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Abstract

The first part of this paper deals with the topic of finding equivalent norms and

characterizations for vector-valued Besov and Triebel-Lizorkin spaces Bs
p,q(E) and

F s
p,q(E). We will deduce general criteria by transferring and extending a theorem of

Bui, Paluszyński and Taibleson from the scalar to the vector-valued case.

By using special norms and characterizations we will derive necessary and suffi-

cient conditions for belonging to a vector-valued function spaces Bs
p,q(E) or F s

p,q(E).
It will be shown that an element of S ′(Rn, E) belongs to a function space if and only

if it can be written as a linear combination of harmonic atoms resp. quarks with

suitable conditions for the coefficients.

Key Words. Vector-valued function spaces, vector-valued Besov spaces, vector-valued
Triebel-Lizorkin spaces, local means, atomic decompositions, subatomic decompositions,
quarks
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1 Introduction

The aim of this work is to extend the results for atomic and subatomic charaterizations
of the function spaces Bs

p,q and F s
p,q to the vector-valued function spaces Bs

p,q(E) and
F s
p,q(E). For a comprehensive treatise of the scalar case (E = C) we refer to chapter 13

and 14 of [Tri97]. A short consideration of the vector-valued case is given in chapter 15 of
that book. But the proofs of the crucial theorems 15.8, p. 114 and 15.11, p. 116 are only
shortly outlined and are mostly based on results for vector-valued function spaces which
are well-known in the scalar, but have not yet been considered in the vector-valued case
in detail.

This paper tries to derive these two theorems in wider detail, including the necessary
steps before. In chapter 2 we will deal with the fundamentals of vector-valued functions
and function spaces. We won’t give any proofs mainly because most of them are similar
to the scalar case. Many of these were treated in [Tri83].

In the third chapter we will prove a general result for equivalent norms and character-
izations of vector-valued function spaces Bs

p,q(E) and F s
p,q(E) in full detail. The scalar

version (E = C) of this theorem goes back to Bui, Paluszyński and Taibleson (see [BPT96]

1

http://arxiv.org/abs/1103.6159v1


and [BPT97]), where the proof, which we will transfer to the vector-valued case, is given
in this form in [Ryc99]. Nevertheless, there will be a little modification caused by some
minor gap in the original proof. An earlier version with a bit worse, but more general
conditions can be found in [Tri92], section 2.4, p. 100 for F s

p,q and section 2.5, p. 132 for
Bs
p,q. In the following we use our result to obtain explicit norms and characterizations

which we need to prove atomic and subatomic representations later on.
In the fourth chapter we will derive atomic and subatomic charaterizations for function

spaces. We keep close to the approach suggested in [Tri97], theorem 15.8, p. 114. Thus
we follow chapters 13 and 14 of [Tri97] and transfer the results to the vector-valued case,
with minor modifications due to some imperfections in the original proof.

2 Mathematical fundamentals

2.1 Vector-valued functions and distributions

Let E be a complex Banach space with norm ‖ · |E‖ and let E ′ be its dual. With UE we
denote the set of all x ∈ E with ‖x|E‖ = 1. Furthermore, let

Br(x) := {y ∈ E : ‖x− y|E‖ ≤ r} , Br := Br(0) and B := B1.

Let (M,M, m) be a σ-finite measure space, which will be the space Rn with the σ-algebra
of Borel sets and the Lebesgue measure | · | in the sequel. A function f :M → E is called
E-measurable if there exists a subset M0 of M such that m(M0) = 0, f(M \ M0) is
contained in a separable subspace E0 of E and if the complex-valued functions

a(f) : x 7→ a(f(x))

are measurable for all a ∈ E ′.
If f is E-measurable in this sense, then the function ‖f |E‖ : M → R, x 7→ ‖f(x)|E‖

is measurable because of

‖f(x)|E‖ = sup
a∈UE′

|a(f(x))|. (1)

Therefore, we can define the spaces Lp(E) for 0 < p ≤ ∞ as follows:

Lp(M,E) :=
{
f :M → E, f measurable ,

∥∥∥‖f |E‖
∣∣Lp(M,M, m)

∥∥∥ <∞
}
.

We write shortly Lp(E) := Lp(R
n, E) and Lp := Lp(C). The spaces Lp(M,E) are (quasi)-

Banach spaces.
For functions f :M → E of the form

f =

K∑

k=1

bk(x)uk

with integrable bk : M → C and uk ∈ E for k = 1, . . . , K we define the Bochner integral
as a mapping into E through

∫

Rn

f(x) dx :=

K∑

k=1

uk

∫

Rn

bk(x) dx.
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For every a ∈ E ′ it follows

a

(∫

Rn

f(x) dx

)
= a

(
K∑

k=1

uk

∫

Rn

bk(x) dx

)
=

K∑

k=1

a(uk)

∫

Rn

bk(x) dx

=

∫

Rn

K∑

k=1

a(uk)bk(x) dx =

∫

Rn

a(f(x)) dx

(2)

and thus with (1)

∥∥∥∥
∫

Rn

f(x) dx
∣∣E
∥∥∥∥ ≤

∫

Rn

‖f(x)|E‖ dx. (3)

According to that the Bochner integral is a bounded linear operator from the subspace of
functions of this form into E. This subspace is dense in L1(M,E) (see [Gra04], section
4.5.c., p. 318). So the operator can be continued to L1(M,E) uniquely. We want to
call this continuation Bochner integral. Then the properties (2) and (3) hold for all
f ∈ L1(M,E).

We define the Hardy-Littlewood maximal function M(f) for f ∈ Lloc1 as

M(f)(x) := sup
Br(y)∋x

1

|Br(y)|

∫

Br(y)

|f(y)| dy. (4)

If, for a given K : Rn → C, there exists a non-negative, monotonically decreasing function
ψ ∈ L1((0,∞)) with |K(x)| ≤ ψ(|x|), then it holds

sup
δ>0

|Kδ ∗ f | (x) ≤ ‖ψ(| · |)|L1(R
n,C)‖ ·M(f)(x) (5)

for Kδ(x) := δ−nK(δ−nx) and f ∈ Lloc1 . A proof of this proposition can be found in
[StW90], chapter 3, p. 59. Furthermore, for every 1 < p ≤ ∞ there exists a constant
c > 0 such that

‖M(f)|Lp‖ ≤ c‖f |Lp‖ (6)

for all f ∈ Lp and for every 1 < p <∞ and 1 < q ≤ ∞ there exists a constant c > 0 such
that

∥∥∥∥∥∥

( ∞∑

j=1

M(fj)
q

) 1

q ∣∣Lp

∥∥∥∥∥∥
≤ c

∥∥∥∥∥∥

( ∞∑

j=1

|fj|
q

) 1

q ∣∣Lp

∥∥∥∥∥∥
(7)

for all {fj}j∈N ∈ Lp(lq). References for the proofs are given in [Tri92], section 2.2.2, p. 89.

We denote by S(Rn, E) the space of functions ϕ : Rn → E which are infinitely often
differentiable and for which the norms

‖ϕ|E‖K,L := sup
x∈Rn

(1 + |x|2)
K
2

∑

|α|≤L
‖Dαϕ(x)|E‖

3



for K,L ∈ N0 are finite. We write shortly S(Rn) := S(Rn,C) and, for ϕ ∈ S(Rn),

‖ϕ‖K,L := ‖ϕ|C‖K,L. (8)

The Fourier transform ϕ̂ of ϕ ∈ S(Rn) will be defined as

ϕ̂(ξ) := (2π)−
n
2

∫

Rn

ϕ(x)e−ixξ dx,

whereas we denote the inverse Fourier transform by ϕ̌. It holds

ϕ̌(ξ) = (2π)−
n
2

∫

Rn

ϕ(x)eixξ dx.

We call a linear map f : S(Rn) → E an E-valued tempered distribution if there exist
constants c > 0 and K,L ∈ N0 such that for all ϕ ∈ S(Rn) we have

‖f(ϕ)|E‖ ≤ c‖ϕ‖K,L.

The set of all this linear maps will be denoted by S ′(Rn, E). We say that fj converges
to f in S ′(Rn, E) if and only if fj(ϕ) converges to f(ϕ) for all ϕ ∈ S(Rn). Such a
distribution f will be called regular if there is a measurable, locally Bochner integrable
function g : Rn → E so that

f(ϕ) =

∫

Rn

g(x)ϕ(x) dx

for all ϕ ∈ S(Rn). As in the scalar case Lp(E) for 1 ≤ p ≤ ∞ can be understood as a
subset of S ′(Rn, E) .

For an f ∈ S ′(Rn, E) we define the Fourier transform f̂ as

f̂(ϕ) := f(ϕ̂) for ϕ ∈ S(Rn).

The usual fundamental properties from the scalar case can be transfered.

For f ∈ S ′(Rn, E) and ψ ∈ S(Rn) we define the convolution as

(ψ ∗ f) (x) := (2π)−
n
2 f (ψ(x− ·)) for x ∈ R

n, (9)

analogously to the scalar case. The function ψ ∗ f is infinitely often differentiable and
there exist c > 0 and K,L ∈ N0 such that

‖ (ψ ∗ f) (x)|E‖ ≤ c(1 + |x|2)
K
2 ‖ψ‖K,L. (10)

As in the scalar case the important relation

(ψ ∗ f)ˆ = ψ̂ · f̂ .

holds.
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2.2 Vector-valued function spaces

Let Ω be an open subset of Rn. We set

LΩ
p (E) := {f ∈ Lp(R

n, E) ∩ S ′(Rn, E) : supp f̂ ⊂ Ω}

for 0 < p ≤ ∞ and shortly LΩ
p if E = C. The Nikolskii inequality can be transfered to

the vector-valued case, i.e. for 0 < p1 < p2 ≤ ∞ there exists a constant c > 0 such that
for all r > 0 and f ∈ LBr

p1
(E) it holds

‖f |Lp2(E)‖ ≤ c r
n
(

1

p1
− 1

p2

)

‖f |Lp1(E)‖. (11)

For a proof see [ScS01], lemma 1, p. 6. Moreover, let f ∈ Lp(E) for 1 ≤ p ≤ ∞ and
g ∈ L1. Then

‖g ∗ f |Lp(E)‖ ≤ (2π)−
n
2 ‖g|L1‖ · ‖f |Lp(E)‖. (12)

If otherwise 0 < p < 1, then there exists a constant c > 0 such that for f ∈ LBr
p (E),

g ∈ LBr
p and r > 0

‖g ∗ f |Lp(E)‖ ≤ crn(
1

p
−1)‖g|Lp‖ · ‖f |Lp(E)‖ (13)

holds. Additionally, one gets for 0 < p ≤ ∞, a > n
p

and f ∈ LBr
p (E)

∥∥∥∥ sup
z∈Rn

‖f(· − z)|E‖

(1 + r|z|)a
∣∣Lp
∥∥∥∥ ≤ c‖f |Lp(E)‖. (14)

Proofs for E = C can be found in [Tri83], section 1.5.1. resp. 1.4.1.

Let ϕj for j ∈ N0 be elements of S(Rn) with

supp ϕ0 ⊂ {|ξ| ≤ 2},

supp ϕj ⊂ {2j−1 ≤ |ξ| ≤ 2j+1} for j ∈ N,
∞∑

j=0

ϕj(ξ) = 1 for all ξ ∈ R
n,

|Dαϕj(ξ)| ≤ cα2
−j|α| for all α ∈ N

n
0 .

(15)

Then we call {ϕj}
∞
j=0 a smooth dyadic resolution of unity.

Definition 2.1. Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R and {ϕj}
∞
j=0 be a smooth dyadic

resolution of unity. For f ∈ S ′(Rn, E) we define

‖f |Bs
p,q(E)‖ :=

( ∞∑

j=0

2jsq‖(ϕj f̂ )̌ |Lp(E)‖
q

) 1

q

(modified if q = ∞) and

Bs
p,q(E) :=

{
f ∈ S ′(Rn, E) : ‖f |Bs

p,q(E)‖ <∞
}
.
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Definition 2.2. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R and {ϕj}
∞
j=0 be a smooth dyadic

resolution of unity. For f ∈ S ′(Rn, E) we define

‖f |F s
p,q(E)‖ :=

∥∥∥∥∥∥

( ∞∑

j=0

2jsq‖(ϕj f̂ )̌ |E‖
q

) 1

q ∣∣Lp

∥∥∥∥∥∥

(modified if q = ∞) and

F s
p,q(E) :=

{
f ∈ S ′(Rn, E) : ‖f |F s

p,q(E)‖ <∞
}
.

We will write shortly Bs
p,q for Bs

p,q(C) and F s
p,q for F s

p,q(C). As in the scalar case one can
show that the definition does not depend on the choice of the smooth dyadic resolution of
unity and that the introduced quasi-norms1 for two different smooth dyadic resolutions of
unity are equivalent. Furthermore, the so defined spaces are (quasi)-Banach spaces. We
have the fundamental embedding

Bs
p,q1

(E) →֒ Bs
p,q2

(E), F s
p,q1

(E) →֒ F s
p,q2

(E)

for q1 < q2 and

Bs
p,min(p,q)(E) →֒ F s

p,q(E) →֒ Bs
p,max(p,q)(E).

Additionally we have

BL
∞,1(E) →֒ CL

ub(E) →֒ BL
∞,∞(E) (16)

for all L ∈ N0, where CL
ub(E) is the set of all L times continuously differentiable functions

f : Rn → E.
For m : Rn → C let

‖m‖N := sup
|α|≤N

sup
x∈Rn

(1 + |x|2)
|α|
2 |Dαm(x)|.

Then there exist c > 0 and N ∈ N in dependence of p, q and s such that for all infinitely
often differentiable functions m : Rn → C

‖(mf̂ )̌ |Bs
p,q(E)‖ ≤ c ‖m‖N · ‖f |Bs

p,q(E)‖ resp.

‖(mf̂ )̌ |F s
p,q(E)‖ ≤ c ‖m‖N · ‖f |F s

p,q(E)‖.
(17)

For a proof in the scalar case see [Tri83], section 1.5.2., p. 26 and section 1.6.3., p. 31.
Let Iσ(f) := ((1 + | · |2)

σ
2 f̂ )̌ . Then f is an element of Bs

p,q(E) if and only if Iσ(f) is an
element of Bs−σ

p,q (E) and we have

‖ · |Bs
p,q(E)‖ ∼ ‖Iσ(·)|B

s−σ
p,q (E)‖, (18)

analogously for F s
p,q(E). A proof in the scalar case can be found in [Tri83], section 2.3.8.,

p. 58.

1In the following we will use the term “norm“ even if we only have quasi-norms for p < 1 or q < 1.
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For function spaces the so-called Sobolev embeddings hold: If 0 < p0 ≤ p1 ≤ ∞,
0 < q ≤ ∞, then

Bs0
p0,q →֒ Bs1

p1,q if s0 −
n

p0
= s1 −

n

p1
. (19)

For a derivation (in the vector-valued case) see e. g. [ScS01], proposition 3, p. 12.
If 0 < p0 < p1 <∞, 0 < q0, q1 ≤ ∞, then

F s0
p0,q0 →֒ F s1

p1,q1 if s0 −
n

p0
= s1 −

n

p1
. (20)

The proof for the vector-valued case can be found in [ScS01], theorem 5, p. 36.
As in the scalar case we define C s(E) := Bs

∞,∞ and

C
−∞(E) :=

⋃

s∈R
C
s(E).

By (19) and (20) we have

C
−∞(E) =

{
f ∈ S ′(Rn, E) : ∃ p, q, s with f ∈ Bs

p,q(E) ∨ f ∈ F s
p,q(E)

}
.

Furthermore, we set

σp = n

(
1

p
− 1

)

+

, σp,q = n

(
1

min(p, q)
− 1

)

+

,

where a+ = max(a, 0). Let ⌊a⌋ be the biggest integer smaller or equal to a and ⌈a⌉ the
smallest integer bigger or equal to a.

3 Equivalent norms and characterizations for

vector-valued function spaces

In the first section of this chapter we will prove a theorem which gives equivalent norms
and characterizations for function spaces Bs

p,q(E) and F s
p,q(E) in a very general form. In

view of notation we stay close to [Tri92] resp. [Tri97] here as well as in the later chapters
such that some differences to the proof in [Ryc99], on which our derivations are based,
cannot be avoided.

In the second part we apply the theorem to get explicit equivalent norms and charac-
terizations which we will need later on for our representation by atomic decompositions.

3.1 General characterizations

Let f : Rn → C be a measurable function. We set fj(x) := 2jnf(2jnx).

