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NEW LIMIT THEOREMS

RELATED TO FREE MULTIPLICATIVE CONVOLUTION

NORIYOSHI SAKUMA AND HIROAKI YOSHIDA

Abstract. Let⊞,⊠, and ⊎ be the free additive, free multiplicative, and
boolean additive convolutions, respectively. For a probability measure µ
on [0,∞) with finite second moment, we find a scaling limit of (µ⊠N )⊞N

as N goes to infinity. The R–transform of its limit distribution can be
represented by the Lambert’s W function. From this, we prove that the
limiting distribution is freely infinitely divisible as well as the lognormal
distribution in classical sense. We also show a similar limit theorem by
replacing the free additive convolution with the boolean convolution.

1. Introduction

In probability theory, limit theorems and infinite divisibility are consid-

ered in various situations. The classical references are the books by Gne-

denko and Kolmogorov [11] and Petrov [17]. One of the most famous limit

theorems is the Central Limit Theorem (for short CLT) that is the scal-

ing limit of the sum of independent, identically distributed (i.i.d.) random

variables. Suppose that a random variable Z has the standard normal dis-

tribution. Let {Xk}
∞
k=1 be a sequence of i.i.d. random variables with finite

second moment. Then a scaling

(1.1)
X1 + · · · + XN −NE[X1]√

NV[X1]

converges to Z in distribution as N goes to infinity.

When we consider the product of i.i.d. random variables, we have also a

CLT type limit theorem. The simplest case is as follows: for a sequence of

i.i.d. random variables {Xk}
∞
k=1 with finite second moment, we consider a

scaling
N∏

k=1

exp

(
Xk − E[Xk]√

NV[Xk]

)
.(1.2)

By the CLT, this scaling converges to eZ in distribution as N goes to infinity.

The distribution of eZ is called the lognormal distribution. It was proved

by Thorin [20] that the lognormal distribution is infinitely divisible. The
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product limit theorems are also interested from applications to statistics.

For details, see [18] and the book by Galambos and Simonelli [10].

In free probability theory, some limit theorems are known as in classical

probability theory. The most famous limit theorem is the free CLT, which

was found by Voiculescu. If {Xk}k∈N is a sequence of freely independent

identically distributed (for short freely i.i.d.) random variables with finite

second moment, then the normalized sum (1.1) converges to the standard

Wigner’s semi-circle law in distribution as N goes to infinity. In addition,

we know the Poisson limit theorem, the stable limit theorem and so on, for

details, see [12], [6], and [4]. Recently other new limit theorems with respect

to the free convolutions [7], [23], and [21] have been studied.

In this paper, we shall prove a limit theorem involving not only free

additive but also free multiplicative convolutions. We introduce a new nor-

malized sum of multiplications of freely independent random variables. For

double sequence of freely i.i.d. random variables {{X
(j)
i }i∈N}j∈N having a

distribution µ on [0,∞) with finite second moment, we consider a new nor-

malization YN ,

YN =
N∑

j=1

√
X

(j)
N · · ·

√
X

(j)
2 X

(j)
1

√
X

(j)
2 · · ·

√
X

(j)
N

mN
1 N

,(1.3)

where m1 is the mean of the distribution µ. We shall see that its limit

distribution depends only on the first and second moments. In its proof, we

shall investigate the Taylor type expansion of the S–transform. In addition,

a formula by Belinschi and Nica [2] suggests that the distribution of (1.3)

is equal to the one of

ỸN =

√∑N
i=1X

(N)
i · · ·

√∑N
i=1X

(1)
i

√∑N
i=1X

(1)
i . . .

√∑N
i=1X

(N)
i

mN
1 N

N
,

which is corresponding to the scaling (1.2). In this meaning, we may call

it free lognormal distribution. Compare to free additive CLT case, it is

not exactly the same scaling. The difference may occur because of non-

commutativity of random variables. Furthermore a similar limit theorem

can be found under boolean independence.

In order to investigate properties of this limit distribution, we show that

it is freely infinitely divisible as in classical case lognormal distribution is

infinitely divisible. In its proof, the properties of Lambert’s W– function

play an important role and we obtain its Lévy measure.
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This paper is organized as follows. In Section 2, we shall gather the

tools for free and boolean probability. Especially, we recall R, S, and Σ–

transforms and infinite divisibility in free probability theory. In Section 3, we

shall give the Taylor type expansions for S and Σ–transforms and prove our

limit theorems. Finally, in Section 4, we shall discuss the limit distributions

with focusing on infinite divisibility and moments.

