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Untainted Puncturing for Irregular Low-Density
Parity-Check Codes

David Elkouss, Jesus Martinez-Mateo, and Vicente Martin

Abstract—Puncturing is a well-known coding technique widely
used for constructing rate-compatible codes. In this paper, we
consider the problem of puncturing low-density parity-check
codes and propose a new algorithm for intentional puncturing.
The algorithm is based on the puncturing ofuntainted symbols,
i.e. nodes with no punctured symbols within their neighboring
set. It is shown that the algorithm proposed here performs better
than previous proposals for a range of coding rates and short
proportions of punctured symbols.

Index Terms—low-density parity-check codes, intentional
puncturing, short-length codes.

I. I NTRODUCTION

Low-density parity-check (LDPC) codes are considered
fixed-ratechannel codes since they incorporate a fixed amount
of redundant information [1]. However, there exist some well-
known techniques for adapting the coding rate of a linear
code, one of them ispuncturing. A linear code is punctured
by deleting a set of symbols in a codeword.

When puncturing a code, we must differentiate between
random and intentional puncturing. In the former, punctured
symbols are randomly chosen, whereas in the latter, the codeis
analyzed to select the set of symbols to puncture. The asymp-
totic performance of random and intentional punctured LDPC
codes was analyzed in [2], [3], and puncturing thresholds were
also identified in [4]. Some other methods delved into the
code structure to identify good puncturing patterns [5], [6],
or examined its graph construction [7], [8] to facilitate its
puncturing [9]–[12].

The objectives pursued when switching from random punc-
turing can lead to different solutions. In particular, algorithms
that focus in covering a wide range of coding rates do not
offer the best performance for small puncturing proportions
and vice-versa. Several algorithms find puncturing patterns
that allow to cover a wide range of rates [5], [6], [13]–[15].
However, when working with short length codes, but also in
other scenarios, the ensemble of punctured symbols determines
the decoding performance. In this work, we describe an
algorithm that we calluntainted. Its main focus is optimizing
the decoding of moderately punctured codes.

The rest of this paper is organized as follows. In Section II,
we introduce the notation, some puncturing properties and
the untainted algorithm. In Section III, we present simulation
results over several channels, and compare them with the
results in previous studies [5], [6]. Conclusions are presented
in Section IV.
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II. U NTAINTED PUNCTURING

A. Notation and Definitions

Error correcting codes can be represented by bipartite
graphs linking symbol nodes with check nodes. Let1 N (z)
denote the neighborhood of a nodez, that is, the set of nodes
adjacent toz. The degree of a node is defined as the cardinality
of its neighborhood. This concept can be extended to include
all the nodes reachable fromz by traversing a maximum ofk
edges, we call this set of nodesN k(z) the neighborhood of
depthk of z.

LetP stand for the set of punctured symbols,v ∈ P belongs
to the set of1-step extended recoverable symbols (v ∈ R1)
if ∃c ∈ N (v) such that∀w ∈ N (c)\{v}, w /∈ P . For n > 1
we recursively define the sets ofk-step extended recoverable
symbolsRk. We say that a punctured symbolv 6∈ R1 ∪ ... ∪
Rk−1 belongs to the set ofk-step extended recoverable (v ∈
Rk) symbols if ∃c ∈ N (v) and ∃w ∈ N (c)\{v} such that
w ∈ Rk−1 and ∀w′ ∈ N (c)\{v, w}, w′ ∈ P ⇒ w′ ∈ R1 ∪
... ∪Rk−1.

The graph subjacent toN 2k(v), v ∈ Rk, is assumed to be
tree-like. Letu be a node inN 2k(v). We denote byN↓

t(u)
the neighborhood ofu of deptht restricted to the descendants
of u in this tree. Note thatN↓(u) = N↓

1(u). We can prune it
by eliminating the connection of any symbolw ∈ Rl with a
checkc ∈ N↓(w) if maxw′∈N↓(c) {m|w′ ∈ Rm} > l− 1. We
call this graphTv the extended recovery treeof v.