Theorem 3.1. Let S + 1 ∈ N0 with

S ≥ ⌊s⌋, (21)

7



let Ψ, ψ ∈ S(Rn) and let there be an ε > 0 such that

|Ψ(x)| > 0 for {|x| < 2ε} , (22)

|ψ(x)| > 0 for
{ε
2
< |x| < 2ε

}
, (23)

Dαψ(0) = 0 for |α| ≤ S. (24)

Furthermore, let s ∈ R and

(Ψ∗f)a(x) := sup
y∈Rn

‖(Ψf̂ )̌ (x− y)|E‖

(1 + |y|)a
= sup

y∈Rn

‖
(
Ψ̌ ∗ f

)
(x− y)|E‖

(1 + |y|)a

(ψ∗
j f)a(x) := sup

y∈Rn

‖(ψ(2−j·)f̂ )̌ (x− y)|E‖

(1 + 2j |y|)a
= sup

y∈Rn

‖
(
ψ̌j ∗ f

)
(x− y)|E‖

(1 + 2j |y|)a
.

(25)

(i) Let 0 < p ≤ ∞, 0 < q ≤ ∞ and a > n
p
. Then

‖f |Bs
p,q(E)‖Ψ,ψ := ‖(Ψf̂ )̌ |Lp(E)‖+

( ∞∑

j=1

2jsq‖(ψ(2−j·)f̂ )̌ |Lp(E)‖
q

) 1

q

and

‖f |Bs
p,q(E)‖

a
Ψ,ψ := ‖(Ψ∗f)a|Lp‖+

( ∞∑

j=1

2jsq‖(ψ∗
j f)a|Lp‖

q

) 1

q

(modified in case of q = ∞) are equivalent norms for ‖ · |Bs
p,q(E)‖. In addition, it holds

Bs
p,q(E) =

{
f ∈ S ′(Rn, E) : ‖f |Bs

p,q(E)‖Ψ,ψ <∞
}

(26)

and

Bs
p,q(E) =

{
f ∈ S ′(Rn, E) : ‖f |Bs

p,q(E)‖
a
Ψ,ψ <∞

}
. (27)

(ii) Let 0 < p <∞, 0 < q ≤ ∞ and a > n
min(p,q)

. Then

‖f |F s
p,q(E)‖Ψ,ψ := ‖(Ψf̂ )̌ |Lp(E)‖+

∥∥∥∥∥∥

( ∞∑

j=1

2jsq‖(ψ(2−j·)f̂ )̌ |E‖q

) 1

q

|Lp

∥∥∥∥∥∥

and

‖f |F s
p,q(E)‖

a
Ψ,ψ := ‖(Ψ∗f)a|Lp‖+

∥∥∥∥∥∥

( ∞∑

j=1

2jsq
(
(ψ∗

j f)a
)q
) 1

q

|Lp

∥∥∥∥∥∥

(modified in case of q = ∞) are equivalent norms for ‖ · |F s
p,q(E)‖. In addition, it holds

F s
p,q(E) =

{
f ∈ S ′(Rn, E) : ‖f |F s

p,q(E)‖Ψ,ψ <∞
}

and

F s
p,q(E) =

{
f ∈ S ′(Rn, E) : ‖f |F s

p,q(E)‖
a
Ψ,ψ <∞

}
.

8



Proof. First step: Let Φ, ϕ ∈ S(Rn) with

|Φ(x)| > 0 for {|x| < 2ε′} ,

|ϕ(x)| > 0 for

{
ε′

2
< |x| < 2ε′

}
(28)

be given and let (Φ∗f)a(x) and (ϕ∗
jf)a(x) be defined analogously as (25). Let a > 0,

0 < p ≤ ∞ (0 < p <∞ in case of F s
p,q(E)), 0 < q ≤ ∞ and s < S + 1 be fixed. We want

to show in this step that there is a constant C > 0 independent of f such that

‖(Ψ∗f)a|Lp‖+

( ∞∑

j=1

2jsq‖(ψ∗
j f)a|Lp‖

q

) 1

q

≤ C ‖(Φ∗f)a|Lp‖+C

( ∞∑

j=1

2jsq‖(ϕ∗
jf)a|Lp‖

q

) 1

q

(29)

and

‖(Ψ∗f)a|Lp‖+

∥∥∥∥∥∥

( ∞∑

j=1

2jsq
(
(ψ∗

j f)a
)q
) 1

q

|Lp

∥∥∥∥∥∥

≤ C ‖(Φ∗f)a|Lp‖+C

∥∥∥∥∥∥

( ∞∑

j=1

2jsq(ϕ∗
jf)a)

q

) 1

q

|Lp

∥∥∥∥∥∥

(30)

holds. We use the following lemma without a proof here.

Lemma 3.2. Let Φ, ϕ ∈ S(Rn) with (28) be given. Then there exist two functions
Λ, λ ∈ S(Rn) with

supp Λ ⊂{|x| < 2ε′} ,

supp λ ⊂

{
ε′

2
< |x| < 2ε′

}
,

(31)

Λ(x)Φ(x)+

∞∑

j=1

λ(2−jx)ϕ(2−jx) = 1. (32)

For our initial Φ, ϕ ∈ S(Rn) we choose Λ, λ ∈ S(Rn) by lemma 3.2. Now we multiply (32)
with f , apply the Fourier transform and use properties of the convolution of functions
from S(Rn) with elements of S ′(Rn, E) (see (9)) to get

f =
(
Λ̌ ∗ Φ̌

)
∗ f +

∞∑

k=1

(
λ̌k ∗ ϕ̌k

)
∗ f

in S ′(Rn, E). Hence we can derive

(ψ̌j ∗ f)(y) =
(
(ψ̌j ∗ Λ̌) ∗ (Φ̌ ∗ f)

)
(y) +

∞∑

k=1

(
(ψ̌j ∗ λ̌k) ∗ (ϕ̌k ∗ f)

)
(y) (33)
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for all y ∈ Rn. With the norm inequality of the Bochner integral (see (3)) it follows

‖
((
ψ̌j ∗ λ̌k

)
∗ (ϕ̌k ∗ f)

)
(y)|E‖ ≤

∫

Rn

∣∣(ψ̌j ∗ λ̌k
)
(z)
∣∣ · ‖ (ϕ̌k ∗ f) (y − z)|E‖ dz

≤ (ϕ∗
kf)a(y)

∫

Rn

∣∣(ψ̌j ∗ λ̌k
)
(z)
∣∣ (1 + 2k|z|)a dz

≡ (ϕ∗
kf)a(y) · Ij,k.

(34)

The scalar(!) integral Ij,k is the same as in [Ryc99].

Lemma 3.3. Let µ, ν ∈ S(Rn), M ∈ Z,M ≥ −1, d > 0 and

Dαµ(0) = 0 for all α ∈ N
n with |α| ≤ M.

Then for all N ∈ N there exists a constant CN such that for all t ∈ (0, d]

sup
z∈Rn

| (µ(t·)̌ ∗ ν̌) (z)| (1 + |z|)N ≤ CN t
M+1.

Proof. A proof can be found in Lemma 1 of [Ryc99].

For k ≤ j we obtain by the substitution of variables 2ky → y
∫

Rn

∣∣(ψ̌j ∗ λ̌k
)
(z)
∣∣ · (1 + 2k|z|)a dz =

∫

Rn

2kn
∣∣(ψ̌j−k ∗ λ̌

)
(2kz)

∣∣ · (1 + 2k|z|)a dz

=

∫

Rn

∣∣(ψ̌j−k ∗ λ̌
)
(z)
∣∣ · (1 + |z|)a dz

≤ Cψ,λ sup
z∈Rn

∣∣(ψ(2k−j·)̌ ∗ λ̌
)
(z)
∣∣ · (1 + |z|)a+n+1

≤ C ′
ψ,λ2

(k−j)(S+1)

using lemma 3.3 with µ = ψ and ν = λ for M = S. In case of k ≥ j we deduce
∫

Rn

∣∣(ψ̌j ∗ λ̌k
)
(z)
∣∣ · (1 + 2k|z|)a dz =

∫

Rn

2jn
∣∣(ψ̌ ∗ λ̌k−j

)
(2jz)

∣∣ · (1 + 2k|z|)a dz

=

∫

Rn

∣∣(ψ̌ ∗ λ̌k−j
)
(z)
∣∣ · (1 + |2k−jz|)a dz

≤ 2(k−j)a
∫

Rn

∣∣(ψ̌ ∗ λ̌k−j
)
(z)
∣∣ · (1 + |z|)a dz

≤ CM,ψ,λ2
(k−j)a2(j−k)(M+1),

where M can be chosen arbitrarily large since (Dαλ)(0) = 0 for all α ∈ Nn because of
the properties of the support of λ (see (31)). If we choose M ≥ 2a − s, we obtain the
estimation

Ij,k ≤ Cλ,ψ

{
2(k−j)(S+1) , k ≤ j
2(j−k)(a−s+1) , k ≥ j

. (35)

Furthermore, by definition of the maximal functions in (25)

(ϕ∗
kf)a(y) ≤ (ϕ∗

kf)a(x)(1 + 2k|x− y|)a

≤ (ϕ∗
kf)a(x)max

(
1, 2(k−j)a

)
(1 + 2j |x− y|)a.

10



If we use this and insert it into (34) while applying (35), we get

sup
y∈Rn

‖
(
ψ̌j ∗ λ̌k ∗ ϕ̌k ∗ f

)
(y)|E‖

(1 + 2j|x− y|)a
≤ Cψ,λ(ϕ

∗
kf)a(x)

{
2(k−j)(S+1) , k ≤ j
2(j−k)(−s+1) , k ≥ j

. (36)

In correspondence, if we replace λ1 by Λ and ϕ1 by Φ in the previous calculations, we
obtain

sup
y∈Rn

‖
(
ψ̌j ∗ Λ̌ ∗ Φ̌ ∗ f

)
(y)|E‖

(1 + 2j|x− y|)a
≤ CΨ,Λ(Φ

∗f)a(x)2
−j(S+1). (37)

One has to keep in mind that only the case 1 = k ≤ j is needed, where we haven’t used
any conditions of the form (DαΛ)(0) = 0. With the representation of ψ̌j ∗ f in (33) and
with the triangle inequality for ‖ · |E‖ we conclude

(ψ∗
j f)a(x) ≤ C(Φ∗f)a(x) 2

−j(S+1) + C
∞∑

k=1

(ϕ∗
kf)a(x)

{
2(k−j)(S+1) , k ≤ j
2(j−k)(−s+1) , k ≥ j

.

By taking δ = min(S + 1− s, 1) > 0 (see (21)) we arrive at

2js(ψ∗
j f)a(x) ≤ C2−jδ(Φ∗f)a(x) + C

∞∑

k=1

2ks(ϕ∗
kf)a(x)2

−|j−k|δ. (38)

Analogously, by replacing ψ1 by Ψ in the prior remarks, where we only used the case
k ≥ j = 1 and therefore conditions of the form (DαΨ) (0) = 0 are not necessary, we get

(Ψ∗f)a(x) ≤ C(Φ∗f)a(x) + C
∞∑

k=1

2ks(ϕ∗
kf)a(x)2

−kδ. (39)

Starting from this pointwise estimates we can now establish our assertions (29) and (30).
For this we choose a usual method which is applied in [Tri92] several times and which
turned into a lemma in [Ryc99].

Lemma 3.4. Let 0 < p, q ≤ ∞ and δ > 0. We assume that for the sequences of R-
measurable functions {gk}

∞
k=0 and {Gj}

∞
j=0 it holds

|Gj(x)| ≤ C0

∞∑

k=0

2−|k−j|δ|gk(x)| for x ∈ R
n,

where C0 is a constant independent of j and x. Then there exist constants C1 and C2 (in
dependence of p, q, δ) such that

( ∞∑

j=0

‖Gj|Lp‖
q

) 1

q

≤ C1

( ∞∑

j=0

‖gj|Lp‖
q

) 1

q

, (40)

∥∥∥∥∥∥

( ∞∑

j=0

|Gj |
q

) 1

q

|Lp

∥∥∥∥∥∥
≤ C2

∥∥∥∥∥∥

( ∞∑

j=0

|gj|
q

) 1

q

|Lp

∥∥∥∥∥∥
. (41)

11



Proof. A proof can be found in Lemma 2 of [Ryc99].

Now we come back to the initial topic. Let G0(x) := (Ψ∗f)a(x), Gj(x) = 2js(ψ∗
j f)a(x)

for j ∈ N, g0(x) = (Φ∗f)a(x) and gk(x) = 2ks(ϕ∗
kf)a(x) for k ∈ N. Then the conditions

of lemma 3.4 follow from (38) and (39) and we obtain from (40) and (41), after slight
modification, the desired inequalities (29) and (30).

Second Step: Let Ψ, ψ ∈ S(Rn) with (28) be given. We want to show that there
exists a constant C > 0 with

‖(Ψ∗f)a|Lp‖+

( ∞∑

j=1

2jsq‖(ψ∗
j f)a|Lp‖

q

) 1

q

≤ C‖(Ψf̂ )̌ |Lp(E)‖+ C

( ∞∑

j=1

2jsq‖(ψ(2−j·)f̂ )̌ |Lp(E)‖
q

) 1

q

(42)

and an analogous result for F s
p,q(E). At the beginning we choose once again Λ, λ ∈ S(Rn)

for our given Ψ, ψ ∈ S(Rn) by lemma 3.2 with

supp Λ ⊂ {|x| < 2ε} , supp λ ⊂
{ε
2
< |x| < 2ε

}
,

1 = Λ(x)Ψ(x) +
∞∑

k=1

λ(2−kx)ψ(2−kx).
(43)

If we replace x by 2−jx for j ∈ N in the last relation, it follows

1 = Λ(2−jx)Ψ(2−jx) +
∞∑

k=j+1

λ(2−kx)ψ(2−kx)

and

(
ψ̌j ∗ f

)
(y) =

((
Λ̌j ∗ Ψ̌j

)
∗
(
ψ̌j ∗ f

))
(y) +

∞∑

k=j+1

((
ψ̌j ∗ λ̌k

)
∗
(
ψ̌k ∗ f

))
(y) (44)

for all y ∈ Rn. We deduce for all N ∈ N with lemma 3.3 (k ≥ j)

∣∣(ψ̌j ∗ λ̌k
)
(z)
∣∣ =

∣∣2jn
(
ψ̌ ∗ λ̌k−j

)
(2jz)

∣∣ ≤ cψ,λ,N
2jn2(j−k)N

(1 + 2j|z|)a

(without using any moment conditions on ψ) and obviously

∣∣(Ψ̌j ∗ Λ̌j
)
(z)
∣∣ = 2jn

(
Ψ̌ ∗ Λ̌

)
(2jz) ≤ cΨ,Λ

2jn

(1 + 2j|z|)a
.

If we insert these two estimates into (44), we obtain

‖
(
ψ̌j ∗ f

)
(y)|E‖ ≤ CN

∞∑

k=j

2jn2(j−k)N
∫

Rn

‖
(
ψ̌k ∗ f

)
(z)|E‖

(1 + 2j|y − z|)a
dz (45)
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for all f ∈ S ′(Rn, E). Now we divide both sides by (1 + 2j|x− y|)a and get

(ψ∗
j f)a(x) ≤ CN

∞∑

k=j

2jn2(j−k)N
∫

Rn

‖
(
ψ̌k ∗ f

)
(z)|E‖

(1 + 2j|x− z|)a
dz.

Let r ∈ (0, 1] be fixed. Keeping in mind k ≥ j we arrive with

‖
(
ψ̌k ∗ f

)
(z)|E‖

(1 + 2j |x− z|)a
≤ ‖

(
ψ̌k ∗ f

)
(z)|E‖r [(ψ∗

kf)a(x)]
1−r (1 + 2k|x− z|)a(1−r)

(1 + 2j|x− z|)a

≤ ‖
(
ψ̌k ∗ f

)
(z)|E‖r [(ψ∗

kf)a(x)]
1−r 2a(k−j)

(1 + 2k|x− z|)ar

(see (25)) at

(ψ∗
j f)a(x) ≤ CN

∞∑

k=j

2jn2(j−k)N2a(k−j)[(ψ∗
kf)a(x)]

1−r
∫

Rn

‖
(
ψ̌k ∗ f

)
(z)|E‖r

(1 + 2k|x− z|)ar
dz

= CN

∞∑

k=j

2(j−k)N
′

[(ψ∗
kf)a(x)]

1−r
∫

Rn

2kn‖
(
ψ̌k ∗ f

)
(z)|E‖r

(1 + 2k|x− z|)ar
dz,

(46)

where N ′ = N − a + n still can be chosen arbitrarily large. This relation holds in an
analogous way for Ψ instead of ψj and we get slightly varied

(Ψ∗f)a(x) ≤ CN [(Ψ
∗f)a(x)]

1−r
∫

Rn

‖
(
Ψ̌ ∗ f

)
(z)|E‖r

(1 + |x− z|)ar
dz

+ CN

∞∑

k=1

2−kN
′

[(ψ∗
kf)a(x)]

1−r
∫

Rn

2kn‖
(
ψ̌k ∗ f

)
(z)|E‖r

(1 + 2k|x− z|)ar
dz.