2. Preliminaries

Let R+ be the half line [0,+∞) and C
+ be the upper half plane {z =

x + iy ∈ C; y > 0}. We fix notation that P and P+ mean the set of all

Borel probability measures on R and R+, respectively. We denote the free

additive, free multiplicative, and boolean additive convolutions by ⊞, ⊠, and

⊎, respectively, see for details of convolutions, [19], [22], and [15]. Hereafter,

δ0 stands the Dirac probability measure concentrated on 0.

2.1. Analytic tools for free and boolean convolutions. Here, we shall

gather the analytic tools for free and boolean probability and mention some

of their important facts.

We denote the Cauchy transform of a probability measure µ on R by

Gµ(z) =

∫

R

1

z − x
µ(dx), z ∈ C

+,

and

Ψρ(z) =

∫

R

xz

1 − xz
ρ(dx), z ∈ C\R

denotes the moment generating function of ρ on R+. Then the Speicher’s

R and Voiculescu’s R–transforms of µ are defined as follow: for any given

α > 0, one can find β > 0 so that

Rµ(z) = zRµ(z) = zG−1
µ (z) − 1, 1/z ∈ Γα,β,

where G−1
µ (z) is the right inverse of Gµ(z) with respect to composition and

Γα,β = {z = x+iy ∈ C+; y > β, |y| > αx}. Note that we will use both R and

R–transforms for convenience. The S and Σ–transforms of ρ are defined by

Sρ(z) =
(z + 1)Ψ−1

ρ (z)

z
, z ∈ Ψρ(iC

+)

and

Σρ(z) = Sρ

(
z

1 − z

)
,

z

1 − z
∈ Ψρ(iC

+),

respectively, where Ψ−1
ρ (z) is the right inverse of Ψρ(z) with respect to

composition. Now, we summarize the relations between the transforms and

convolutions, see for proofs [6] and [2].
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Proposition 2.1. For µ1 ∈ P, µ2 ∈ P, ρ1 ∈ P+ and ρ2 ∈ P+, which are

not δ0, there exist α > 0 and β > 0 such that

Rµ1⊞µ2
(z) = Rµ1

(z) + Rµ2
(z), 1/z ∈ Γα,β,

Sρ1⊠ρ2(z) = Sρ1(z)Sρ2(z), z ∈ Ψρ1(iC
+) ∩ Ψρ2(iC

+),

Sρ⊞t
1

(z) =
1

t
Sρ1

(
z

t

)
,

Σρ1⊠ρ2(z) = Σρ1(z)Σρ2(z), z/(1 − z) ∈ Ψρ1(iC
+) ∩ Ψρ2(iC

+),

Σρ⊎t
1

(z) =
1

t
Σρ1

(
z

t

)
.

For c > 0, the dilation operator Dc on P is defined by

Dc(µ)(B) = µ

(
1

c
B

)

for any Borel set B on R+, where 1
c
B = {x ∈ R; 1

c
x ∈ B}. If a random

variable X has a distribution µ, then cX is distributed as Dc(µ). In the

paper [2], the authors showed that

SDc(µ)(z) =
1

c
Sµ(z)

and

ΣDc(µ)(z) =
1

c
Σµ(z).

2.2. Infinite divisibility for free additive convolution. A probability

measure µ is freely infinitely divisible (or ⊞–infinitely divisible) if for any

n ∈ N there exists µn ∈ P such that

µ = µn ⊞ · · ·⊞ µn︸ ︷︷ ︸
n times

.

We denote the class of all ⊞–infinitely divisible distributions by I⊞.

Remark 2.2. We can define other infinite divisibility replacing ⊞ by ⊠

or ⊎. But for boolean convolution, all probability measures are ⊎–infinitely

divisible. So we shall not discuss ⊎–divisibility any longer.

The next proposition characterizes the ⊞–infinitely divisible laws [22,

Theorem3.7.2].

Proposition 2.3. The followings are equivalent:

(1) µ ∈ I⊞.