We consider in this letter the sum-product decoding algo-
rithm. The algorithm exchanges messages representing prob-
abilities or the log-likelihood ratio (LLR) of probabilities.
The messages are iteratively exchanged from symbol to check
nodes and from check to symbol nodes. If the decoding graph
is tree-like then, for uniform sources and output symmetric
channels, sum-product decoding is equivalent to maximum a
posteriori decoding and the decoder minimizes the decoding
error [16].

Let us analyze the effect of puncturing on the messages
exchanged in the sum-product algorithm. For everyv ∈ P
the decoding algorithm has no information on the value thatv
takes. In consequence, for binary input channels it can take
both values (one and zero) with probability one half. On
the LLR version of the sum-product algorithm the outgoing
messages from symbolv on iteration one are equal to zero.

A check c ∈ N (v) in the neighborhood of a punctured
symbolv is called a survived check node if∃w ∈ N↓(c)|w ∈
Rk−1, and a dead check node otherwise. The message that a
dead check nodec sends tov is a zero LLR. A punctured

1We follow a notation similar to that in Haet al. [5]
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symbol is recovered when it receives a message from a
survived check node. It follows from the previous definitions
that a symbol inRk is recovered afterk decoding iterations.

We define the extended recovery error probability of a
punctured symbolPe(v) as the decoding error probability of
v ∈ Rk after k iterations onTv. Assuming that a codeword
is sent through a binary input memoryless output symmetric
channel the probability of error is independent of the codeword
sent [16]. ThenPe(v) is the probability thatv takes the value
one conditional to sending the all zero codeword.

These concepts, are extended in the sense that they general-
ize the definitions introduced by Haet al. in [5]. The difference
between both sets of definitions is that every punctured symbol
is connected to only one survived check node in the (non-
extended) recovery tree in [5] and, in consequence, the (non-
extended) recovery error probability is given by the probability
that the message sent by the survived node is wrong.

B. Properties of the extended recovery error probability

Ha considered the exact recovery error probability over the
(non-extended) recovery tree for the binary erasure channel
(BEC), the additive white Gaussian noise (AWGN) channel
and the binary symmetric channel (BSC). This error probabil-
ity is a monotone increasing function on the number of nodes
in the recovery tree. The algorithm in [5] was developed to
exploit this non-intuitive property.

The single survived check node assumption captures the tree
structure when a high proportion of symbols are punctured.
However, for a low proportion of punctured symbols there
can be more than one survived check node. We now show
that having more than one survived check node is a desirable
property. More precisely, adding a survived check node in
an extended recovery tree can not increasePe(v). We first
prove a stronger claim on the BEC, i.e. adding a survived
check node decreasesPe(v). Then, we prove the property for
general symmetric channels. The idea behind the general proof
is that we can reduce the number of survived check nodes by
adding noise to the symbol nodes under a survived check node.
Then, given that the sum-product algorithm on tree like graphs
with uniform priors is equivalent to a maximum a posteriori
estimation, the decoding on the noisier tree can not reduce the
decoding error probability.

Theorem 1:Let l, k ∈ N and 0 ≤ l < k. Now consider
the subgraph of a check nodez of depth2k − 2l − 1 such
that maxw∈N (z) {m|w ∈ Rm} = k − l. Let Tv1 , Tv2 be the
extended recovery trees associated with punctured symbols
v1, v2 ∈ Rk. Let both trees be identical except for some
x ∈ N 2l(v2) that is linked with z. Then the recovery
error probability ofv1 and v2 sent through a BEC(α), with
0 < α < 1, verify:

Pe(v1) > Pe(v2). (1)

Proof: The initial erasure probability of a symbolv is:

ǫ(0)v =

{

1 if v ∈ P
α otherwise

further,ǫ can be recursively defined for any symbol and check
in the tree from its children erasure probabilities:

ǫv = ǫ(0)v

∏

c∈N↓(v)

ǫc (2)