We have to modify these two estimates a bit. For that reason we use a lemma which can
be directly adopted from [Ryc99].

Lemma 3.5. Let 0 < r ≤ 1 and {bj}
∞
j=0, {dj}

∞
j=0 be two sequences with values in (0,∞]

resp. (0,∞). Let there be an N0 ∈ N with

lim sup
j→∞

dj
2jN0

<∞ (47)

and for all N ∈ N a CN > 0 such that

dj ≤ CN

∞∑

k=j

2(j−k)Nbkd
1−r
k for j ∈ N0

holds. Then for all N ∈ N we have

drj ≤ CN

∞∑

k=j

2(j−k)Nrbk for j ∈ N0

with the same constants CN .
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Proof. A proof is given in lemma 3 of [Ryc99].

For fixed x ∈ Rn we make use of lemma 3.5 with dj = (ψ∗
j f)a(x) for j ∈ N, d0 =

(Ψ∗f)a(x) and

bj =

∫

Rn

2kn‖
(
ψ̌k ∗ f

)
(z)|E‖r

(1 + 2k|x− z|)ar
dz for all j ∈ N, b0 =

∫

Rn

‖
(
Ψ̌ ∗ f

)
(z)|E‖r

(1 + |x− z|)ar
dz.

We want to point out that we vary the procedure from [Ryc99] a bit here. We deal with
the question whether the dj fulfil condition (47) in the last step of the proof. The other
conditions precisely result from the calculations above (see (46)). If applicable, we get

(ψ∗
j f)a(x)

r ≤ C ′
N

∞∑

k=j

2(j−k)Nr
∫

Rn

2kn‖
(
ψ̌k ∗ f

)
(z)|E‖r

(1 + 2k|x− z|)ar
dz (48)

and

(Ψ∗f)a(x)
r ≤ C ′

N

∫

Rn

‖
(
Ψ̌ ∗ f

)
(z)|E‖r

(1 + |x− z|)ar
dz

+ C ′
N

∞∑

k=1

2−kNr
∫

Rn

2kn‖
(
ψ̌k ∗ f

)
(z)|E‖r

(1 + 2k|x− z|)ar
dz

(49)

with C ′
N = CN+a−n. Here C ′

N does not depend on f ∈ S ′(Rn, E), j ∈ N or r ∈ (0, 1].
We like to note that (48) in the case r > 1 can more easily be derived from (45) if we

replace a by a+ n + 1. By applying Hölder’s inequality two times we arrive at

‖
(
ψ̌j ∗ f

)
(y)|E‖

≤ CN

∞∑

k=j

2jn2(j−k)N
∫

Rn

‖
(
ψ̌k ∗ f

)
(z)|E‖

(1 + 2j |y − z|)a+n+1
dz

≤ C ′
N

( ∞∑

k=j

2(j−k)(N−1+n
r
−a)r

∫

Rn

2kn‖
(
ψ̌k ∗ f

)
(z)|E‖r

(1 + 2k|y − z|)ar
dz

) 1

r

.

If we use the inequality

(1 + 2j|x− z|)a ≤ (1 + 2j|x− y|)a(1 + 2j |y − z|)a

when dividing by (1 + 2j|x− y|)a, we get

(ψ∗
j f)a(x) ≤ C ′

N

( ∞∑

k=j

2(j−k)(N−1+n
r
−a)r

∫

Rn

2kn‖
(
ψ̌k ∗ f

)
(z)|E‖r

(1 + 2k|x− z|)ar
dz

) 1

r

and an analogous result for (Ψ∗f)a(x), which provides the desired results (48) and (49) -
because N ∈ N was arbitrary - in case of r > 1.

By our assumptions on a we can choose r in such a way that n
a
< r < p resp. n

a
< r <

min(p, q). Then we have h(x) := 1
(1+|x|)ar ∈ L1. The majority property (see (5)) yields for

all t > 0

| (ht ∗ g) (x)| ≤ cM(g)(x)
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for the Hardy-Littlewood maximal function M(g) introduced in (4). If we use this for
(48) (and (49)) with g(z) = ‖

(
ψ̌k ∗ f

)
(z)|E‖r and N = ⌊max(−s, 0)⌋+ 1, we come to

2jsr(ψ∗
j f)a(x)

r ≤ C ′
N

∞∑

k=j

2(j−k)δ2ksrM
(
‖
(
ψ̌k ∗ f

)
|E‖r

)
(x)

and to an analogous result for (Ψ∗f)a(x)
r with a suitable δ > 0. Now we apply lemma

3.4 with Gj = 2jsr[(ψ∗
j f)a]

r for j ∈ N, G0 = [(Ψ∗f)a]
r, gk = 2ksrM

(
‖
(
ψ̌k ∗ f

)
(z)‖r

)
for

k ∈ N, g0 =M
(
‖
(
Ψ̌ ∗ f

)
(z)‖r

)
, q̃ = q

r
and p̃ = p

r
. We obtain

‖(Ψ∗f)a|Lp‖+

( ∞∑

j=1

2jsq‖(ψ∗
j f)a|Lp‖

q

) 1

q

≤ C
∥∥∥M

(
‖(Ψf̂ )̌ |E‖r

) ∣∣L p

r

∥∥∥
1

r

+ C



( ∞∑

j=1

2jsq
∥∥∥M

(
‖(ψ(2−j·)f̂ )̌ |E‖r

) ∣∣L p

r

∥∥∥
q

r

) r
q




1

r

resp. the F s
p,q(E)-analogue. Because p

r
> 1 and in case of F s

p,q(E) as well q
r
> 1 (and

p
r
< ∞) it follows from the boundedness of the maximal operator from L p

r
to L p

r
resp.

from L p

r
(l q

r
) to L p

r
(l q

r
) (see (6) resp. (7))

‖(Ψ∗f)a|Lp‖+

( ∞∑

j=1

2jsq‖(ψ∗
j f)a|Lp‖

q

) 1

q

≤ C ′
∥∥∥ ‖(Ψf̂ )̌ |E‖r |L p

r

∥∥∥
1

r

+ C ′



( ∞∑

j=1

2jsq
∥∥∥ ‖(ψ(2−j·)f̂ )̌ |E‖r

∣∣L p

r

∥∥∥
q

r

) r
q




1

r

resp. the F s
p,q(E)-analogue which matches (at close view) our desired result (42).

Third step: Now we will conclude the equivalences of the norms ‖ · |Bs
p,q(E)‖, ‖ ·

|Bs
p,q(E)‖Ψ,ψ and ‖· |Bs

p,q(E)‖
∗
Ψ,ψ by the results of the first and the second step. We choose

a smooth dyadic resolution of unity consisting of the functions Φ = ϕ0 and {ϕj}j∈N with
ϕj(·) = ϕ(2−j·) (see (15)) with

ϕ0(ξ) > 0 for |ξ| < 2, ϕ(ξ) > 0 for
1

2
< |ξ| < 2.

Obviously it holds

‖(Ψf̂ )̌ |Lp(E)‖+

( ∞∑

j=1

2jsq‖(ψ(2−j·)f̂ )̌ |Lp(E)‖
q

) 1

p

≤ ‖(Ψ∗f)a|Lp‖+

( ∞∑

j=1

2jsq‖(ψ∗
j f)a|Lp‖

q

) 1

p

.

15



By the first step (see (29)) we get

‖(Ψ∗f)a|Lp‖+

( ∞∑

j=1

2jsq‖(ψ∗
j f)a|Lp‖

q

) 1

p

≤ C‖(Φ∗f)a|Lp‖+ C

( ∞∑

j=1

2jsq‖(ϕ∗
jf)a|Lp‖

q

) 1

p

because Φ and ϕ fulfil the necessary conditions for ε′ = 1. Now it follows by the second
step, applied to Φ and ϕ,

‖(Φ∗f)a|Lp‖+

( ∞∑

j=1

2jsq‖(ϕ∗
jf)a|Lp‖

q

) 1

p

≤ C ′‖(Φf̂ )̌ |Lp(E)‖+ C ′

( ∞∑

j=1

2jsq‖(ϕ(2−j·)f̂ )̌ |Lp(E)‖
q

) 1

q

= C ′‖f |Bs
p,q(E)‖

if our not yet proven condition of finiteness on dj in lemma 3.5 is true. We will turn our
attention to this question immediately.

Otherwise we obtain from the first step - this time by interchanging the roles of ϕ and
ψ resp. Φ and Ψ (this can be done, because Dαϕ(0) = 0 for all α ∈ Nn) - and from the
second step, applied to Ψ and ψ,

‖f |Bs
p,q(E)‖ ≤ ‖(Φ∗f)a|Lp‖+

( ∞∑

j=1

2jsq‖(ϕ∗
jf)a|Lp‖

q

) 1

p

≤ C‖(Ψ∗f)a|Lp‖+ C

( ∞∑

j=1

2jsq‖(ψ∗
j f)a|Lp‖

q

) 1

p

≤ C ′‖(Ψf̂ )̌ |Lp(E)‖+ C ′

( ∞∑

j=1

2jsq‖(ψ(2−j·)f̂ )̌ |Lp(E)‖
q

) 1

q

if our not yet proven condition on the finiteness of dj in lemma 3.5 is true.
Now let’s take a look at this condition: Let us at first assume f to be in Bs

p,q(E). Then
by the lift property (see (18)) and the Sobolev embeddings (see (19)) there is a σ ∈ N

such that g := ((1 + |ξ|2)−σf̂ )̌ ∈ L∞(E). We obtain

dj = (ψ∗
j f)a(x) = sup

y∈Rn

∥∥∥
(
ψ(2−j·)f̂

)
ˇ(y)

∣∣E
∥∥∥

(1 + 2j|x− y|)a

= sup
y∈Rn

∥∥∥∥
(
ψ(2−j·)(1 + |ξ|2)+σ(1 + |ξ|2)−σf̂

)∨
(y)
∣∣E
∥∥∥∥

(1 + 2j|x− y|)a

= sup
y∈Rn

∥∥((ψ(2−j·)(1 + |ξ|2)σ )̌ ∗ g) (y)
∣∣E
∥∥

(1 + 2j|x− y|)a
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By properties of the convolution we estimate by

dj = (ψ∗
j f)a(x) ≤ ‖g|L∞(E)‖ · ‖(ψ(2−j·)(1 + |ξ|2)σ )̌ |L1‖

≤ C‖g|L∞(E)‖ ·
∑

|α|≤2σ

‖Dαψ̌j |L1‖

≤ C ′2jσ‖g|L∞(E)‖ ·
∑

|α|≤2σ

‖Dαψ̌|L1‖,

Therefore, we get the requested condition (47) with N0 = 2σ and the desired result follows.
The proof in the F s

p,q(E)-case is the same.

Fourth step: Last but not least we show the characterizations (26) and (27) for
Bs
p,q(E). The proof of the F s

p,q(E)-case is the same.

In the first step we didn’t use the condition f ∈ Bs
p,q(E). So, if for an f ∈ S ′(Rn, E)

we have ‖f |Bs
p,q(E)‖ < ∞, then ‖f |Bs

p,q(E)‖
a
ψ,Ψ < ∞ for admissible a and vice versa.

Therefore we have (27).

In the second step we used the condition f ∈ Bs
p,q(E) only in lemma 3.5 for fulfilling

(47). If we just assume f ∈ S ′(Rn, E) instead, then there exist constants c > 0, K, L ∈ N0

such that for all ϕ ∈ S(Rn) it holds

‖ (ϕ̌ ∗ f) (x)|E‖ ≤ c (1 + |x|2)
K
2 ‖ϕ̌‖K,L,

see (10). Hence it follows if a ≥ K

dj = (ψ∗
j f)a(x) = sup

y∈Rn

‖
(
ψ̌j ∗ f

)
(x− y)|E‖

(1 + 2j |y|)a

≤ sup
y∈Rn

(1 + |x− y|2)
K
2

(1 + 2j|y|)a
‖ψ̌j‖K,L

≤ c′(1 + |x|2)
K
2 2j(L+n)‖ψ̌‖K,L,

where c′ is independent of j and x. So the conditions of lemma 3.5 are fulfilled for
“large“ a with N0 = L + n. Thus it follows that if ‖f |Bs

p,q(E)‖ψ,Ψ is finite, then as well
‖f |Bs

p,q(E)‖
a
ψ,Ψ is finite for these a and hence also f ∈ Bs

p,q(E) by the third step. If
‖f |Bs

p,q(E)‖ <∞, then ‖f |Bs
p,q(E)‖

a
ψ,Ψ is finite for admissible a by the first step and the

end of the third step and therefore obviously ‖f |Bs
p,q(E)‖ψ,Ψ, too.

From the above theorem and its proof a proposition on continuous versions of the norm
follows by slight, but technically complex modifications. An example for such norms is
given in [Tri92], section 2.4.1, p. 101 and section 2.4.3, p. 115.

Proposition 3.6. Let d > 0.

(i) Under the assumptions of theorem 3.1, part (i) for Ψ and ψ

‖f |Bs
p,q(E)‖

I
Ψ,ψ := ‖(Ψf̂ )̌ |Lp(E)‖+

(∫ 1

0

t−sq‖(ψ(t·)f̂ )̌ |Lp(E)‖
q dt

t

) 1

q
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and

‖f |Bs
p,q(E)‖

sup
Ψ,ψ := ‖ sup

|·−y|≤d
‖(Ψf̂ )̌ (·)|E‖ |Lp‖

+

(∫ 1

0

t−sq‖ sup ‖(ψ(τ ·)f̂ )̌ |E‖ |Lp‖
q dt

t

) 1

q

are equivalent norms for ‖ · |Bs
p,q(E)‖, where sup is the supremum taken over

{|x− y| ≤ dt, t ≤ τ ≤ 2t} for a fixed x ∈ Rn. It holds

Bs
p,q(E) =

{
f ∈ S ′(Rn, E) : ‖f |Bs

p,q(E)‖
I
Ψ,ψ <∞

}

and

Bs
p,q(E) =

{
f ∈ S ′(Rn, E) : ‖f |Bs

p,q(E)‖
sup
Ψ,ψ <∞

}
.

(ii) Under the assumptions of theorem 3.1, part (ii) for Ψ and ψ

‖f |F s
p,q(E)‖

I
Ψ,ψ‖(Ψf̂ )̌ |Lp(E)‖+

∥∥∥∥∥

(∫ 1

0

t−sq‖(ψ(t·)f̂ )̌ |E‖q
dt

t

) 1

q

|Lp

∥∥∥∥∥ (50)

and

‖f |F s
p,q(E)‖

sup
Ψ,ψ := ‖ sup

|·−y|≤d
‖(Ψf̂ )̌ (·)|E‖ |Lp‖

+

∥∥∥∥∥

(∫ 1

0

t−sq sup ‖(ψ(τ ·)f̂ )̌ |E‖q
) 1

q

|Lp

∥∥∥∥∥
(51)

are equivalent norms for ‖ · |Bs
p,q(E)‖, where sup is the supremum taken over

{|x− y| ≤ dt, t ≤ τ ≤ 2t} for a fixed x ∈ Rn. It holds

F s
p,q(E) =

{
f ∈ S ′(Rn, E) : ‖f |F s

p,q(E)‖
I
Ψ,ψ <∞

}
(52)

and

F s
p,q(E) =

{
f ∈ S ′(Rn, E) : ‖f |F s

p,q(E)‖
sup
Ψ,ψ <∞

}
. (53)

Proof. We restrict ourselves to the case of the F s
p,q(E)-spaces, the Bs

p,q(E)-case can be
treated in an analogous way. For this purpose we first consider (51), which is obviously
larger than (50), and show that we can estimate this term by C‖f |F s

p,q(E)‖. On that
account we look back at the first step of the proof of theorem 3.1. But this time we start
with ψ(τ ·) with 1 ≤ τ ≤ 4 instead of ψ. For given Φ and ϕ we again choose associated Λ
and λ by lemma 3.2. We argue in the same way as in (33) and (34) and obtain

‖
(
ψ(τ ·)̌ j ∗ λ̌k ∗ ϕ̌k ∗ f

)
(y)|E‖ ≤ (ϕ∗

kf)a(y)

∫

Rn

∣∣(ψ(τ ·)̌ j ∗ λ̌k
)
(z)
∣∣ (1 + 2k|z|)a dz.
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Thereby observe ψ(τ ·)̌ j = ψ(τ2−j ·)̌ . Now we apply lemma 3.3 as in step 1. For k ≤ j
we get with the substitution 2kz → z

∫

Rn

∣∣(ψ(τ ·)̌ j ∗ λ̌k
)
(z)
∣∣ (1 + 2k|z|)a dz =

∫

Rn

2kn
∣∣(ψ(τ ·)̌ j−k ∗ λ̌

)
(2kz)

∣∣ (1 + 2k|z|)a dz

≤ c sup
z∈Rn

∣∣(ψ(2k−jτ ·)̌ ∗ λ̌
)
(z)
∣∣ · (1 + |z|)a+n+1

≤ c′2(k−j)(S+1).