(2) Rµ has an analytic extension defined on C
− with value C

− ∪ R.



NEW LIMIT THEOREMS RELATED TO FREE MULTIPLICATIVE CONVOLUTION 5

(3) There exist unique bµ ∈ R and finite measure νµ such that

Rµ(z) = bµ +

∫

R

z

1 − tz
νµ(dt), z ∈ C

−.

The above expression is called ⊞–Lévy–Khintchine representation, or

simply Lévy–Khintchine representation.

Example 2.4. The typical examples of ⊞–infinitely divisible distribution

are the Wigner’s semi-circle law, the Dirac’s delta distribution, and the free

Poisson distribution πt with parameter t ≥ 0 having density

(2.1)

πt(dx) = max(0, (1−t))δ0(dx)+
1

2πx

√
4t− (x− 1 − t)2 1[(1−

√
t)2,(1+

√
t)2](x)dx.

The Lévy measure νµ and bµ of the semi-circle law are δ0 and 0, and the

free Poisson law πt has bµ = t and νµ = tδ1. We put π1 by π.

The following functional equation of the R and S–transforms can be

found in, for instance, [15] or [16, Lemma 2]:

Proposition 2.5. Assume that µ ∈ P+. For some sufficiently small ε > 0,

we have a region Dε which includes {−it; 0 < t < ε} such that

z = Rµ (zSµ(z)) ,(2.2)

for z ∈ Dε.

3. New limit theorems

In this section, we prove a new limit theorem related to both free addi-

tive and multiplicative convolutions. We also discuss a similar result with

replacing ⊞ by ⊎. It was proved in [14] by M lotkwski that for the free

Poisson law π, we have

Dn

((
π⊠(n−1)

)⊎n) n→∞
−→ ν0 in distribution,

where the pth moment of ν0 is given by
pp

p!
. We find that a theorem of this

type holds more generally if we replace π by any probability distribution

with finite second moment.

3.1. Expansion of the S-transform and Σ-transform. We prove the

expansion for the S–transform and Σ–transform under the second moment

condition. For the R–transform, the Taylor type expansion was proved by

Benaych-Georges in [3]. For each region A in C, we denote z → 0 with z ∈ A

by z
z∈A
−→ 0.
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Lemma 3.1. Let ρ ∈ P+ have the moment of order p, that is, for k =

0, 1, 2, . . . , p,

mk(ρ) :=

∫

R+

xkρ(dx) < ∞.

Then its moment generating function Ψρ(z) has a Taylor expansion

Ψρ(z) =

p−1∑

k=1

mk(ρ)zk + O(zp), z
z∈iC+

−→ 0.

Proof. See [1]. �

Lemma 3.2. Let ρ ∈ P+ have the moment of order p ≥ 2 and ρ 6= δ0. Then

we have the followings:

(1) Ψρ(z) is univalent in iC+.

(2) The inverse function Ψ−1
ρ : Ψρ(iC

+) → iC+ of Ψρ admits Taylor

type expansion of order 2

Ψ−1
ρ (z) =

1

m1(ρ)
z −

m2(ρ)

(m1(ρ))3
z2 + o(z2), z

z∈Dρ
−→ 0.

(3) Dρ := Ψρ(iC
+) is a region contained in the circle with diameter(

ρ({0}) − 1, 0
)
. In addition, Ψρ(iC

+) ∩ R =
(
ρ({0}) − 1, 0

)
,

lim
t↑0

Ψ−1
ρ (t) = 0

and

lim
t↓ρ({0})−1

Ψ−1
ρ (t) = ∞.

Proof. (1) and (3) are proved in Bercovici and Voiculescu [6, Proposition

6.2].

(2) Step 1 We shall first prove that

Ψ−1
ρ (z) =

1

m1(ρ)
z + o(z), z

z∈Dρ
−→ 0.

Take any continuous path {z(t)}t∈(0,1] in Dρ such that limt↓0 z(t) = 0. By

(1), we can choose a unique continuous path {ω(t)}t∈[0,1] on t ∈ (0, 1] such

that limt↓0 ω(t) = 0 and Ψρ(ω(t)) = z(t).

lim
t↓0

Ψ−1
ρ (z(t))

z(t)
= lim

t↓0

ω(t)

Ψρ(ω(t))
= lim

t↓0

1

Ψρ(ω(t))/ω(t)
=

1

m1
.