ǫc = 1−
∏

v∈N↓(c)

(1− ǫv). (3)

Now, taking into account that there are no punctured sym-
bols within the leave nodes by the definition of the extended
recovery tree, it holds thatǫ(0)v < 1 for the leaf symbols of the
tree spanning from checkz. It follows by induction that: 1)
∀v, c ∈ N↓

2k−2l−1(z), ǫv, ǫc < 1; which implies thatǫz < 1,
and 2) if we attach a check nodez with ǫz < 1 to a symbol
x then ǫv1 > ǫv2 . Finally, the recovery error probability of a
symbol nodev is Pe(v) = ǫv/2, which completes the proof.

Theorem 2:The recovery error probability ofv1 and v2
over the treesTv1 , Tv2 defined exactly as in Th. 1 and
sent through any binary input symmetric output memoryless
channelC, verify:

Pe(v1) ≥ Pe(v2). (4)

Proof: For a precise characterization ofPe in the general
setting, we need to track a message density instead of a scalar.
The initial density function of a non-recovered punctured node
takes the form of the Dirac delta functionD(y) = δ(y), since
a punctured node transmits a zero LLR with probability one.
Let the remaining nodes inTv1 , Tv2 have initial densities given
by P0(y), the initial LLR density associated with channelC.

Now consider a second scenario forTv2 . We associate every
leaf node inN 2k−2l−1

↓ (z) with samples fromD(y), which
is equivalent to puncturing these nodes. If we puncture the
leave nodes, their parent check nodes do not become survived
check nodes and the symbolsw ∈ N 2k−2l−3

↓ (z)|w ∈ P are
not recovered. It follows by induction thatz remains a dead
check node, i.e. associating the leaves withD(y) is equivalent
to eliminating the edge joiningz to x. In consequence, the
density of messages reaching the root nodev2 in the second
scenario is identical to the density of messages reachingv1 in
the first scenario.

The (binary output) degenerate channelD, with initial
densityD(y), transforms any input into a one or a zero with
equal probability, i.e.pD(1|x) = pD(0|x) = 0.5. Let Q
represent the concatenated channel ofC with D:

pQ(y
′|x) =

∑

y∈Y

pD(y′|y)pC(y|x)

= 0.5
∑

y∈Y

pC(y|x) = pD(y′|x). (5)

In other words,D can be regarded as the concatenation of
C with itself, and the samples fromD(y) are stochastically
degraded samples ofP0(y) [17].

Following the argument in [18, Th. 5], Eq. (5) implies that
Pe(v1) ≥ Pe(v2). The assertion follows from the fact that the
estimate of bothv1 andv2 are maximum likelihood estimates.



3

C. Untainted Puncturing Algorithm Description

We introduce the concept ofuntainted, to propose a simple
method that chooses symbols such that all the check nodes of a
selected symbol are survived nodes. This restriction guarantees
that more than one survived check node is associated with
every punctured symbol.

Definition 1: A symbol nodev is said to beuntainted if
there are no punctured symbols withinN 2(v).

LetX∞ be the set of untainted symbol nodes. Initially, when
there are no punctured symbols,X∞ consists of every symbol
node.

{Initialize} X∞ = {1, ..., n}, p = 1.
while X∞ 6= ∅ do
{Step 1.– Look for candidates}
Make the set of candidatesΩ, which is a subset ofX∞,
such thatu ∈ Ω if |N 2(u)| ≤ |N 2(v)| for any v ∈ X∞.
{Step 2.– Select for puncturing}
Pick a symbol nodev(p) from Ω (pick one randomly if
there exist more that one symbols inΩ).
{Step 3.– Update the set of untainted symbols}
X∞ = X∞\N 2(v)
p = p+ 1

end while

The algorithm obtains a set of puncturable symbol nodes
consisting in the symbols selected in the second step. It
concludes whenX∞ = ∅, i.e. there is no untainted symbols.
The range of values forp, the number of punctured symbols,
can be found empirically by simulations (see Table I).