In case of k ≥ j we obtain by the substitution 2jτ−1y → y and by an analogous calculation
as in the proof of the theorem

∫

Rn

∣∣(ψ(τ ·)̌ j ∗ λ̌k
)
(z)
∣∣ · (1 + 2k|z|)a dz

=

∫

Rn

τ−n2jn
∣∣(ψ̌ ∗ λ(2j−kτ−1·)̌

)
(2jτ−1z)

∣∣ · (1 + 2k|z|)a dz

=

∫

Rn

∣∣(ψ̌ ∗ λ(2j−kτ−1·)̌
)
(z)
∣∣ · (1 + 2k−jτ |z|)a dz

≤ cM2(k−j)a2(j−k)(M+1),

where cM and c′ do not depend on τ . Hence this results in a counterpart of (36)

sup
y∈Rn

‖
(
ψ(τ ·)̌ j ∗ λ̌k ∗ ϕ̌k ∗ f

)
(y)|E‖

(1 + 2j|x− y|)a
≤ Cψ,λ ϕ

∗
k(x)

{
2(k−j)(S+1) , k ≤ j
2(j−k)(−s+1) , k ≥ j

independent of τ ∈ [1, 4]. We again come to

2js sup
y∈Rn

‖ (ψ(τ ·)̌ j ∗ f) (y)|E‖

(1 + 2j|x− y|)a
≤ C2−jδ(Φ∗f)a(x) + C

∞∑

k=1

2ks(ϕ∗
kf)a(x)2

−|j−k|δ

with δ = min(S + 1− s, 1) > 0 and (taken over from step 1)

sup
y∈Rn

‖
(
Ψ̌j ∗ f

)
(y)|E‖

(1 + |x− y|)a
≤ C(Φ∗f)a(x) + C

∞∑

k=1

2ks(ϕ∗
kf)a(x)2

−kδ.

If we restrict each supremum to the domain |x− y| ≤ d2−j+1 and use that for these y the
inequality (1 + 2j|x− y|)a ≤ cd with a constant cd > 0 independent of j holds, we get

2js sup
|x−y|≤d2−j+1,

1≤τ≤4

‖ (ψ(τ ·)̌ j ∗ f) (y)|E‖ ≤C ′2−jδ(Φ∗f)a(x) +C
′

∞∑

k=1

2ks(ϕ∗
kf)a(x)2

−|j−k|δ

and

sup
|x−y|≤d

‖
(
Ψ̌j ∗ f

)
(y)|E‖ ≤ C ′(Φ∗f)a(x) + C ′

∞∑

k=1

2ks(ϕ∗
kf)a(x)2

−kδ.

19



By applying lemma 3.4 as in step 1 this yields

∥∥∥∥∥ sup
|·−y|≤d

‖(Ψf̂ )̌ (·)|E‖
∣∣Lp
∥∥∥∥∥+

∥∥∥∥∥∥∥∥




∞∑

j=1

2jsq sup
|x−y|≤d2−j+1,

1≤τ≤4

‖(ψ(2−jτ ·)f̂ )̌ |E‖q




1

q

∣∣Lp

∥∥∥∥∥∥∥∥

≤ c‖(Φ∗f)a|Lp‖+ c

∥∥∥∥∥∥

( ∞∑

j=1

2jsq(ϕ∗
jf)a)

q

) 1

q ∣∣Lp

∥∥∥∥∥∥
.

But now we have for all j ∈ N

∫ 2−j+1

2−j

t−sq sup ‖(ψ(t·)f̂ )̌ |E‖q
dt

t
≤ c02

jsq sup
|x−y|≤d2−j+1,

1≤τ≤4

‖(ψ(2−jτ ·)f̂ )̌ |E‖q,

where sup is the supremum for a fixed x ∈ Rn over {|x− y| ≤ dt, t ≤ τ ≤ 2t}. If we take
the sum over j of the integrals, we obtain

∥∥∥∥∥ sup
|·−y|≤d

‖(Ψf̂ )̌ (·)|E‖
∣∣Lp
∥∥∥∥∥+

∥∥∥∥∥

(∫ 1

0

t−sq sup ‖(ψ(t·)f̂ )̌ |E‖q
) 1

q ∣∣Lp
∥∥∥∥∥

≤ c′‖(Φ∗f)a|Lp‖+c
′

∥∥∥∥∥∥

( ∞∑

j=1

2jsq(ϕ∗
jf)a)

q

) 1

q ∣∣Lp

∥∥∥∥∥∥

and so the norms (50) and (51) are estimated from above by c′‖f |F s
p,q(E)‖.

In the second part of the proof we want to estimate ‖f |F s
p,q(E)‖ from above again. For

this we go back to step 1 of the proof of theorem 3.1, but this time interchanging the
roles of Φ and Ψ and of ϕ and ψ(τ ·) in comparison to the just shown (see step 3 of the
proof of theorem 3.1 for details). For given τ ∈ [1, 2], Ψ and ψ(τ ·) we choose functions Λτ

and λτ = λ(τ ·) (which is possible) by lemma 3.2 with the properties (31) and (32). By
looking at the construction in lemma 3.2 one can see that for all N,M ∈ N there exists a
CN,M such that

sup
y∈Rn

(1 + |y|)N
∑

|α|≤M
|DαΛτ(y)| ≤ CN,M ,

i.e. that the S(Rn)-seminorms from (8) can be estimated uniformly in τ . This holds for
λτ = λ(τ ·) as well. So we obtain the analogue of (33), with exchanged roles,

(ϕ̌j ∗ f) (y) =
((
ϕ̌j ∗ Λ̌τ

)
∗
(
Ψ̌ ∗ f

))
(y) +

∞∑

k=1

((
ϕ̌j ∗ λ̌τ k

)
∗ (ψ(τ ·) ǩ ∗ f)

)
(y)

for all y ∈ Rn. If we now follow the proof of step 1, we have to estimate the integrals
from (34) as in (35) by a constant independent of τ . These are of the form

Iτj,k :=

∫

Rn

∣∣(ϕ̌j ∗ λ̌τ k
)
(z)
∣∣ (1 + |2kz|)a dz
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resp. an analogue for Λτ . To estimate the integrals from above we used lemma 3.3. Note
that the constants appearing in this lemma only depend on the S(Rn)-seminorms and the
behaviour at 0 of ϕ and λ resp. only of the S(Rn)-seminorms of Λ. Hence there exists a
constant independent of τ such that

I τ
j,k ≤ Cλ,ϕ

{
2(k−j)(S+1) , k ≤ j
2(j−k)(a−s+1) , k ≥ j

.

There is an analogous result for Λ. If we go on with step 1 of the proof of theorem 3.1,
we get the corresponding results of (36) and (37), with exchanged roles. Hence it holds

sup
y∈Rn

‖
(
ϕ̌j ∗ λ̌τ k ∗ ψ(τ ·)̌ k ∗ f

)
(y)|E‖

(1 + 2j |x− y|)a
≤ Cλ,ϕ(ψ(τ ·)

∗
kf)a(x)

{
2(k−j)(S+1) , k ≤ j
2(j−k)(−s+1) , k ≥ j

and an analogue for Λτ with (Ψ∗f)a on the right-hand side, with C independent of τ ∈
[1, 2]. Note that

(ψ(τ ·)∗kf)a(x) = sup
y∈Rn

‖(ψ(2−kτ ·)f̂ )̌ (x− y)|E‖

(1 + 2k|y|)a

≤ c sup
y∈Rn

‖(ψ(2−kτ ·)f̂ )̌ (x− y)|E‖

(1 + 2kτ−1|y|)a
=: (ψ∗′

2−kτf)a(x).

With the same steps as in the proof of theorem 3.1 we obtain as a result

2js(ϕ∗
jf)a(x) ≤ C2−jδ(Ψ∗f)a(x) + C

∞∑

k=1

2ks(ψ∗′
2−kτf)a(x)2

−|j−k|δ

and an obvious counterpart for (Φ∗f)a with a certain δ > 0 and with C independent of
τ . This yields

2js(ϕ∗
jf)a(x) ≤ C2−jδ(Ψ∗f)a(x) + C

(∫ 2

1

( ∞∑

k=1

2ks2−|j−k|δ(ψ∗′
2−ktf)a(x)

)q

dt

) 1

q

and an analogous result for (Φ∗f)a(x). By this and a typical Minkowski/Hölder argument
we obtain

2js(ϕ∗
jf)a(x) ≤ C ′2−jδ0(Ψ∗f)a(x) + C ′

∞∑

k=1

2−|j−k|δ02ks
(∫ 2

1

(
(ψ∗′

2−ktf)a(x)
)q

dt

) 1

q

for a suitable δ0 > 0 and an analogous result for (Φ∗f)a(x) again. Now we use lemma 3.4
as in the proof of theorem 3.1, but this time with

gk := 2ks
(∫ 2

1

(
(ψ∗′

2−ktf)a(x)
)q

dt

) 1

q
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and conclude

‖(Φ∗f)a|Lp‖+

∥∥∥∥∥∥

( ∞∑

j=1

2jsq
(
(ϕ∗

jf)a
)q
) 1

q ∣∣Lp

∥∥∥∥∥∥

≤ C‖(Ψ∗f)a|Lp‖+ C

∥∥∥∥∥∥

( ∞∑

j=1

2jsq
∫ 2

1

(
(ψ∗′

2−jtf)a

)q
dt

) 1

q ∣∣Lp

∥∥∥∥∥∥

≤ C ′‖(Ψ∗f)a|Lp‖+ C ′

∥∥∥∥∥

(∫ 1

0

t−sq
(
(ψ∗′

t f)a

)q dt
t

) 1

q ∣∣Lp
∥∥∥∥∥ .

Now we modify step 2 by applying it to ψ(τ ·) instead of ψ for 1 ≤ τ ≤ 2 to replace (ψ∗′
t f)a

by ψ(t·).
After choosing λ,Λ ∈ S(Rn) with the desired properties (43) it follows as in (44)

(ψ(τ ·)̌ j ∗ f) (y) = ([Λ(τ ·)̌ j ∗Ψ(τ ·)̌ j] ∗ [ψ(τ ·)̌ j ∗ f ]) (y)

+

∞∑

k=j+1

([ψ(τ ·)̌ j ∗ λ(τ ·)̌ k)] ∗ [ψ(τ ·)̌ k ∗ f ]) (y)
(54)

for all y ∈ Rn. As there one can obtain by lemma 3.3 and in view of k ≥ j

|(ψ(τ ·)̌ j ∗ λ(τ ·)̌ k) (z)| =
∣∣2jnτ−n

(
ψ̌ ∗ λ̌k−j

)
(2jτ−1z)

∣∣

≤ CN,ψ,λ
2jnτ−n2(j−k)N

(1 + 2jτ−1|z|)a
≤ C ′

N,ψ,λ

2jn2(j−k)N

(1 + 2j|z|)a

for all N ∈ N and

|(Ψ(τ ·)̌ j ∗ Λ(τ ·)̌ j(z))| = 2jnτ−n
(
Ψ̌ ∗ Λ̌

)
(2jτ−1z) ≤ CΨ,Λ

2jn

(1 + 2j |z|)a
,

where C ′
N,ψ,λ and CΨ,Λ do not depend on τ ∈ [1, 2]. From (54) we get the analogous result

of (46), namely

(ψ∗′
2−jτf)a(x) ≤CN

∞∑

k=j

2(j−k)N
′

[(ψ∗′
2−kτf)a(x)]

1−r
∫

Rn

2kn‖
(
ψ(2−kτ ·)̌ ∗ f

)
(z)|E‖r

(1 + 2k|x− z|)ar
dz. (55)

Furthermore, we derive an estimate for Ψ. However, this will be of slightly different shape:
We start with the analogue of (54) for j = 1 and Ψ instead of ψ(τ ·)̌ j

(
Ψ̌ ∗ f

)
(y)=

(
[Λ(τ ·)̌ ∗Ψ(τ ·)̌ ] ∗

[
Ψ̌ ∗ f

])
(y) +

∞∑

k=1

([
Ψ̌ ∗ λ(τ ·)̌ k)

]
∗ [ψ(τ ·)̌ k ∗ f ]

)
(y)

for all y ∈ Rn. Now by lemma 3.3 we have

∣∣(Ψ̌ ∗ λ(τ ·)̌ k
)
(z)
∣∣ ≤ CΨ,λ,N

τN2−kN

(1 + |z|)a
≤ C ′

Ψ,λ,N

2−kN

(1 + |z|)a
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and obviously

|(Λ(τ ·)̌ ∗Ψ(τ ·)̌ ) (z)| ≤ CΨ,Λ
1

(1 + |z|)a

with C ′
Ψ,λ,N and CΨ,Λ independent of τ ∈ [1, 2]. Thereby we come with the same arguments

as in the original proof to

(Ψ∗f)a(x) ≤ CN [(Ψ
∗f)a(x)]

1−r
∫

Rn

‖
(
Ψ̌ ∗ f

)
(z)|E‖r

(1 + |x− z|)ar
dz

+ CN

∞∑

k=1

2−kN
′

[(ψ∗′
2−kτf)a(x)]

1−r
∫

Rn

2kn‖
(
ψ(2−kτ ·)̌ ∗ f

)
(z)|E‖r

(1 + 2k|x− z|)ar
dz.

(56)

If r ≤ 1, we use lemma 3.5, applied to inequality (55) and (56), which are valid for
all N ′ ∈ N, with dj = (ψ∗′

2−jτf)a(x). Notice that the results about condition (47) can
be transfered from step 3 of the proof of theorem 3.1 and hold for the dj’s here, too.
Therefore, we obtain the analogue of (48) in the case r ≤ 1

(ψ∗′
2−jτf)a(x)

r ≤ C ′
N

∞∑

k=j

2(j−k)Nr
∫

Rn

2kn‖
(
ψ(2−kτ ·)̌ ∗ f

)
(z)|E‖r

(1 + 2k|x− z|)ar
dz (57)

and the analogue of (49) for (Ψ∗f)a(x)
r, where the constant C ′

N does not depend on
r ∈ (0, 1], f ∈ S ′(Rn, E), j ∈ N and τ ∈ [1, 2]. As in the initial proof the assertion follows
for r > 1 as well.

In the F s
p,q(E)-case we argue as follows: We raise to the power of q

r
, integrate over

τ ∈ [1, 2] with respect to dτ
τ

, take the q
r
-th root and obtain

(∫ 2−j+1

2−j

(
(ψ∗′

t f)a(x)
)q dt

t

) r
q

≤ C ′
N



∫ 2

1

( ∞∑

k=j

2(j−k)Nr
∫

Rn

2kn‖
(
ψ(2−kτ ·)̌ ∗ f

)
(z)|E‖r

(1 + 2k|x− z|)ar
dz

) q

r
dt

t




r
q

and

(Ψ∗f)a(x)
r ≤ C ′′

N

∫

Rn

‖
(
Ψ̌ ∗ f

)
(z)|E‖r

(1 + |x− z|)ar
dz

+ C ′′
N



∫ 2

1

( ∞∑

k=1

2−kNr
∫

Rn

2kn‖
(
ψ(2−kτ ·)̌ ∗ f

)
(z)|E‖r

(1 + 2k|x− z|)ar
dz

) q
r
dt

t




r
q

.

If r ≤ q, we can use the (generalized) Minkowski inequality two times and get

(∫ 2−j+1

2−j

(
(ψ∗′

t f)a(x)
)q dt

t

) r
q

≤ C ′
N

∞∑

k=j

2(j−k)Nr
∫

Rn

2kn

(1 + 2k|x− z|)ar

(∫ 2−k+1

2−k

‖ (ψ(t·)̌ ∗ f) (z)|E‖q
dt

t

) r
q

dz
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and a corresponding result for (Ψ∗f)a(x)
r. This yields the estimates (48) and (49), only

with the terms

(∫ 2−k+1

2−k

‖ (ψ(t·)̌ ∗ f) (z)|E‖q
dt

t

) 1

q

instead of ‖
(
ψ̌k ∗ f

)
(z)|E‖ and

(∫ 2−j+1

2−j

(
(ψ∗′

t f)a(x)
)q dt

t

) 1

q

instead of (ψ∗
j f)a(x). We pick an a so large that we can choose r with n

a
< r < min(p, q).