By arbitrary of the paths, it follows that

Ψ−1
ρ (z) =

1

m1(ρ)
z + o(z), z

z∈Dρ
−→ 0.
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Step 2 Using step 1, we shall show the Taylor type expansion of order

2 as z
z∈Dρ
−→ 0.

Ψ−1
ρ (Ψρ(z)) − 1

m1(ρ)
Ψρ(z)

Ψρ(z)2
=

z − 1
m1(ρ)

(m1(ρ)z + m2(ρ)z2 + O(z3))

(m1(ρ)z + m2(ρ)z2 + O(z3))2

=

(
m2(ρ)
m1(ρ)

z2 + O(z3)
)

(m1(ρ))2z2 + O(z3)
→

m2(ρ)

(m1(ρ))3
, as z

z∈Dρ
−→ 0.

As a results, we obtain as follow:

Ψ−1
ρ (z) =

1

m1(ρ)
z +

m2(ρ)

(m1(ρ))3
z2 + o(z2), z

z∈Dρ
−→ 0.

�

3.2. Limit theorems. Here we shall state the main theorem.

Theorem 3.3. We assume that ρ ∈ P+ has the second moment and put

γ = Var(ρ)
(m1(ρ))2

.

(1) There exist s0 > 0 and s1 < 0 such that the S–transform of ρ is

given by

Sρ(z) = s0 + s1z + o(z), z
z∈Dρ
−→ 0,

and there exists a probability measure yγ ∈ P+ such that

Dsn
0
/n

((
ρ⊠n
)⊞n
)
→ yγ in distribution.

In addition, the S–transform of the limit distribution yγ is

Syγ (z) = exp (−γz) .

(2) There exist σ0 > 0 and σ1 < 0 such that the Σ–transform of ρ is

given by

Σρ(z) = σ0 + σ1z + o(z), z
z∈Dρ
−→ 0,

and there exists a probability measure sγ ∈ P+ such that

Dsn
0
/n

((
ρ⊠n−1

)⊎n)
→ sγ in distribution.

In addition, the Σ–transform of the limit distribution sγ is

Σsγ (z) = exp (−γz) .

Proof. Using Lemma 3.2, we have

Sρ(z) =
z + 1

z
Ψ−1

ρ (z) =
1

m1(ρ)
−

Var(ρ)

(m1(ρ))3
z + o(z), z

z∈Dρ
−→ 0.
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Let s0 = 1
m1(ρ)

and s1 = − Var(ρ)
(m1(ρ))3

. By Proposition 2.1, we obtain

S
Dsn

0
/n

(

(ρ⊠n)
⊞n

)(z) =
n

sn0
S(ρ⊠n)⊞n(z) =

1

sn0
Sρ⊠n

( z
n

)

=
1

sn0

(
Sρ

(z
n

))n
=

1

sn0

(
s0 + s1

z

n
+ o

(
1

n

))n

=

(
1 +

s1z

s0n
+ o

(
1

n

))n

→ exp

(
s1
s0
z

)
= exp (−γz) as n → ∞.

From [5, Lemma 7.1] and [6, Theorem 6.13 (ii)], there exists a free multi-

plicative infinitely divisible measure yγ such that Syγ (z) = exp (−γz). The

proof for (2) is the same as for the free additive case. �

We can exchange the order of free multiplicative and freely additive (or

boolean additive) convolutions. The difference is in the scaling speed.

Corollary 3.4. Under the same setting as in Theorem 3.3, we have

Dsn
0
/nn

((
ρ⊞n
)⊠n
)
→ yγ,

Dsn
0
/nn

((
ρ⊎n−1

)
⊠n
)
→ sγ ,

as n → ∞.

Proof. As we have done in the proof of Theorem 3.3, it can be proved by

using Proposition 2.1 and Lemma 3.2. �

4. Lambert W function and infinite divisibility of the limit

distribution

4.1. On the limit distribution of free case. When we calculate the R–

transform or the moment generating function, the Lambert’s W–function

plays an important role, which satisfies the functional equation

z = W (z) exp(W (z)).