Note that for codes with an almost regular check node
degree distribution, the searching criterion in Step 1 can be
simplified: instead of looking for a symbol with the smallest
neighboring set of depth 2, the algorithm can look for symbols
with the lowest degree.

III. S IMULATION RESULTS

The untainted algorithm ensures that the extended recovery
tree of a punctured symbol has more than one survived check
node. In this section, we construct codes to show that the
untainted algorithm yields a better performance in terms of
the frame error rate (FER). We have constructed104 bit-
long irregular LDPC codes of different coding rates for the
BEC, the BSC and the AWGN channels. The polynomials for
the BSC with rates(0.5, 0.6, 0.7, 0.8) have been drawn from
[19]. The remaining generating polynomials, as well as all the
matrices used can be checked in [20].

Figs. 1, 2 and 3 compare the performance of intentional
punctured codes using the untainted algorithm with those in[5]
and in [6] for different proportions of punctured symbolsπ. All
codes are decoded with 200 iterations using the sum-product
algorithm [16] over the graph of the mother (non-punctured)
code.

As in Ha et al. [5] we used three random seeds for
the simulations of each intentional puncturing algorithm,the
results in the figures show the intermediate performer.

The untainted punctured LDPC codes outperform the codes
punctured following the algorithms in [5] and in [6] for all the
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Fig. 1. FER over the AWGN as a function of the signal-to-noiseratio
(SNR). Two LDPC codes with coding ratesR0 = 0.5 andR0 = 0.6, and
two different proportions of punctured symbols,π = 5% andπ = 10% were
used.
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Fig. 2. FER over the BEC with crossover probabilityε for different inten-
tional puncturing strategies. Two LDPC codes with coding rates R0 = 0.5

andR0 = 0.6, and two different proportions of punctured symbols,π = 5%

andπ = 10% were used. See inset in Fig. 1 for symbols and line-styles.

coding rates, channels and puncturing proportions considered.
For a FER of10−3 the strongest improvements appear in the
BSC for a mother code of rateR0 = 0.3 punctured a 10%,
in the BEC for a mother code of rateR0 = 0.6 punctured a
5% and in the AWGN for a mother code of rateR0 = 0.6
punctured a 10% respectively.

Table I showspmin andpmax, the minimum and maximum
values ofp, respectively, after5 ·103 algorithm runs. Sizes are
computed for both the untainted algorithm and the algorithm
in [5]. The values are computed for the same codes used
in Fig. 3 and two additional codes of rates0.7 and 0.8.
The table shows that the untainted algorithm can puncture a
smaller number of symbols compared to [5]. This behavior is
consistent with the additional number of survived check nodes
required by the untainted algorithm.

IV. CONCLUSIONS

We proved that having more than one survived check node
in the extended recovery tree is a desirable property. The
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Fig. 3. FER over the BSC with crossover a probabilityε for several LDPC codes with coding ratesR0 = 0.3, R0 = 0.4, R0 = 0.5 andR0 = 0.6, and
two different proportions of punctured symbols,π = 5% andπ = 10%.

TABLE I
NUMBER OF PUNCTURED SYMBOLS

Coding rate (mother code)
0.3 0.4 0.5 0.6 0.7 0.8

Ref. [5] pmin 4628 4031 3439 2866 2258 1581
pmax 4753 4139 3552 2983 2353 1657

Untainted pmin 2603 2286 1909 1587 1212 851
pmax 2686 2374 1987 1655 1273 901

untainted algorithm is a method that chooses symbols such
that all the check nodes of a selected symbol are survived
check nodes. Furthermore, the algorithm can be implemented
with a low computational cost.

Simulation results show that the performance of the un-
tainted algorithm in terms of the FER is better than the
best intentional puncturing algorithms in the literature for a
range of coding rates, channels and puncturing proportions.
The drawback of using this algorithm is a reduction in the
maximum achievable rate since the proportion of puncturable
symbols is limited by the untainted criterion.
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