Now we reconstruct the further steps in the initial proof with the given “replacements“
and obtain immediately

‖(Ψ∗f)a|Lp‖+

∥∥∥∥∥

(∫ 1

0

t−sq
(
(ψ∗′

t f)a

)q dt
t

) 1

q ∣∣Lp
∥∥∥∥∥

≤ C ′′‖(Ψf̂ )̌ |Lp(E)‖+ C ′′

∥∥∥∥∥

(∫ 1

0

t−sq‖(ψ(t·)f̂ )̌ |E‖q
dt

t

) 1

q ∣∣Lp
∥∥∥∥∥ .

In the Bs
p,q(E)-case we start with (57) and arrive at

2jsr(ψ∗′
2−jτf)a(x)

r ≤ C
∞∑

k=j

2(j−k)δ2ksrM
(
‖
(
ψ(2−kτ ·)̌ ∗ f

)
|E‖r

)
(x)

as in the original proof and at an analogous result for (Ψ∗f)a(x)
r. Now we take the L p

r
-

norm, use the Minkowski inequality and the boundedness of the maximal operator from
L p

r
to L p

r
and come to

2jsr‖(ψ∗′
2−jτf)a(x)|Lp‖

r ≤ C ′
∞∑

k=j

2(j−k)δ2ksr
∥∥(ψ(2−kτ ·)̌ ∗ f

)
|Lp(E)

∥∥r

and to an analogous result for (Ψ∗f)a(x)
r. Now we integrate over τ ∈ [1, 2] with respect

to dτ
τ

, argue as in the F s
p,q(E)-case and use a suitable estimate for the lq-norm as in lemma

3.4. Then we obtain the desired result for Bs
p,q(E).

The characterizations (52) and (53) hold true by the same arguments as in step 4 of the
proof of theorem 3.1. One just has to notice that lemma 3.5 is applied to dj = (ψ∗′

2−jτf)a(x)
instead of (ψ∗

j f)a(x) which makes no big difference for the calculations.

3.2 Explicit norms and characterizations

Below we will take a look at some examples of equivalent norms and characterizations
following from theorem 3.1 which will be of use later on.
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Example 3.7. Let k0, k
0 ∈ S(Rn), k̂0(0) 6= 0, k̂0(0) 6= 0. Let N ∈ N0 with 2N > s. Then

the functions Ψ := k̂0 and ψ := ∆̂Nk0 fulfil the conditions (22) and (23) for a suitable

small ε > 0 and (24) with S = 2N − 1 since ∆̂k0(x) = −|x|2k̂0(x). In particular, k0 and
k0 can be chosen such that supp k0, supp k

0 ⊂ B. This is where the expression “local
means“ comes from because if f ∈ S ′(Rn, E) is e.g. a regular distribution, then we have

(k̂0(2
−j·)f̂ )̌ (x) = 2jn

(
k0(2

j·) ∗ f
)
(x) =

∫

B

k0(y)f(x− 2−jy) dy

and an analogue for ∆Nk0 so that for a calculation only the values of f in the small
domain {y ∈ Rn : |y| ≤ 2−j} are necessary to know. If we set kN := ∆Nk0, it follows

Proposition 3.8. Let 2N > s.
(i) Let 0 < p ≤ ∞ and 0 < q ≤ ∞. Then

‖f |Bs
p,q(E)‖k0,kN := ‖k0 ∗ f |Lp(E)‖+

( ∞∑

j=1

2jsq‖kNj ∗ f |Lp(E)‖
q

) 1

q

(modified for q = ∞) is an equivalent norm for ‖ · |Bs
p,q(E)‖. It holds

Bs
p,q(E) =

{
f ∈ S ′(Rn, E) : ‖f |Bs

p,q(E)‖k0,kN <∞
}
.

(ii) Let 0 < p <∞ and 0 < q ≤ ∞. Then

‖f |F s
p,q(E)‖k0,kN := ‖k0 ∗ f |Lp(E)‖+

∥∥∥∥∥∥

( ∞∑

j=1

2jsq‖kNj ∗ f |E‖q

) 1

q ∣∣Lp

∥∥∥∥∥∥

(modified for q = ∞) is an equivalent norm for ‖ · |F s
p,q(E)‖. It holds

F s
p,q(E) =

{
f ∈ S ′(Rn, E) : ‖f |F s

p,q(E)‖k0,kN <∞
}
.

Example 3.9. In our remarks we follow [Tri97], section 12.2, p. 59. Let h(x) := (1 +

|x|2)−
n+1

2 . By using [StW90], theorem 1.14, p. 6, we obtain

ê−t|·|(x) = dnh1/t(x) = dnt
−n 1

(1 + |x
t
|2)

n+1

2

= dn
t

(t2 + |x|2)
n+1

2

(58)

for a suitable constant dn > 0. The function P (x, t) = dn(t
2+ |x|2)

n+1

2 and also its partial
derivatives with respect to t are harmonic in the domain {(x, t) :x ∈ Rn, t >0}.

Let f ∈ S(Rn, E). Then

u(x, t) := (e−t|·|f̂ )̌ (x) = dn

(
f ∗

t

(| · |2 + t2)
n+1

2

)
(x)

is harmonic and hence also its partial derivatives with respect to t given by

∂ku(x, t)

∂tk
= ((−1)k| · |ke−t|·|f̂ )̌ (x).
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We choose a φ ∈ S(Rn) with φ(x) = 1 for |x| ≤ 1 and φ(x) = 0 for |x| > 3
2

and set
Ψ := φ and ψk(ξ) := |ξ|ke−ξ. It follows

(ψk(t·)f̂ )̌ (x) = (−1)ktk
∂ku(x, t)

∂tk

at least for f ∈ S(Rn, E). The functions Ψ und ψk fulfil the support conditions (22) and
(23) but ψk is not arbitrarily often differentiable. But, for instance, there exist all partial
derivatives of ψ2k up to the order 2k. The moment conditions (24) are fulfilled for all
derivatives up to the order 2k − 1.

This means that we cannot apply theorem 3.1 including the subsequent proposition 3.6
directly for this functions. Nevertheless, we will try to obtain the desired result in this
case as well. For this we will choose k ≥ k0 in a suitable dependence of p, q and s.

Let f ∈ Bs
p,q(E) resp. F s

p,q(E) be given. In consequence of | · |ke−t|·| /∈ S(Rn) we

cannot use the initial definition of (e−t|·|f̂ )̌ . So we decompose f into f1 := (φf̂ )̌ and
f2 := ((1−φ)f̂ )̌ . By the assumptions f1 ∈ LB2

p (E) and therefore by Nikolskii’s inequality
(see (11)) f1 ∈ L∞. Hence

u1(x, t) = dn

(
f1 ∗

t

(| · |2 + t2)
n+1

2

)
(x)

is well-defined, even bounded (also in t) as a convolution of an L1-function with an L∞(E)-
function. Moreover, the function is harmonic in the domain {(x, t) : x ∈ Rn, t > 0}. Then
u1(x, t) is arbitrarily often differentiable with respect to x. Moreover, the (classical) partial
derivatives with respect to t exist and are harmonic because of u1(x, t) = dn

(
h1/t ∗ f1

)
(x).

The functions [1 + | · |2]σe−t|·|(1 − Φ), whose S(Rn)-seminorms for t > δ are uniformly
bounded, are Fourier multipliers for Bs

p,q(E) resp. F s
p,q(E) (see (17)) for all σ ∈ R since

e−t|·|(1 − φ) ∈ S(Rn). So it follows from the lift property of these spaces (see (18)) and
the Sobolev embeddings (19) and (20) that

u2(·, t) =
(
[1 + | · |2]σe−t|·|(1− φ)

(
[1 + | · |2]−σf̂

))∨
∈ Bs

∞,∞

for all s ∈ R. So u2(·, t) is arbitrarily often differentiable with respect to x and bounded
in the domain {x ∈ Rn, t > δ} for a fixed δ > 0 (by (16)). The differentiability relative to
t is obvious. The function is harmonic by basic properties of the Fourier transform.

Analogous assertions hold true for | · |ke−t|·| instead of e−t|·| and therefore for the partial
derivatives of u2(x, t). So u(x, t) := u1(x, t) + u2(x, t) is well-defined for all f ∈ Bs

p,q(E)
resp. F s

p,q(E) for arbitrary s, 0 < p ≤ ∞ (resp. < ∞) and 0 < q ≤ ∞, arbitrarily often
differentiable, harmonic in the domain {x ∈ Rn, t > 0} and bounded on {x ∈ Rn, t > δ}
for fixed δ > 0. An analogue is valid for the partial derivatives.

Now we have the necessary tools together to formulate and proof the desired result.

Proposition 3.10. Let d > 0 and s ∈ R.
(i) Let 0 < p ≤ ∞, 0 < q ≤ ∞. Then there exists a k0 such that for all k ≥ k0

‖f |Bs
p,q(E)‖φ,k := ‖(φf̂ )̌ |Lp(E)‖+

(∫ 1

0

t(k−s)q‖
∂ku(·, t)

∂tk
|Lp(E)‖

q dt

t

) 1

q
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and

‖f |Bs
p,q(E)‖

sup
φ,k :=

∥∥∥∥∥ sup
|·−y|≤d

‖(φf̂ )̌ (y)|E‖
∣∣Lp
∥∥∥∥∥+
(∫ 1

0

t(k−s)q
∥∥∥∥sup ‖

∂ku(y, τ)

∂tk
|E‖
∣∣Lp
∥∥∥∥
q
dt

t

) 1

q

are equivalent norms for ‖ · |Bs
p,q(E)‖, where sup is the supremum for a fixed x ∈ Rn over

{|x− y| ≤ dt, t ≤ τ ≤ 2t}. It holds

Bs
p,q(E) =

{
f ∈ C

−∞(E) : ‖f |Bs
p,q(E)‖φ,k <∞

}

and

Bs
p,q(E) =

{
f ∈ C

−∞(E) : ‖f |Bs
p,q(E)‖

sup
φ,k <∞

}
.

(ii) Let 0 < p <∞, 0 < q ≤ ∞. Then there exists a k0 such that for all k ≥ k0

‖f |F s
p,q(E)‖φ,k :=

∥∥∥(φf̂ )̌
∣∣Lp(E)

∥∥∥+
∥∥∥∥∥

(∫ 1

0

t(k−s)q‖
∂ku(·, t)

∂tk
|E‖q

dt

t

) 1

q ∣∣Lp
∥∥∥∥∥

and

‖f |F s
p,q(E)‖

sup
φ,k :=

∥∥∥∥∥ sup
|·−y|≤d

‖(φf̂ )̌ (y)|E‖
∣∣Lp
∥∥∥∥∥+

∥∥∥∥∥

(∫ 1

0

t−sq sup ‖
∂ku(y, τ)

∂tk
|E‖q

) 1

q ∣∣Lp
∥∥∥∥∥

are equivalent norms for ‖ · |F s
p,q(E)‖, where sup is the supremum for a fixed x ∈ Rn over

{|x− y| ≤ dt, t ≤ τ ≤ 2t}. It holds

F s
p,q(E) =

{
f ∈ C

−∞(E) : ‖f |F s
p,q(E)‖φ,k <∞

}
(59)

and

F s
p,q(E) =

{
f ∈ C

−∞(E) : ‖f |F s
p,q(E)‖

sup
φ,k <∞

}
. (60)

Proof. We like to recall the relation

(−1)ktk
∂ku(x, t)

∂tk
=
(
(t| · |)ke−t|·|f̂

)∨
(x).

That explains the form of the norm in this theorem in our context. The proof is a step-
by-step repetition of theorem 3.1 resp. proposition 3.6, where we use that the function
ψ := | · |ke−|·| behaves like a S(Rn)-function away from 0 and fulfils as many moment
conditions as we want if we only choose k large enough.

We have to say one word about condition (47). It holds

dj = (ψ∗
j f)a(x) ≤

(
((1− φ)ψ)∗jf

)
a
(x) + ((φψ)∗jf)a(x).

The first summand can be estimated as in step 3 of the proof of theorem 3.1 because
(1− φ)ψ ∈ S(Rn). For the second summand we have

‖(φψ)̌ j ∗ f |L∞(E)‖ ≤ ‖φ̌j ∗ f |L∞‖ · ‖ψ̌j |L1‖ ≤ c‖φ̌j ∗ f |L∞(E)‖.
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We choose a smooth dyadic resolution of unity consisting of the functions {ϕj}j∈N (see
(15)) and obtain by Nikolskii’s inequality (see (11))

‖φ̌j ∗ f |L∞(E)‖ ≤

j+1∑

k=0

‖φ̌j ∗ (ϕkf̂ )̌ |L∞(E)‖ ≤ c

j+1∑

k=0

‖(ϕkf̂ )̌ |L∞(E)‖

≤ c′
j+1∑

k=0

2
kn
p ‖(ϕkf̂ )̌ |Lp(E)‖ ≤ c′′

(
j+1∑

k=0

2k(
n
p
+ε)q‖(ϕkf̂ )̌ |Lp(E)‖

q

) 1

q

≤ c′ max
(
2j(

n
p
+ε−s), 1

)
||f |Bs

p,q(E)||.

So the desired condition (47) with N0 ≥ ⌈n
p
+ ε− s⌉ follows.

Because we assumed f ∈ C
−∞(E) for defining the convolution with e−|·| a priori, we

obtain the best possible results with the characterizations (59) and (60).

Remark 3.11. We follow [Tri97], theorem 12.5 (i) and (ii), p. 64. We want to replace φ
in our proposition 3.10 by the function e−|·| so that (Ψf̂ )̌ is harmonic as well. But this
will only work for p > n

n+1
. Namely in this case m(ξ) = e−|ξ| is a Fourier multiplier for

LBp (E), i.e. that there exists a C > 0 such that it holds

‖(e−|·|f̂ )̌ |Lp(E)‖ ≤ C‖f |Lp(E)‖.

Let’s justify this: Let 0 < p < 1 and λ > n
(

1
p
− 1
)
. Then it follows from (13) that there

exists a constant c > 0 such that for all m : Rn → C with m̌ ∈ L1 and for all f ∈ LBp (E)

‖(mf̂ )̌ |Lp(E)‖ = ‖(mφf̂ )̌ |Lp(E)‖

≤ ‖ (mφ) |̌Lp‖ · ‖f |Lp(E)‖

≤ c‖(1 + | · |2)
λ
2 (mφ) |̌L1‖ · ‖f |Lp(E)‖

≤ c‖(1 + | · |2)
λ
2 m̌|L1‖ · ‖f |Lp(E)‖.

If p ≥ 1, then we have by (12)

‖(mf̂ )̌ |Lp(E)‖ ≤ ‖m̌|L1‖ · ‖f |Lp(E)‖.

The terms on the right-hand side are precisely finite if and only if p > n
n+1

, see (58).
Using

(
| · |ke−|·|)ˆ = (−1)kdn ·

∂kh1/t(x, 1)

∂tk

and the structure of the function h (see (58)) it follows by the same arguments that the
functions | · |ke−|·| are Fourier multipliers for LBp (E) with p > n

n+1
as well.

Proposition 3.12. Let d > 0 and s ∈ R

(i) Let n
n+1

< p ≤ ∞, 0 < q ≤ ∞ and f ∈ Bs
p,q(E). Then there exist a k0 ∈ N and a

c > 0 such that for all k ∈ N with k ≥ k0

‖u(·, 1)|Lp(E)‖+

(∫ 1

0

t(k−s)q‖
∂ku(·, t)

∂tk
|Lp(E)‖

q dt

t

) 1

q
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and

k−1∑

l=0

∥∥∥∥∥ sup
|·−y|≤d

‖
∂lu(y, 1)

∂tl
|E‖

∣∣Lp
∥∥∥∥∥+

(∫ 1

0

t(k−s)q
∥∥∥∥sup ‖

∂ku(y, τ)

∂tk
|E‖
∣∣Lp
∥∥∥∥
q
dt

t

) 1

q

are bounded from above by c ‖ · |Bs
p,q(E)‖ where sup is the supremum for a fixed x ∈ Rn

over {|x− y| ≤ dt, t ≤ τ ≤ 2t}.
(ii) Let n

n+1
< p < ∞, 0 < q ≤ ∞ and let f ∈ F s

p,q(E). Then there exist a k0 ∈ N and
a c > 0 such that for all k ∈ N with k ≥ k0

‖u(·, 1)|Lp(E)‖+

∥∥∥∥∥

(∫ 1

0

t(k−s)q‖
∂ku(·, t)

∂tk
|E‖q

dt

t

) 1

q ∣∣Lp
∥∥∥∥∥

and

k−1∑

l=0

∥∥∥∥∥ sup
|·−y|≤d

‖
∂lu(y, 1)

∂tl
|E‖

∣∣Lp
∥∥∥∥∥+

∥∥∥∥∥

(∫ 1

0

t(k−s)q sup ‖
∂ku(y, τ)

∂tk
|E‖q

) 1

q ∣∣Lp
∥∥∥∥∥ (61)

are bounded from above by c ‖ · |F s
p,q(E)‖ where sup is the same as in part (i).