This function have been studied for a long period and we have known several

good properties of this function as real and complex function. For more

details of the Lambert W function, see, for instance, [8]. Let W0(z) be the

principal branch of the Lambert W–function.

By Proposition 2.5 and the S-transform of yγ, we have

Ryγ (ze−γz) = z, 1/z ∈ Γα,β.

This functional equation suggests that the R–transform is given by using

the Lambert’s W–function.



NEW LIMIT THEOREMS RELATED TO FREE MULTIPLICATIVE CONVOLUTION 9

Theorem 4.1. (1) The R and R–transforms of probability measure yγ

are given as follows:

Ryγ (z) =
−W0(−γz)

γz
,

Ryγ (z) = −
1

γ
W0(−γz).

(2) yγ is both ⊞–infinitely divisible and ⊠–infinitely divisible.

(3) The free cumulant sequence of yγ is

{
(γn)n−1

n!

}

n∈N
.

(4) The Lévy measure νyγ of yγ is given by

νyγ (ds) =
1

γπ
sf−1(γ/s)1[0,γe](s)ds,

where f(u) = u csc u exp(−u cotu). In case of γ = 1, for the shape

of the density of νy1, see the graph below.

0.5 1.0 1.5 2.0 2.5

0.1

0.2

0.3

0.4

0.5

(5) It holds the following formulas:

y⊞t
γ = Dt(y

⊠1/t
γ ),

y⊠t
γ = Dt(y

⊞1/t
γ ).

The proof of this theorem is helped by the following property and the

well-known integral representation of the Lambert’s W–function (for in-

stance, see [8, Section 4] and [13, Theorem 3.1]):

Proposition 4.2. (1) The principal branch of W0(z) has an analytic ex-

tension on C\(−∞,−1/e] and it takes C− ∪ R on C−.

(2) For any z ∈ C+, we have an integral representation:

W0(z)

z
=

1

π

∫ π

0

(1 − u cotu)2 + u2

z + u csc u exp(−u cot u)
du.

Proof of Theorem 11. (1) The ⊠–infinitely divisibility is trivial from the

form of the S–transform and the facts in [5]. By Proposition 2.5, we

have

Ryγ (ze−γz) = z.
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Then the R–transform is given by using the Lambert’s W–function as

follows:

Ryγ (z) = −
1

γ
W0(−γz),

and hence,

Ryγ (z) =
W0(−γz)

−γz
.

(2) By Proposition 2.3 and Proposition 4.2 (1), Ryγ has an analytic ex-

tension defined on C− with value C− ∪ R, which means that yγ is ⊞–

infinitely divisible.

(3) The Taylor type expansion of −W0(−z) at the origin is obtained from

Equation (3.1) of [8, pp. 339].

(4) We put g(u) = (1 − u cot(u))2 + u2. Noting that

g(u) =
uf ′(u)

f(u)
,(4.1)

we obtain

Ryγ (z) =
1

π

∫ π

0

g(u)

−γz + f(u)
du

=
1

π

∫ π

0

g(u)/f(u)

1 − γz/f(u)
du =

1

γπ

∫ γe

0

f−1(γ/s)

1 − sz
ds,

where we have changed the variables as s = γ/f(u).

Ryγ (z) =
1

γπ

∫ γe

0

f−1(γ/s)

1 − sz
ds

=
1

γπ

∫ γe

0

(
sz

1 − sz
+ 1

)
f−1(γ/s)ds

=
1

γ
+

1

γπ

∫ γe

0

z

1 − sz
sf−1(γ/s)ds.

Therefore we obtain the Lévy measure νyγ (ds) =
sf−1(γ/s)

γπ
ds of yγ .

(5) It is direct consequence of Proposition 2.1.

�

Remark 4.3. Here we consider the limit distribution with parameter γ = 1.

For example, if ρ is the free Poisson distribution with parameter 1, this is

the case. Simply we write y instead of y1. There exists a probability measure

ρ such that

Rρ(z) =
Ry(z) − 1

z
.(4.2)

Indeed, if we consider the shifted free cumulant sequence {kn(ρ)}n∈N ={
(n+1)n

(n+1)!

