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Abstract

In this note, we show that the Carathéodory’s extension theorem is still valid for a class of

subsets ofΩ less restricted than a semi-ring, which we call quasi-semi-ring.
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1 Introduction

Due to paradoxes such as the Banach-Tarski paradox (see Banach and Tarski, 1924), it is not always

possible to define a measure (e.g., Lebesgue measure) in the power set of the main setΩ. Instead, we

must restrict our attention to certain measurable subsets of Ω. The Carathéodory’s extension theorem

basically extends a countably additive premeasure defined in a small class, usually a semi-ring, to a

large class of measurable sets that contains the smaller one. The real line is the main motivation for

using a semi-ring as the starting class of subsets, because the Borel sigma-algebra can be generated

by a class of semi-open intervals, which is a semi-ring. Therefore, by defining a premeasure on

this class of semi-open intervals (which is an easy task), anextension to the Borel sigma-algebra

(which contains “non-pathological” subsets ofR) is readily available through the extension theorem.

However, as a semi-ring requires closure by intersections,it may be more difficult to define a semi-

ring of subsets of some non-flat surfaces such as cylinders and closed surfaces (sphere, torus, double

torus, triple torus, Klein bottle and so on).

In this note, we show that it is possible to weaken the assumptions regarding the initial class of

subsets in the Carathéodory’s extension theorem. We definea new class of subsets that does not

require closure by intersections and prove that: (1) all elements in this collection are measurable (in

the sense of Carathéodory’s “splitting principle”), (2) the extension (the outer measure) agrees with
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the premeasure on the starting collection and (3) it is unique on the smallest ring generated by this

collection. Some of the proofs given in this note are similarto those in Athreya and Lahiri (2007).

Below we define a quasi-semi-ring of subsets which plays an important role in the construction of

our theory.

DEFINITION 1.1. LetΩ be nonempty. A classA of subsets ofΩ is a quasi-semi-ring if the following

conditions hold;

1. ∅ ∈ A,

2. If A,B ∈ A, then there exist disjoint subsetsB1, . . . Bn, C1, . . . , Ck ∈ A such thatA ∩ B =
⋃n

i=1
Bi andA ∩Bc =

⋃k

i=1
Ci, wheren, k < ∞,

The main difference between a quasi-semi-ring and a semi-ring is that the former may not be

closed by finite intersections but the latter must be. It is not hard to see, by the above definition, that

a semi-ring is always a quasi-semi-ring, but the converse isnot always true. Below, we show some

classes of subsets ofΩ that are quasi-semi-rings but are not semi-rings. The first two examples are

artificial ones, but the last one is more natural. The readersare invited to find other examples.

EXAMPLE 1.1. Consider thatA,B,C ⊂ Ω andA = {∅, A, B,A ∩ B ∩ C,A ∩ B ∩ Cc, A ∩ Bc ∩

C,A ∩ Bc ∩ Cc, Ac ∩ B ∩ C,Ac ∩ B ∩ Cc}. Then,A is a quasi-semi-ring but it is not necessarily a

semi-ring (it is not closed under finite intersections).

In order to better understand the above example, the reader should draw a Venn diagram with the

setsA,B andC.

EXAMPLE 1.2. Suppose thatΩ = R
2 andA = {all semi-closed rectangles where base6= height}∪∅.

It is not a semi-ring, because some intersections of rectangles do produce squares. On the other hand,

every square can be represented by finite union of disjoint rectangles with different base and height.

Note also that ifA,B ∈ A, thenA∩B andA∩Bc may be∅, rectangles with different base and height

or finite unions of disjoint rectangles with different base and heigh. Therefore,A is a quasi-semi-ring.

EXAMPLE 1.3. LetΩ be a circle in the plane and assume thatA is a class containing all the semi-

closed arcs ofΩ, assume also that∅ ∈ A . It is easy to see thatA is not a semi-ring, since it is not

closed under intersections. Take the parametrized arcsA = (0, 3π
2
] ∈ A andB = (π, 5π

2
] ∈ A, then

A ∩ B = (π, 3π
2
] ∪ (0, π

2
] /∈ A. On the other hand, it is a quasi-semi-ring, because ifA,B ∈ A, then

A∩B andA∩Bc are unions of semi-closed disjoint arcs or∅ or they are inA. Notice that,A would

be a semi-ring if it were defined as the class containing all the semi-closed parametrized arcs ofΩ

restricted to the interval(0, 2π]. The quasi-semi-ring does not require such a restriction.
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Apparently, a collection of subsets formed by all semi-closed “pieces” of any smooth close surface

is not a semi-ring (since some intersections are not semi-closed “pieces”), but, on the other hand, it is

a quasi-semi-ring (since these intersections are formed byunion of semi-closed “pieces”).

With the purpose of proving our results, we use the usual tools firstly introduced in Carathéodory

(1918), namely: the outer measure and the Carathéodory’s “splitting principle” (the criteria for mea-

surability of sets). LetΩ be nonempty. Given a premeasureµ well-defined in a quasi-semi-ring

A (i.e., µ(∅) = 0 and it is countably additive), the outer measure induced byµ as a function of

sets from the power set ofΩ to [0,∞] is usually defined asµ∗(A) = inf

{

∑

j≥1
µ(Aj) : A ⊂

⋃

j≥1
Aj , {Aj}j≥1 ⊂ A

}

for all A ⊂ Ω. In this definition, it should be clear that the covers ofA

have to be formed by countable many sets. The well-known properties of an outer measure are: (i)

µ∗(∅) = 0, (ii) µ∗ is monotone and (iii)µ∗ is countably subadditive.