Proof. If we take a look at proposition 3.10 proven before, it suffices to estimate the first
term of (61) by ||f |F s

p,q(E)|| (in the F s
p,q(E)-case).

Let φ be chosen as before and Ψ(ξ) := φ(ξ)|ξ|le−|ξ|. We obtain

sup
|x−y|≤d

‖
∂lu(y, 1)

∂tl
|E‖

≤ sup
|x−y|≤d

‖(φ| · |le−|·|f̂ )̌ (y)|E‖+ sup
|x−y|≤d

‖((1− φ)| · |le−|·|f̂ )̌ (y)|E‖

≤ c(Ψ∗f)a(x) + c sup
|x−y|≤d

‖((1− φ)e−|·|f̂ )̌ (y)|E‖

(62)

for all a > 0, where c depends on a. By (14) it follows if we choose a > n
p

‖(Ψ∗f)a(x)|Lp‖ ≤ c′‖(Ψf̂ )̌ |Lp(E)‖.

Now we use that | · |le−|·| are Fourier multipliers for LBp (E) with p > n
n+1

by the remark
before and obtain

‖(Ψ∗f)a(x)|Lp‖ ≤ c′′‖(φf̂ )̌ |Lp(E)‖. (63)

Furthermore, let g ∈ B
n
p
+ε

p,1 (E) for an ε > 0. Then we have by [Tri92], remark 1, p. 128

‖ sup
|·−y|≤d

‖g|E‖|Lp‖ ≤ c‖g|B
n
p
+ε

p,1 (E)‖.

Hereby we obtain for g :=
(
(1− φ)| · |le−|·|f̂

)
ˇ with (1− φ)| · |le−|·| ∈ S(Rn)

∥∥∥∥∥ sup
|x−y|≤d

‖((1− φ)| · |le−|·|f̂ )̌ (y)|E‖ |Lp

∥∥∥∥∥ ≤ ‖((1− φ)| · |le−|·|f̂ )̌ |B
1+n

p

p,1 (E)‖

≤ c‖f |F s
p,q(E)‖.

(64)
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If we put both results (63) and (64) into (62), we arrive at the desired estimate
∥∥∥∥∥ sup
|x−y|≤d

‖
∂lu(y, 1)

∂tl
∣∣E
∥∥∥∥∥ ≤ c‖(φf̂ )̌ |Lp(E)‖+ ‖f |F s

p,q(E)‖

≤ c′‖f |F s
p,q(E)‖.

4 Atomic characterizations of vector-valued function

spaces

4.1 Atomic and harmonic representations

After dealing with the necessary arrangements we now take a look at atomic representa-
tions. It is our aim to represent every element of a function space Bs

p,q(E) resp. F s
p,q(E)

as a preferably easy (infinite) linear combination of “good-natured“ functions. To this we
describe the concept of atoms as one can find it in [Tri97], definition 13.3, p. 73. Thereby
Qν,m := {x ∈ Rn : |xi − 2−νmi| ≤ 2−ν−1} stands for the cube with sides parallel to the
axes and with the center at 2−νm and side length 2−ν for m ∈ Zn and ν ∈ N0.

Definition 4.1. (i) Let K ∈ N0 and d > 1. A K times differentiable (in the case K = 0
continuous) function a : Rn → E is called (E-valued) 1-atom (more exactly 1K-atom) if

supp a ⊂ d ·Q0,m for an m ∈ Z,

‖Dαa(x)|E‖ ≤ 1 for all |α| ≤ K.

(ii) Let s ∈ R, 0 < p ≤ ∞, K ∈ N0, L+1 ∈ N0 and d > 1. A K times differentiable (in
the case K = 0 continuous) function a : Rn → E is called (E-valued) (s, p)-atom (more
exactly (s, p)K,L-atom) if there exists a ν ∈ N0 such that

supp a ⊂ d ·Qν,m for an m ∈ Z, (65)

‖Dαa(x)|E‖ ≤ 2−ν(s−
n
p )+|α|ν for all |α| ≤ K, (66)∫

Rn

xβa(x) dx = 0 for all |β| ≤ L. (67)

In particular, aν,meν,m is a vector-valued (s, p)K,L-atom if aν,m is a scalar (i.e. C-valued)
(s, p)K,L-atom and eν,m ∈ UE = {x ∈ E : ‖x|E‖ = 1} .

Furthermore, we introduce the sequence spaces bp,q and fp,q whose use will become clear
in the following. At this we refer to [Tri97], definition 13.5, p. 74.

Definition 4.2. Let 0 < p ≤ ∞, 0 < q ≤ ∞ and

λ = {λν,m ∈ C : ν ∈ N0, m ∈ Z
n} .

In addition, let

bp,q :=




λ : ‖λ|bp,q‖ =




∞∑

ν=0

(∑

m∈Zn

|λν,m|
p

) q

p




1

q

<∞
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and

fp,q :=



λ : ‖λ|fp,q‖ =

∥∥∥∥∥∥

( ∞∑

ν=0

∑

m∈Zn

|λν,mχ
(p)
ν,m(·)|

q

) 1

q ∣∣Lp

∥∥∥∥∥∥
<∞





(modified in the cases p = ∞ or q = ∞), where χ
(p)
ν,m is the Lp-normalized characteristic

function of the cube Qν,m.

The following lemma is oriented towards [Tri97], corollary 13.9, p. 81 which considers
the scalar case. But we modify the original proof a bit. Here we get a first clue how the
sought representation of all functions from Bs

p,q(E) resp. F s
p,q(E) looks like.

Lemma 4.3. Let 0 < p ≤ ∞ resp. <∞, 0 < q ≤ ∞ and s ∈ R. Let K ∈ N0, L+1 ∈ N0

with

K ≥ 1 + ⌊s⌋ and L ≥ ⌊σp − s⌋. (68)

Then
∞∑

ν=0

∑

m∈Zn

λν,maν,m(x)

converges unconditionally in S ′(Rn, E), where aν,m are E-valued 1K-atoms (for ν = 0) or
E-valued (s, p)K,L-atoms (for ν ∈ N) and λ ∈ bp,q or λ ∈ fp,q.

Proof. Let ϕ ∈ S(Rn). In view of (67) we obtain

∫

Rn

λν,maν,m(x)ϕ(x) dx =

∫

Rn

λν,maν,m(x)


ϕ(x)−

∑

|β|≤L
cν,mβ (x− 2−νm)β


 ,

where cν,mβ ∈ C is the coefficient for β in the Taylor expansion of ϕ at 2−νm. The modulus
of the difference under the integral can be estimated from above (with arbitrary M > 0)
by

c 2−ν(L+1)(1 + |x|2)−
M
2 sup
y∈Rn

(1 + |y|2)
M
2

∑

|γ|≤L+1

|Dγϕ(y)| = c 2−ν(L+1)(1 + |x|2)−
M
2 ‖ϕ‖M,L+1.

In the case 1 ≤ p ≤ ∞ we have L+ 1 > −s (by (68)) and so by using (66)

2−ν(L+1)‖aν,m|E‖ ≤ 2−ν(s−
n
p )2−ν(L+1) ≤ χ(p)

ν,m2
−νκ

with a κ > 0. Keeping in mind that for fixed ν the supports of aν,m are “nearly“ disjoint
we obtain together with Hölder’s inequality

∑

m

∥∥∥∥
∫

Rn

λν,maν,m(x)ϕ(x) dx
∣∣E
∥∥∥∥

≤ c‖ϕ‖M,L+1

∑

m

∫

Rn

2−ν(L+1)‖λν,maν,m(x)|E‖(1 + |x|2)−
M
2 dx

≤ c′‖ϕ‖M,L+1

(∫

Rn

∑

m

(
2−ν(L+1)‖λν,maν,m(x)|E‖

)p
) 1

p

≤ c′′2−νκ‖ϕ‖M,L+1

(∑

m

|λν,m|
p

) 1

p

.
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if we only choose M so large that Mp′ > n. Because of κ > 0 it follows

∑

ν

∑

m

∥∥∥∥
∫

Rn

λν,maν,m(x)ϕ(x) dx
∣∣E
∥∥∥∥ ≤ c′′ ‖ϕ‖M,L+1

∑

ν

2−νκ

(∑

m

|λν,m|
p

) 1

p

≤C ‖ϕ‖M,L+1 · ‖λν,m|bp,∞‖.

(69)

Because of bp,q →֒ bp,∞ we have shown the absolute convergence of the above series in the
Banach space E. Hence the series itself converges unconditionally in the Banach space E.
This shows the desired claim by an admissible commutation of the integral and the sums.

In the case 0 < p < 1 we have L + 1 > −s + n
p
− n by the assumptions instead and

hence

2−ν(L+1)‖aν,m|E‖ ≤ c 2−ν(s−
n
p )2−ν(L+1) ≤ c 2νn2−νκ.

So we obtain the above estimates (69) for p = 1 and because of bp,q →֒ b1,q →֒ b1,∞ the
convergence in S ′(Rn, E) for p < 1 follows, too.
If λ ∈ fp,q, then λ ∈ bp,∞ and hence the convergence in S ′(Rn, E) follows as well.

Furthermore note that the condition K = 0 would have sufficed for the whole proof,
i.e. taking continuous atoms with suitable boundary conditions without any restrictions
on the derivatives but with possible moment conditions.

The next proposition gives a characterization of such sums as elements of the function
spaces Bs

p,q(E) and F s
p.q(E). At this we stick to [Tri97], theorem 13.8, p. 75, step 2, which

treats the scalar case. In the last part of the proof we give a slight modification due to a
small gap regarding the maximal function in the original proof. Otherwise the proof can
be taken over nearly verbatim.

Proposition 4.4. (i) Let 0 < p ≤ ∞, 0 < q ≤ ∞ and s ∈ R. Let K ∈ N0 and L+1 ∈ N0

with

K ≥ 1 + ⌊s⌋ and L ≥ ⌊σp − s⌋.

Then every f ∈ S ′(Rn, E) which can be represented by

f =
∑

ν∈N0

∑

m∈Zn

λν,maν,m

in S ′(Rn, E) belongs to Bs
p,q(E). Thereby aν,m are E-valued 1K-atoms (for ν = 0) or

E-valued (s, p)K,L-atoms (for ν ∈ N) and λ ∈ bp,q. Furthermore, there exists a constant c
independent of f , λ and aν,m, i.e. independent of the found representation of f such that

‖f |Bs
p,q(E)‖ ≤ c‖λ|bp,q‖.

(ii) Let 0 < p <∞, 0 < q ≤ ∞ and s ∈ R. Let K ∈ N0 and L+ 1 ∈ N0 with

K ≥ 1 + ⌊s⌋ and L ≥ ⌊σp,q − s⌋. (70)

Then every f ∈ S ′(Rn, E) which can be represented by

f =
∑

ν∈N0

∑

m∈Zn

λν,maν,m

32



in S ′(Rn, E) belongs to F s
p,q(E). Thereby aν,m are E-valued 1K-atoms (for ν = 0) or

E-valued (s, p)K,L-atoms (for ν ∈ N) and λ ∈ fp,q. Furthermore, there exists a constant c
independent of f , λ and aν,m, i.e. independent of the found representation of f such that

‖f |F s
p,q(E)‖ ≤ c‖λ|fp,q‖.

Proof. In the proof we rely on the equivalent quasi-norm from proposition 3.8 which results
from theorem 3.1. We choose the functions k0, k

0 ∈ S(Rn) and hence also kN := ∆Nk0 so
that they have compact support, i.e. supp k0, supp k

0 ⊂ e ·B for an e > 0. Let aν,m with
ν ∈ N and m ∈ Zn be an E-valued (s, p)K,L-atom by definition 4.1. If ν = 0, let aν,m be
an E-valued 1K-atom. Then we can take over the argumentation from [Tri97], theorem
13.8, p. 75, step 2: If j ≥ ν, we get

2js‖
(
kNj ∗ aν,m

)
(x)|E‖ ≤ c 2−κ(j−ν)χ̃(p)

ν,m(x), (71)

where χ̃
(p)
ν,m(x) is the Lp-normalised characteristic function of the cube c ·Qν,m and κ > 0

by (70). The case ν = 0, i.e. the case in which aν,m is a 1K-atom can be treated in the
same way.

Let now j < ν. We obtain from [Tri97], theorem 13.8, p. 75, step 2 that

2js‖
(
kNj ∗ aν,m

)
(x)|E‖ ≤ c2j(s+n)2−ν(s−

n
p )2(j−ν)(L+1)

∫

|y|≤e2−j

χ̃ν,m(x− y) dy. (72)

Now the integral on the right-hand side is at most dn2−νn and vanishes if we have |x −
2−νm| > d2−ν + e2−j , i. e. if x /∈ c2ν−j · Qν,m for a suitable c > 0, observing j < ν.
Altogether the integral is smaller or equal to dn2−νnχ(c2ν−jQν,m)(x). We have

∑

m

|λν,m|

∫

|y|≤e2−j

χ̃ν,m(x− y) dy ≤
∑

m

|λν,m|d
n2−νnχ(c2ν−jQν,m)(x)

= dn2−νn
∑

m∈Dx

|λν,m|,
(73)

where Dx := {m ∈ Zn : x ∈ c2ν−jQν,m}. Then let

Ex :=
⋃

m∈Dx

c2ν−jQν,m.

There is a constant c′ > c independent of m and ν such that Ex ⊂ Bc′2−j (x). Simultane-
ously it holds

M

(∑

m

|λν,m|χ(Qν,m)

)w

≥
1

|Bc′2−j(x)|

∫

B
c′2−j (x)

(∑

m

|λν,m|χ(Qν,m)(y)

)w

dy

≥ c′′2(j−ν)n
∑

m∈Dx

|λν,m|
w

because Qν,m ⊂ Ex for m ∈ Dx and the Qν,m are pairwise disjoint. Together with (73)
(observing w < 1) this yields

∑

m

|λν,m|

∫

|y|≤e2−j

χ̃ν,m(x− y) dy ≤ C2−νn2(ν−j)
n
w

(
M

(∑

m

|λν,m|χ(Qν,m)

)w) 1

w

(x).
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If we put this into (72) and replace the characteristic function by the Lp-normalized
characteristic function, we can conclude

2js

∥∥∥∥∥

(
kNj ∗

∑

m

|λν,m|aν,m

)
(x)
∣∣E
∥∥∥∥∥ ≤ C ′2−(ν−j)κ

(
M

(∑

m

|λν,m|χ
(p)
ν,m

)w) 1

w

(x). (74)

Here we have κ > 0 if we choose w close enough to min(1, p, q) resp. min(1, p). If we now
use (71) and (74), we obtain

2js

∥∥∥∥∥

(
kNj ∗

∑

ν,m

λν,maν,m(x)

)
∣∣E
∥∥∥∥∥ ≤ c

∑

ν≤j,m
2−|j−ν|κ|λν,m|χ̃

(p)
ν,m(x)

+ c
∑

ν>j

2−|j−ν|κ

(
M

(∑

m

|λν,m|χ
(p)
ν,m

)w) 1

w

(x).

Now we can apply lemma 3.4 with

gν :=
∑

m

|λν,m|χ̃
(p)
ν,m(x) +

(
M

(∑

m

|λν,m|χ
(p)
ν,m

)w) 1

w

(x).

Then it follows (with triangle inequality and the “almost“-disjointness of the c ·Qν,m)

∥∥∥∥∥∥

( ∞∑

j=0

2jsq

∥∥∥∥∥

(
kNj ∗

∑

ν,m

λν,maν,m

)
∣∣E
∥∥∥∥∥

q) 1

q ∣∣Lp

∥∥∥∥∥∥

≤ C

∥∥∥∥∥∥

(∑

ν,m

(
|λν,m| χ̃

(p)
ν,m

)q
) 1

q ∣∣Lp

∥∥∥∥∥∥
+ C

∥∥∥∥∥∥∥


∑

ν

(
M

(∑

m

|λν,m|χ
(p)
ν,m

)w) q
w




1

q ∣∣Lp

∥∥∥∥∥∥∥

and an analogous result for Bs
p,q(E). Furthermore, the first term can be estimated by a

term similar to the second, observing χ̃
(p)
ν,m ≤ C ′

(
M
(
χ
(p)
ν,m

)w) 1

w

.

Eventually, the proposition follows by ‖ ‖M(fwn )
1

w |lq‖ |Lp‖ = ‖ ‖M(fwn )|l q

w
‖ |L p

w
‖

1

w ,
w < p, w < q and by the boundedness of the maximal operator (see (7)). In the case
Bs
p,q(E) we only need the boundedness of the maximal operator from ls(Lr) to ls(Lr),

which is given for r > 1 (see (6)) such that w < p and hence L ≥ ⌊σp − s⌋ suffices.