}
n∈N

, which is a sequence of coefficients of Taylor expansion of Rρ
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at 0, then it becomes a moment sequence of a probability measure. This

means that the measure ρ is a free compound Poisson distribution with the

compound measure σ, the moments of which are mn(σ) = (n+1)n

(n+1)!
. From

(4.2), we have

zRy(zMρ(z)) = zMρ(z).(4.3)

By putting P (z) = zMρ(z) and using the Lagrange inversion formula, (4.3)

implies that

nth coefficient of {P (z)} =
1

n
×
(
(n− 1)st coefficient of Rρ(z)

)
.

Hence we obtain the moments of ρ as

mn(ρ) =
(2n + 1)n−1

n!
.

4.2. On the limit distribution in boolean case. Let s := s1 denote a

probability measure with the moment sequence
{nn

n!

}
n≥0

, the positivity of

which is ensured by [14]. Then its moment generating function Ms(z) can

be given by

Ms(z) =
∞∑

n=0

nn

n!
zn =

1

1 − η(z)
(1)

where the function η(z) is defined by

η(z) = −W0(−z), z ∈ C\
[ 1

e
,∞
)
.

Remark 4.4. The following useful facts on the function η can be found in

[9, Sect.2]: The map

θ 7−→
sin θ

θ
exp

(
θ cot θ

)

is a bijection of (0, π) onto (0, e), and if we define the functions η+, η− :[ 1
e ,∞

)
→ C by

η±
( θ

sin θ
exp

(
− θ cot θ

))
= θ cot θ ± i θ, 0 ≤ θ < π,

then

η±(x) = lim
y ↓ 0

η(x + iy), x ∈
[ 1
e ,∞

)
.

From (1), the Cauchy transform of the measure s is given by

Gs(ζ) =
1

ζ

1

1 − η
(

1
ζ

) , for ζ ∈ C \ [0, e].
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Now we apply the Stieltjes inversion formula to obtain the density func-

tion ϕs(t) of the measure s, that is, for t ∈ [0, e],

ϕs(t) = −
1

π
lim
ε ↓ 0

Im
(
Gs(t + iε)

)

= −
1

π
lim
ε ↓ 0

Im

(
1

t + iε

1

1 − η
(

1
t+iε

)
)

= −
1

π
lim
ε ↓ 0

Im

(
t− iε

t2 + ε2
1

1 − η
(

t−iε
t2+ε2

)
)

= −
1

π
Im

(
1

t

1

1 − η−
(

1
t

)
)
,

where the function η− is defined as in Remark above. Here we change the

variables

1

t
=

θ

sin θ
exp

(
− θ cot θ

)
,

then it follows that

ϕs(t) = −
1

π
Im

(
1

t

1

1 −
(
θ cot θ − iθ

)
)

=
1

π

1

t

θ
(
1 − θ cot θ

)2
+ θ2

=
1

π

( θ

sin θ
exp

(
− θ cot θ

))
(

θ
(
1 − θ cot θ

)2
+ θ2

)

=
1

π

θ2 exp
(
− θ cot θ

)

sin θ
((

1 − θ cot θ
)2

+ θ2
) .

Thus we obtain the following proposition:

Proposition 4.5. The probability density function ϕs of the measure s can

be given by the implicit (parametric) form as

ϕs

(sin v

v
exp

(
v cot v

))
=

1

π

v2 exp
(
− v cot v

)

sin v
((

1 − v cot v
)2

+ v2
) , 0 < v < π.
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Remark 4.6. (1) The shape of the density function of ϕs is as the graph

below, especially non-unimodal.

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

(2) The function
(
1 − v cot v

)2
+ v2 also appears in the integral repre-

sentation of W0(z)/z as we mentioned Proposition 4.2:

W0(z)

z
=

1

π

∫ π

0

(
1 − v cot v

)2
+ v2

z +
v

sin v exp
(
− v cot v

)dv.

Thus using f(v) = v csc v exp(−v cot v) and (4.1) again, the para-

metric form of the density function can be rewritten as

ϕs

( 1

f(v)

)
=

1

π

(
f(v)

)2

f ′(v)
.

4.3. Concluding remark. We also know that there exists the similar mo-

ment sequence. In the paper by Dykema and Haagerup [9], they find a

limit distribution of DT-operator DT(1, δ0). The moment of their one is

mn = nn

(n+1)!
. A natural question arises: how do we realize this limit theorem

via random matrix model?
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