|z|)ε0+ q

2

dr

)1/q

dv(w)
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.

∫

Bn

|f(w)|(1 − |w|2)α
|1− 〈z, w〉|(n+1+α)−ε0/q

(∫ 1

0

dr
[
(1− r) + (1− |z|)

]ε0+1

)1/q

dv(w)

.

(
1

ε0

) 1

q

(1− |z|)−ε0/q

∫

Bn

|f(w)|(1 − |w|2)α
|1− 〈z, w〉|(n+1+α−ε0/q)

dv(w).

Thus, by Lemma 2.3, we have

‖G(q)

∇̃
(f)‖p,α . ‖f‖p,α,

for 1 < p < ∞. The proof of Theorem 3.2 is complete.

6. Besov spaces

In this section we give an application of our main results (Theorems 3.1
and 3.2) to obtaining new maximal and area integral characterizations of
Besov spaces.

For 0 < p < ∞ and −∞ < α < ∞ we fix a nonnegative integer k with
pk+α > −1 and define the so-called Bergman space Ap

α introduced in [20] as
the space of all f ∈ H(Bn) such that (1−|z|2)kRkf ∈ Lp(Bn, dvα). One then
easily observes that Ap

α is independent of the choice of k and consistent with
the traditional definition when α > −1. Let N be the smallest nonnegative
integer such that pN + α > −1 and define

(6.1) ‖f‖p,α = |f(0)|+
(∫

Bn

(1− |z|2)pN |RNf(z)|pdvα(z)
) 1

p

, f ∈ Ap
α .

Equipped with (6.1), Ap
α becomes a Banach space when p ≥ 1 and a quasi-

Banach space for 0 < p < 1.
It is known that the family of the generalized Bergman spaces Ap

α covers
most of the spaces of holomorphic functions in the unit ball of Cn, such as
the classical diagonal Besov space Bs

p and the Sobolev space W p
k,β (e.g., [4]),

which has been extensively studied before in the literature under different
names (e.g., see [20] for an overview). We refer to Arcozzi-Rochberg-Sawyer
[2, 3], Tchoundja [18] and Volberg-Wick [19] for some recent results on such
Besov spaces and more references.

We have new maximal and area integral characterizations for these spaces
as follows.

Corollary 6.1. Suppose γ > 0, 1 ≤ q < ∞, and α ∈ R. Let 0 < p < ∞ and
k be a nonnegative integer such that pk+α > −1. Then for any f ∈ H(Bn),

f ∈ Ap
α if and only if A

(q)
γ (Rkf) is in Lp(Bn, dvα) if and only if M

(q)
γ (Rkf)

is in Lp(Bn, dvα), where

(6.2) A(q)
γ (Rkf)(z) =

(∫

D(z,γ)

∣∣(1− |w|2)kRkf(w)
∣∣qdτ(w)

) 1

q
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and
(6.3)

M (q)
γ (Rkf)(z) = sup

z∈D(w,γ)

(∫

D(w,γ)

∣∣(1− |u|2)kRkf(u)
∣∣q dvα(u)

vα(D(w, γ))

) 1

q

Moreover,

(6.4) ‖f − f(0)‖p,α ≈ ‖A(q)
γ (Rkf)‖p,α ≈ ‖M (q)

γ (Rkf)‖p,α,
where “≈” depends only on γ, q, α, p, k, and n.

To prove Corollary 6.1, one merely notices that f ∈ Ap
α if and only if

Rkf ∈ Lp(Bn, dvα+pk) (e.g., Theorem 2.16 in [21]) and applies Theorem 3.1

to Rkf with the help of Lemma 2.4. When α > −1, we can take k = 0 and
then recover one of the main results in [5].

Notice that Hp
s = Ap

α with α = −2s− 1, where Hp
s is the Hardy-Sobolev

space defined as the set
{
f ∈ H(Bn) : ‖f‖p

H
p
s
= sup

0<r<1

∫

Sn

|(I +R)sf(rζ)|pdσ(ζ) < ∞
}
.

Here,

(I +R)sf =

∞∑

k=0

(1 + k)sfk

if f =
∑∞

k=0 fk is the homogeneous expansion of f. There are several real-
variable characterizations of the Hardy-Sobolev spaces obtained by Ahern
and Bruna [1]. These characterizations are in terms of maximal and area
functions on the admissible approach region

Dα(η) =
{
z ∈ Bn : |1− 〈z, η〉| < α

2
(1− |z|2)

}
, η ∈ Sn, α > 1.

Now, Corollary 6.1 presents new maximal and area integral descriptions of
the Hardy-Sobolev spaces in terms of the Bergman metric. A special case
of this is a characterization of the usual Hardy space Hp = Ap

−1 itself.
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