Now the question will be whether all elements of the function space can be represented
in such a way. The positive answer in the scalar (i.e. E = C) case has been given for
instance in [Tri97], theorem 13.8, p. 75. For the vector-valued case we will slightly alter
the derivation sequence, as described in [Tri97], theorem 15.8, p. 114 . In the first step we
care about a representation with harmonic, vector-valued atoms. This is inspired by the
norms from proposition 3.10, in which the functions u(x, t) are harmonic in the domain
{x ∈ Rn, t > 0}.
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To explain this a bit more in detail (as in [Tri97], section 12.2, p. 59 in the scalar case)
we choose an f ∈ S(Rn, E) and form the functions u(x, t) for x ∈ Rn, t > 0 as in example
3.9 by

u(x, t) := (e−t|·|f̂ )̌ (x) = dn

(
f ∗

t

(| · |2 + t2)
n+1

2

)
(x).

We obtain

u(x, t) → f(x) for t→ 0

uniformly in x because (e−|·|)̌ ∈ L1 and e−|0| = 1. Furthermore, we have

tk
∂ku(x, t)

∂tk
→ 0 for t→ 0

uniformly in x for all k ∈ N because (| · |ke−|·|)̌ ∈ L1 and |0|ke−|0| = 0. Now we obtain by
iterated partial integration and with suitable constants dkl with k ∈ N and l ∈ {0, . . . , k−1}

∫ b

a

tk−1∂
ku(x, t)

∂tk
dt = τk−1∂

k−1u(x, τ)

∂τk−1

∣∣∣
b

a
− (k − 1)

∫ b

a

tk−2∂
k−1u(x, t)

∂tk−1

= . . .

=

k−1∑

l=0

dkl b
l ∂

lu(x, b)

∂tl
−

k−1∑

l=0

dkl a
l∂
lu(x, a)

∂tl
.

Therefore, we get the relation

k−1∑

l=0

dkl τ
l ∂

lu(x, τ)

∂tl

∣∣∣
1

0
=

∞∑

ν=0

∫ 2−ν

2−ν−1

tk−1∂
ku(x, t)

∂tk
dt.

By our above considerations on the limits it follows

f(x) = c

∞∑

ν=0

∫ 2−ν

2−ν−1

tk−1∂
ku(x, t)

∂tk
dt+

k−1∑

l=0

ckl
∂lu(x, 1)

∂tl
(75)

with suitable constants ckl with k ∈ N and l ∈ {0, . . . , k − 1}. We want to call the
right-hand side a harmonic representation of f . A look at the norms from proposition
3.10 tells us that very similar terms occured there. Therefore, it will be our aim to give
(75) a meaning for f ∈ Bs

p,q(E) resp. F s
p,q(E), with convergence at least in S ′(Rn, E).

From the remarks forward to 3.10 we obtain that the functions u(x, t) are well-defined for
f ∈ Bs

p,q(E) resp. F s
p,q(E), harmonic in {(x, t) ∈ Rn+1, t > 0} and bounded on {(x, t) ∈

Rn+1, t > δ} for every δ > 0. So the integrals in (75) make sense.
In the following we keep close to [Tri97], theorem 12.5, p. 62, where the scalar case is

treated.

Proposition 4.5. Let s ∈ R, 0 < q ≤ ∞ and 0 < p ≤ ∞ (resp. < ∞). If one chooses
k ∈ N large enough, then the right-hand side of (75) converges in S ′(Rn, E) to f for
f ∈ Bs

p,q(E) resp. F s
p,q(E).
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Proof. This proposition can be proven as the scalar-case [Tri97], theorem 12.5(i), p. 62.
To avoid (unknown) vector-valued duality relations one shows

a[f ] = a[g]

for a ∈ E ′ instead, where a[f ] with a[f ](ϕ) := a(f(ϕ)) for ϕ ∈ S(Rn) is an element of
Bs
p,q if f ∈ Bs

p,q(E).

Now we derive a representation of the elements of the function spaces Bs
p,q(E) resp.

F s
p,q(E) which leads us to the desired form of proposition 4.4. Hereby we keep close to

[Tri97], section 13.10, p. 83.
Let f ∈ Bs

p,q(E) resp. F s
p,q(E). If we choose k sufficiently large, then we obtain the

harmonic representation of proposition 4.5

f(x) = c

∞∑

ν=0

∫ 2−ν

2−ν−1

tk
∂ku(x, t)

∂tk
dt

t
+

k−1∑

l=0

ckl
∂lu(x, 1)

∂tl

with convergence in S ′(Rn, E).
Let µ ∈ N be fixed. Let ν ∈ N, ν ≥ µ, m ∈ Zn and l ∈ {0, · · ·2µ − 1}. By Bν,m,l we

denote the cubes in R
n+1
+ := {(x, t) ∈ Rn+1, t > 0} with center (2−νm, 2−ν+µ + l2−ν) and

radius 2−ν+µ−2. We decompose the rectangles Qν,m× (2−ν+µ, 2−ν+µ+1) in 2µ cubes of side
length 2−ν . Now we define

λν,m := 2ν(s−
n
p )2−νk sup ‖

∂ku(y, t)

∂tk
|E‖ for ν > µ,m ∈ Z

n, (76)

where we take the supremum over the set
{
(y, t) ∈ R

n+1 : |2−νm− y| ≤ d2−ν+µ−1, d−12−ν+µ ≤ t ≤ d2−ν+µ+1
}
,

for a d > 0 which we will choose sufficiently large afterwards.
In the case µ = ν we put

λµ,m :=
k−1∑

l=0

|ckl | sup ‖
∂lu(y, t)

∂tl
|E‖ for m ∈ Z

n,

where we take the supremum over the set
{
(y, t) ∈ R

n+1 : |2−νm− y| ≤ d,
1

2d
≤ t ≤

3

2
d

}
.

Now we take a closer look at ‖λ|fp,q‖. We obtain

‖λ|fp,q‖ =

∥∥∥∥∥∥

( ∞∑

ν=µ

∑

m∈Zn

|λν,mχ
(p)
ν,m|

q

) 1

q ∣∣Lp

∥∥∥∥∥∥

∼

∥∥∥∥∥∥

( ∞∑

ν=µ+1

∑

m∈Zn

(
2ν(s−

n
p )2−νk sup ‖

∂ku(y, t)

∂tk
|E‖ χ(p)

ν,m

)q) 1

q ∣∣Lp

∥∥∥∥∥∥

+

∥∥∥∥∥
∑

m∈Zn

k−1∑

l=0

|ckl | sup ‖
∂lu(y, t)

∂tl
|E‖ · χ(p)

µ,m

∣∣Lp
∥∥∥∥∥

≤ c2µδ‖f |F s
p,q(E)‖

(77)
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for a suitable δ > 0 and for a c independent of µ. Note that the estimate of the norms
by proposition 3.12 was applied in the last step of the chain of proof. Hence we have to
assume p > n

n+1
.

Is it neglectable that the suprema in the second last term are taken over a small area
of t resp. a larger area of t: This is obvious for the second part and follows for the first
part by a Taylor expansion.

Analogously, ‖λ|bp,q‖ can be estimated by c‖f |Bs
p,q(E)‖ in the case f ∈ Bs

p,q(E). Now
we choose a ψ ∈ S(Rn) with compact support and

∑

m∈Zn

ψ(x−m) = 1 for all x ∈ R
n. (78)

If ν > µ and m ∈ Zn, we put (with c out of (75))

aν,m(x) :=

2µ−1∑

l=0

aν,m,l(x) with aν,m,l(x) := cλ−1
ν,mψ(2

νx−m)

∫ 2−ν+µ+(l+1)2−ν

2−ν+µ+l2−ν

tk
∂ku(x, t)

∂tk
dt

t

and in the case ν = µ we define for m ∈ Zn

aµ,m(x) :=

k−1∑

l=0

aµ,m,l(x) with aµ,m,l(x) := ckl λ
−1
µ,mψ(2

µx−m)
∂lu(x, 1)

∂tl
.

Then we obtain (in S ′(Rn, E))

f =
∞∑

ν=µ

∑

m∈Zn

λν,maν,m.

This is the desired representation. In the following we are going to show that the aν,m
behave like E-valued (s, p)K,−1-atoms for all K ∈ N.

By construction the condition (65) is valid. We can’t show any moment conditions (see
(67)). To check the conditions on the derivatives we use a lemma for harmonic functions.

Lemma 4.6. Let W (X1, · · · , XN) : R
N → E be harmonic in the domain

KR =
{
X ∈ R

N : |X| ≤ R
}
.

Then for κ ∈ (0, 1) it is true that

‖DαW (X)|E‖ ≤ cα,κR
−|α| sup

|Y |=R
‖W (Y )|E‖ for |X| ≤ κR

with a constant c which depends on α and κ but not on R.

Proof. If V : RN → E is harmonic in the given domain, then it holds

V (X) =
R2 − |X|2

RωN

∫

|Y |=R

V (Y )

|X − Y |N
dsY for |X| < R, (79)

where ωN is the volume of the unit ball of RN . The lemma follows by taking the derivative
of both sides and by a suitable estimate (see the end of [Tri97], section 13.10, p. 83).
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Now we apply this lemma to the functions W (X) = ∂ku(x,t)
∂tk

, which are harmonic in
R
n+1
+ , to the balls Bν,m,l instead of KR with R = 2−ν+µ−2 and to κ = d′2−µ+2 < 1 if µ is

larger than a certain κ0. Thus we obtain for ν > µ and the set of all

{(x, t) ∈ R
n+1 : |(2−νm− x, 2−ν+µ + l2−ν − t)| ≤ d′2−µ+2 · 2−ν+µ−2 = d′2−ν}

the relation ∥∥∥∥Dγ ∂
ku(x, t)

∂tk
|E

∥∥∥∥ ≤ c 2(ν−µ+2)|γ| sup

∥∥∥∥
∂ku(x, t)

∂tk
|E

∥∥∥∥ ,

where the supremum is taken over

{(x, t) ∈ R
n+1 : |(2−νm− x, 2−ν+µ + l2−ν − t)| = 2−ν+µ−2}.

But for all l ∈ {0, . . . , 2µ−1} this set is contained in the set (x, t) ∈ Rn+1 with |2−νm−x| ≤
d2−ν+µ−1 and d−12−ν+µ ≤ t ≤ d2−ν+µ+1 for a suitable d. Now this yields

‖Dγaν,m|E‖ ≤ c
2µ−1∑

l=0

2−ν(s−
n
p )+ν|γ|2νk

∫ 2−ν+µ+(l+1)2−ν

2−ν+µ+l2−ν

tk
dt

t
≤ c′2µk2−ν(s−

n
p
)+ν|γ|.

Analogous assertions hold true for aµ,m (m ∈ Zn). Therefore, we have proven the desired
conditions (66) for all K ∈ N0. The aν,m introduced above for ν ∈ N, ν ≥ µ and m ∈ Zn

are E-valued (s, p)K,−1-atoms for all K ∈ N0 - up to a constant depending on µ.
We call this atoms and the found representation for f “harmonic“.

Proposition 4.7. (i) Let n
n+1

< p ≤ ∞, 0 < q ≤ ∞, s > σp and K ∈ N0 with K ≥ 1+⌊s⌋.
Then f ∈ S ′(Rn, E) belongs to Bs

p,q(E) if and only if it can be represented by

f =
∑

ν∈N0

∑

m∈Zn

λν,maν,m(x).

Here aν,m are E-valued 1K-atoms (for ν = 0) or E-valued (s, p)K,−1-atoms (for ν ∈ N)
and λ ∈ bp,q. Furthermore, we have

‖f |Bs
p,q(E)‖ ∼ inf ‖λ|bp,q‖

in the sense of equivalence of norms, where the infimum on the right-hand side is taken
over all admissible representations for f .

(ii) Let n
n+1

< p < ∞, 0 < q ≤ ∞, s > σp,q and K ∈ N0 with K ≥ 1 + ⌊s⌋. Then
f ∈ S ′(Rn, E) belongs to F s

p,q(E) if and only if it can be represented by

f =
∑

ν∈N0

∑

m∈Zn

λν,maν,m(x).

Here aν,m are E-valued 1K-atoms (for ν = 0) or E-valued (s, p)K,−1-atoms (for ν ∈ N)
and λ ∈ fp,q. Furthermore, we have

‖f |F s
p,q(E)‖ ∼ inf ‖λ|fp,q‖

in the sense of equivalence of norms, where the infimum on the right-hand side is taken
over all admissible representations for f .

Proof. The assertions follow from 4.4 because the choice of L = −1 is admissible in the
case s > σp resp. s > σp,q and from the proven representation observing (77) resp. the
analogous result for Bs

p,q(E). Here the coefficients λν,m even vanish for ν < µ.
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4.2 Subatomic decompositions

The aim of the following section will be to simplify the atomic representation of f ∈
Bs
p,q(E) resp. F s

p,q(E) further. As a basis we use the harmonic representation from the
last section. We orientate on [Tri97], section 14, p. 89 which treats the scalar case.

Definition 4.8. Let ψ ∈ S(Rn) with supp ψ ⊂ d ·Q0,0 for a d > 1 and
∑

m∈Zn

ψ(x−m) = 1.

Let s ∈ R, 0 < p ≤ ∞, L+1
2

∈ N0 and γ ∈ Nn
0 . We put ψγ(x) := xγψ(x). Then we call

(γqu)Lν,m(x) = 2−ν(s−
n
p )
(
(−∆)

L+1

2 ψγ
)
(2νx−m)

a (s, p)L-γ-quark for Qν,m. If L = −1, we want to denote it shortly by (γqu)ν,m(x).

Remark 4.9. First of all, we want to show that the (s, p)L− γ-quarks really are (scalar)
(s, p)K,L-atoms for all K ∈ N0. The moment conditions (67) easily follow from their
shape. For the derivatives we have

∣∣∣Dα
((

(−∆)
L+1

2 ψγ
)
(2νx−m)

)∣∣∣ ≤ c 2|α|ν2κ|γ|,

where c and κ depend on α and L but not on γ, ν, or m. So the (γqu)Lν,m(x) are (s, p)K,L-
atoms up to a constant.

Now we will simplify the representation of f ∈ Bs
p,q(E) resp. F s

p,q(E) by the following
result which corresponds to [Tri97], theorem 14.4, step 2, p. 93.

Lemma 4.10. (i) Let n
n+1

< p ≤ ∞, 0 < q ≤ ∞, s > σp and f ∈ Bs
p,q(E). Then there is

a κ0 ∈ N such that there exists a representation

f =
∑

γ∈Nn
0

∞∑

ν=0

∑

m∈Zn

λγν,me
γ
ν,m(γqu)ν,m(x)

in S ′(Rn, E) with eγν,m ∈ UE for all µ ≥ κ0. It holds

sup
γ∈Nn

0

2µ|γ|‖λγ|bp,q‖ ≤ c‖f |Bs
p,q(E)‖,

where c does not depend on f and λγ = (λγν,m)m∈Zn,ν∈N0
.

(ii) Let n
n+1

< p < ∞, 0 < q ≤ ∞, s > σp,q and f ∈ F s
p,q(E). Then there is a κ0 ∈ N

such that there exists a representation

f =
∑

γ∈Nn
0

∞∑

ν=0

∑

m∈Zn

λγν,m(γqu)ν,m(x)e
γ
ν,m,

in S ′(Rn, E) with eγν,m ∈ UE for all µ ≥ κ0. It holds

sup
γ∈Nn

0

2µ|γ|‖λγ|fp,q‖ ≤ c‖f |F s
p,q(E)‖,

where c does not depend on f and λγ = (λγν,m)m∈Zn,ν∈N0
.
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Proof. We restrict ourselves to the case f ∈ F s
p,q(E), the case f ∈ Bs

p,q(E) can be proven
analogously. From proposition 4.7 and the previous remarks we obtain the optimal de-
composition

f =
∑

ν≥µ

∑

m∈Zn

λν,maν,m (80)

with (in case of ν > µ)

aν,m,l(x) = cλ−1
ν,mψ(2

νx−m)

∫ 2−ν+µ+(l+1)2−ν

2−ν+µ+l2−ν

tk
∂ku(x, t)

∂tk
dt

t
,

aν,m(x) =

2µ−1∑

l=0

aν,m,l(x) and ‖λ|fp,q‖ ≤ c2µδ‖f |F s
p,q(E)‖.

(81)

We want to expand the arbitrarily often differentiable functions ∂ku(x,t)
∂tk

into a Taylor
series, with center (2−νm, 2−ν+µ + l2−v) of the balls Bν,m,l. We need

Lemma 4.11. There exist c > 0 and 0 < τ < 1 such that

‖DαW (0)|E‖ ≤ cα!τ−|α| sup
|y|=1

‖W (y)|E‖

for all α ∈ NN
0 and all W : RN → E which are harmonic in the domain {y ∈ RN : |y| ≤ 1}.

Proof. For an arbitrary Y ∈ RN with |Y | = 1 we expand the function

|Z − Y |−N =

[
N∑

j=1

(Zj − Yj)
2

]−N
2

,

which is holomorphic in |Z| < c with c independent of Y , into its Taylor series around 0.
By a repeated application of the Cauchy formula for τ ≤ c′ < c√

N
it follows

∣∣(Dα|Z − Y |−N
)
(0)
∣∣ =

∣∣∣∣
(−1)αα!

(2πi)N

∫

|z1|=τ
. . .

∫

|zN |=τ

|(z1, . . . , zN )− Y |−N

zα1+1
1 · . . . · zαN+1

N

dz1 . . . dzN

∣∣∣∣

≤ cτ−|α|α!

uniformly in Y ∈ RN with |Y | = 1.
By the formula of Dirichlet for E-valued functions which are harmonic in {Y ∈ RN :

|Y | ≤ 1} (see (79)) and by the uniform convergence of the Taylor series of Dα|Z − Y |−N

for X, Y ∈ RN with |Y | = 1 and |X| < τ we obtain

W (X) =
1− |X|2

ωN

∫

|Y |=1

W (Y )

|X − Y |N
dsY

=
∑

α∈NN
0

Xα

ωNα!

∫

|Y |=1

ãα(Y )W (Y ) dsY
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with aα(Y ) = Dα
(
|Z − Y |−N

)
(0) and ãα(y) = aα(y) −

∑N
k=1 aα−2ek(y) where ek is the

multi-index (0, . . . , 0, 1, 0, . . . , 0). By taking the derivative of the power series we see that

‖(DαW )(0)|E‖ =
1

ωN

∥∥∥∥
∫

|Y |=1

ãα(Y )W (Y ) dsY
∣∣E
∥∥∥∥ ≤ cα!τ−|α| sup

|y|=1

‖W (y)|E‖

is valid for all α ∈ NN
0 , where c does not depend on α and W .

Now we apply this lemma with N = n + 1 to the functions W (x, t) := ∂ku(x,t)
∂tk

which
are harmonic in the ball Bν,m,l. If we set

W̃ (x, t) := W
(
2−ν+µ−2x+ 2−νm, 2−ν+µ−2t+ 2−ν+µ + l2−ν

)
,

then W̃ is harmonic in {y ∈ Rn+1 : |y| ≤ 1}. Hence we finally get the power series
expansion

W (x, t) = W̃ (2ν−µ+2x− 2−µ+2m, 2ν−µ+2t− 22 − l2−µ+2)

=
∑

α∈NN
0
, β∈N0

c(α,β)2
(|α|+β)(ν−µ+2) (x− 2−νm)α · (t− 2−ν+µ − l2−ν)β

α!β!
(82)

for |(x− 2−νm, t− 2−ν+µ − l2−ν)| < 2−ν+µ−2τ .
If we choose µ larger or equal than a certain κ0, then this expansion is true in particular

for (x, t) ∈ Rn+1 with x ∈ supp ψ(2νx − m) and t ∈ [2−ν+µ + l2−ν , 2−ν+µ + (l + 1)2−ν ].
Here we have

‖cα,β|E‖ = ‖(Dα,βW̃ (0)|E‖ ≤ cα!τ−|α|−β sup
(x,t)∈Bν,m,l

‖W (y)|E‖

by lemma 4.11 proven before. If we put this into (81), we obtain

aν,m,l(x) = cλ−1
ν,mψ(2

νx−m)

∫ 2−ν+µ+(l+1)2−ν

2−ν+µ+l2−ν

tk
∂ku(x, t)

∂tk
dt

t

≡
∑

γ∈NN
0

c̃γ (2νx−m)γψ(2νx−m)

with

‖c̃γ|E‖ ≤ c2−ν|γ|λ−1
ν,m

∞∑

β=0

2(ν−µ+2)(|γ|+β)

γ!β!
c(γ,β)

2−ν+µ+(l+1)2−ν∫

2−ν+µ+l2−ν

(t− 2−ν+µ − l2−ν)βtk
dt

t

≤ c′2−ν(s−
n
p )2µk2(−µ+2)|γ|τ−|γ|

∞∑

β=0

τ−β2(−µ+2)β ,

observing the definition of λν,m in (76). The series over β converges by our choice of µ
and we get

aν,m,l(x) =
∑

γ∈Nn
0

ηγν,m,l(γqu)ν,m(x) with ‖ηγν,m,l|E‖ ≤ c′′2µk(τ−12−µ+2)|γ|.
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Here c′′ and τ are independent of µ and γ. If we replace µ by Mµ afterwards, where
M ∈ N is sufficiently large, and sum over l = 0, . . . , 2µ − 1 in (81), we arrive at

aν,m(x) =
∑

γ∈Nn
0

ηγν,m(γqu)ν,m(x) with ‖ηγν,m|E‖ ≤ C2µδ2−µ|γ| (83)

for certain C > 0 and δ > 0 which do not depend on µ and γ.
The case ν = µ can be treated analogously. We just have to set t = 1 in the Taylor

expansion so that the sum over β in (82) vanishes.
Hence we obtain from (80)

f =
∑

γ∈Nn
0

∞∑

ν=0

∑

m∈Zn

λγν,m(γqu)ν,m(x)e
γ
ν,m

in S ′(Rn, E) with

λγν,m =

{
λν,m‖η

γ
ν,m|E‖ , ν ≥ µ

0 , ν < µ
and eγν,m =

{
ηγν,m

‖ηγν,m|E‖ , ν ≥ µ

0 , ν < µ
.

With (77) and the observations on the dependence of µ in (83) we find

2µ|γ|‖λγ |fp,q‖ ≤ C ′2µδ1‖f |F s
p,q(E)‖, γ ∈ N

n
0

with C ′ and δ1 independent of µ and γ for µ ≥ κ0.

Now we have all the ingredients together to prove [Tri97], theorem 15.8, p. 114, where
now arbitrary s ∈ R are allowed.

Theorem 4.12. (i) Let n
n+1

< p ≤ ∞, 0 < q ≤ ∞ and s ∈ R. Let M ∈ N with M > σp
and M > s and L with L+1

2
∈ N0 and L ≥ ⌊σp − s⌋ be fixed. Let (γqu)ν,m and (γqu)Lν,m

be given as (M, p)−1- resp. (s, p)L-γ-quarks for a given function ψ ∈ S(Rn) with compact
support and the property (78). Then there exists a κ > 0 such that for all µ ≥ κ it is
valid that f ∈ S ′(Rn, E) belongs to Bs

p,q(E) if and only if it can be represented as

f =
∑

γ∈Nn
0

∞∑

ν=0

∑

m∈Zn

̺γν,me
γ
ν,m(γqu)ν,m(x) + λγν,me

γ,L
ν,m(γqu)

L
ν,m(x)

in S ′(Rn, E) with eγν,m, e
γ,L
ν,m ∈ UE and

sup
γ∈N0

2µ|γ|(‖̺γ|bp,q‖+ ‖λγ|bp,q‖) <∞.

Furthermore, it holds in the sense of equivalence of norms

‖f |Bs
p,q(E)‖ ∼ inf sup

γ
2µ|γ|(‖̺γ|bp,q‖+ ‖λγ |bp,q‖),

where the inf. on the right-hand side is taken over all admissible representations of f .
(ii) Let n

n+1
< p < ∞, 0 < q ≤ ∞ and s ∈ R. Let M ∈ N with M > σp,q and M > s

and L with L+1
2

∈ N0 and L ≥ ⌊σp,q − s⌋ be given. The quarks have the same meaning as
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in (i). Then there exists a κ > 0 such that for all µ ≥ κ it is valid that f ∈ S ′(Rn, E)
belongs to F s

p,q(E) if and only if it can be represented as

f =
∑

γ∈Nn
0

∞∑

ν=0

∑

m∈Zn

̺γν,me
γ
ν,m(γqu)ν,m(x) + λγν,me

γ,L
ν,m(γqu)

L
ν,m(x) (84)

in S ′(Rn, E) with eγν,m, e
γ,L
ν,m ∈ UE and

sup
γ

2µ|γ|(‖̺γ |fp,q‖+ ‖λγ |fp,q‖) <∞. (85)

Furthermore, it holds in the sense of equivalence of norms

‖f |F s
p,q(E)‖ ∼ inf sup

γ∈N0

2µ|γ|(‖̺γ |fp,q‖+ ‖λγ|fp,q‖),

where the inf. on the right-hand side is taken over all admissible representations of f .

Proof. We only consider the case F s
p,q(E). The proof for Bs

p,q(E) can be organized analo-
gously. Let f ∈ S ′(Rn, E) be represented by (84) with the condition (85). Then

f γ1 :=
∞∑

ν=0

∑

m∈Zn

̺γν,me
γ
ν,m(γqu)ν,m(x)

and

f γ2 :=

∞∑

ν=0

∑

m∈Zn

λγν,me
γ,L
ν,m(γqu)

L
ν,m(x)

are represented as sums of atoms (up to a constant) as elements of S ′(Rn, E) by remark
4.9. Here (γqu)ν,me

γ
ν,m resp. (γqu)Lν,me

γ,L
ν,m are E-valued (M, p)K,−1- resp. (s, p)K,L-atoms

for every K ∈ N0, where one has to keep in mind a normalization constant c2κγ with c
depending on K but independent of γ (see remark 4.9). Thus we obtain by proposition
4.4 that f γ1 ∈ FM

p,q(E)
2, that f γ2 ∈ F s

p,q(E) and that there exists a c′′ > 0 such that it holds

‖f γ|F s
p,q(E)‖ ≤ c′

(
‖f γ1 |F

M
p,q(E)‖+ ‖f γ2 |F

s
p,q(E)‖

)
≤ c′′2κ|γ| (‖̺γ|fp,q‖+ ‖λγ|fp,q‖) .

with f γ = f γ1 + f γ2 . Here c′′ and κ are independent of γ (and f γ). Therefore, if we take
µ > κ for granted, it results from (85) and a typical Minkowski/Hölder argument that

f =
∑

γ∈Nn
0

f γ with ‖f |F s
p,q(E)‖ ≤ C sup

γ
2µ|γ| (‖̺γ |fp,q‖+ ‖λγ|fp,q‖)

in F s
p,q(E). Hence this part of the proof is even valid for all 0 < p ≤ ∞, 0 < q ≤ ∞ and

s ∈ R.
Let f from F s

p,q(E) be given for the second part of the proof. In the case s > σp,q and
L = −1 the assertion of the proposition follows from lemma 4.10. Here we don’t need any
terms of the form ̺γν,me

γ
ν,m(γqu)ν,m(x).

2Because of M > σp,q we need no moment conditions (67) for these atoms.
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Let now s be arbitrary and f ∈ F s
p,q(E). Then we have by the lift property (see (18))

g =
(
(1 + | · |2)−

L+1

2 f̂
)
ˇ ∈ F s+L+1

p,q (E)

with ‖f |F s
p,q(E)‖ ∼ ‖g|F s+L+1

p,q (E)‖. Thus f can be represented as

f = g + (−∆)
L+1

2 g.

If we apply the same argument to g and iterate the procedure, we obtain

f = f1 + (−∆)
L+1

2 f2

with ‖f |F s
p,q(E)‖ ∼ ‖f1|F

s+m(L+1)
p,q (E)‖ + ‖f2|F

s+L+1
p,q (E)‖. If L ≥ ⌊σp,q − s⌋ (and L+1

2
∈

N0), then s + L + 1 fulfils the conditions from lemma 4.10, this means s + L + 1 > σp,q.
Then f2 can be represented by

f2 =
∑

γ∈Nn
0

∞∑

ν=0

∑

m∈Zn

λγν,me
γ,L
ν,m(γqu)ν,m(x),

where (γqu)ν,m are (s+ L+ 1, p)−1-γ-quarks and it holds

‖f2|F
s+L+1
p,q (E)‖ ∼ sup

γ
2µ|γ|‖λγ|fp,q‖.

But now we have

(−∆)
L+1

2 (γqu)ν,m(x) = (−∆)
L+1

2

(
2−ν(s+L+1−n

p )ψγ(2νx−m)
)

= 2−ν(s−
n
p )
(
(−∆)−

L+1

2 ψγ
)
(2νx−m),

which is an (s, p)L-γ-quark.
Furthermore, let’s choose m so large that M̃ := s + m(L + 1) fulfils the condition

M̃ ≥ M . From f1 ∈ F M̃
p,q(E) follows f1 ∈ FM

p,q(E) as well. This yields a representation
for f1 with (M, p)−1-γ-quarks by lemma 4.10, observing M > σp,q. Hence we obtain a
representation for f as a sum of (M, p)−1- and (s, p)L-γ-quarks by

f =
∑

γ∈Nn
0

∞∑

ν=0

∑

m∈Zn

̺γν,me
γ
ν,m(γqu)ν,m(x) + λγν,me

γ,L
ν,m(γqu)

L
ν,m(x)

and it holds by the previous steps

sup
γ

2µ|γ| (‖̺γ |fp,q‖+ ‖λγ|fp,q‖) ≤ c
(
‖f1|F

M
p,q(E)‖+ ‖f2|F

s+L+1
p,q (E)‖

)

≤ c′‖f |F s
p,q(E)‖.

Now it is an easy task to expand this theorem to the more general atoms. This was
suggested by the first step of the preceding proof in which we only used that the quarks
are atoms. We now obtain [Tri97], theorem 15.11, p. 116.
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Theorem 4.13. (i) Let n
n+1

< p ≤ ∞, 0 < q ≤ ∞ and s ∈ R. Let M ∈ N with M > σp
and M > s, K ∈ N0 with K ≥ ⌊s⌋ + 1 and L with L+1

2
∈ N0 and L ≥ ⌊σp − s⌋ be fixed.

Then there exists a κ > 0 such that for all µ ≥ κ it is valid that f ∈ S ′(Rn, E) belongs
to Bs

p,q(E) if and only if it can be represented by

f =
∑

γ∈Nn
0

∞∑

ν=0

∑

m∈Zn

̺γν,me
γ
ν,ma

γ
ν,m(x) + λγν,me

γ,L
ν,ma

γ,L
ν,m(x)

in S ′(Rn, E). Here aγν,m resp. aγ,Lν,m are (M, p)K,−1 resp. (s, p)K,L-atoms, eγν,m, e
γ,L
ν,m ∈ UE

and

sup
γ

2µ|γ|(‖̺γ|bp,q‖+ ‖λγ |bp,q‖) <∞.

Furthermore, we have in the sense of equivalence of norms

‖f |Bs
p,q(E)‖ ∼ inf sup

γ
2µ|γ|(‖̺γ|bp,q‖+ ‖λγ|bp,q‖),

where the inf. on the right-hand side is taken over all admissible representations of f .

(ii) Let n
n+1

< p < ∞, 0 < q ≤ ∞ and s ∈ R. Let M ∈ N with M > σp,q and M > s,

K ∈ N0 with K ≥ ⌊s⌋ + 1 and L with L+1
2

∈ N0 and L ≥ ⌊σp,q − s⌋ be fixed. Then there
exists a κ > 0 such that for all µ ≥ κ it is valid that f ∈ S ′(Rn, E) belongs to F s

p,q(E) if
and only if it can be represented by

f =
∑

γ∈Nn
0

∞∑

ν=0

∑

m∈Zn

̺γν,me
γ
ν,ma

γ
ν,m(x) + λγν,me

γ,L
ν,ma

γ,L
ν,m(x)

in S ′(Rn, E). Here aγν,m resp. aγ,Lν,m are (M, p)K,−1 resp. (s, p)K,L-atoms, eγν,m, e
γ,L
ν,m ∈ UE

and

sup
γ

2µ|γ|(‖̺γ |fp,q‖+ ‖λγ |fp,q‖) <∞.

Furthermore, we have in the sense of equivalence of norms

‖f |F s
p,q(E)‖ ∼ inf sup

γ
2µ|γ|(‖̺γ|fp,q‖+ ‖λγ|fp,q‖),

where the inf. on the right-hand side is taken over all admissible representations of f .

Proof. The existence of such a representation for f ∈ Bs
p,q(E) resp. f ∈ F s

p,q(E) follows
from the fact that the (s, p)L-γ-quarks are also (s, p)K,L-atoms for all K ∈ N0 and by the
previous theorem. If f ∈ S(Rn, E) can be represented in the given way, then it belongs
to Bs

p,q(E) resp. F s
p,q(E) by the first step of the proof of the previous theorem because it

only uses that the quarks are (M, p)K,−1- resp. (s, p)K,L-atoms.
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