In this note, we use another equivalent definition of outer measure where the covers are formed

by disjoint sets. This will help us to prove that the outer measure equals the premeasure on the

quasi-semi-ring.

PROPOSITION1.1. The outer measure induced byµ can alternatively be defined as

µ̄(A) = inf

{

∑

j≥1

µ(Aj) : A ⊂
⋃

j≥1

Aj , {Aj}j≥1 ⊂ A disjoint

}

for all A ⊂ Ω.

Proof. Notice thatµ∗(A) ≤ µ̄(A) for all A ⊂ Ω, since
{

{Aj}j≥1 ⊂ A disjoint : A ⊂
⋃

j≥1

Aj

}

⊂

{

{Aj}j≥1 ⊂ A : A ⊂
⋃

j≥1

Aj

}

.

DefineB1 = A1, B2 = A2 ∩ Ac
1
, Bi = Ai ∩ Ac

i−1
∩ . . . ∩ Ac

1
, for i ≥ 1. By definition of quasi-

semi-rings, there exist disjoint setsCn
1
, . . . , Cn

kn
∈ A such thatAn ∩ Ac

n−1
=

⋃kn
i=1

Cn
i . Note that

An∩Ac
n−1

∩Ac
n−2

=
⋃kn

i=1
(Cn

i ∩Ac
n−2

), therefore exist another disjoint sequenceDn
1,i, . . . , D

n
ln,i,i

∈ A

such that(Cn
i ∩Ac

n−2
) =

⋃li,n
j=1

Dn
j,i, thenAn ∩Ac

n−1
∩Ac

n−2
=

⋃kn
i=1

⋃li,n
j=1

Dn
j,i. Thus, by repetitively

applying this argument, we achieve atBn =
⋃mn

i=1
Hn

i such thatHn
1
, . . . , Hn

mn
∈ A are disjoint sets.

As
⋃

n≥1
An =

⋃

n≥1
Bn =

⋃

n≥1

⋃mn

i=1
Hn

i , we have that for each cover ofA, {An}n≥1, there exist

another cover ofA formed by disjoint sets{{Hn
i }

mn

i=1
}n≥1 ∈ A. Also, observe that

An =

(

An ∩

( n−1
⋃

i=1

Ai

)c)

∪

(

An ∩

( n−1
⋃

i=1

Ai

))

=

( mn
⋃

i=1

Hn
i

)

∪

( n−1
⋃

i=1

(An ∩ Ai)

)

,
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there exist disjoint setsNni
1
, . . . , Nni

kni
∈ A such thatAn ∩ Ai =

⋃kni

j=1
Nni

j , then by finite additivity

µ(An) =
∑mn

i=1
µ(Hn

i ) +
∑n−1

i=1

∑kni

j=1
µ(Nni

j ), thus

µ(An) ≥

mn
∑

i=1

µ(Hn
i ) and

∑

n≥1

µ(An) ≥
∑

n≥1

mn
∑

i=1

µ(Hn
i ).

Therefore, ifA ⊂ Ω, thenµ̄(A) ≤ µ∗(A) and we conclude that̄µ(A) = µ∗(A) for all A ⊂ Ω.

In what follows, we present the Carathéodory’s “splittingprinciple” which defines measurable

sets. A setA ⊂ Ω is said to beµ∗-mensurable if for allE ⊂ Ω, µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac).

The class of all measurable subsetsM = {A; A is µ∗-measurable} is indeed a sigma-algebra and the

triplet (Ω,M, µ∗) is a measure space independently of the starting class of subsetsA (the premeasure

µ must be countably additive).

1.1 Extension Theorem

This section establishes that all elements listed in a quasi-semi-ring are measurable and also that the

outer measure is equivalent to the premeasure on the quasi-semi-ring.

THEOREM 1.1. (Extension theorem) LetΩ be nonempty,A a quasi-semi-ring ofΩ andµ a countably

additive premeasure onA. Then,

1. A ⊂ M,

2. µ∗(A) = µ(A) for all A ∈ A.

Proof. LetA ∈ A, E ⊂ Ω and{Aj}j≥1 ⊂ A such thatE ⊂
⋃

j≥1
Aj . Notice that

Aj = (Aj ∩ A) ∪ (Aj ∩ Ac).

By definition of quasi-semi-ring, for eachj ≥ 1 there exist disjoint setsBj
1
, . . . , Bj

kj
, Cj

1
, . . . Cj

nj
∈ A

such thatAj ∩A =
⋃kj

i=1
Bj

i andAj ∩Ac =
⋃nj

i=1
Cj

i . Therefore,

Aj =

( kj
⋃

i=1

Bj
i

)

∪

( nj
⋃

i=1

Cj
i

)

.

By the finite additivity of the premeasureµ we have

µ(Aj) =

kj
∑

i=1

µ(Bj
i ) +

nj
∑

i=1

µ(Cj
i )
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and
∑

j≥1

µ(Aj) =
∑

j≥1

kj
∑

i=1

µ(Bj
i ) +

∑

j≥1

nj
∑

i=1

µ(Cj
i ).

Notice thatE ∩ A ⊂
⋃

j≥1

⋃kj
i=1

Bj
i andE ∩ Ac ⊂

⋃

j≥1

⋃nj

i=1
Cj

i , hence, by definition,
∑

j≥1

µ(Aj) ≥ µ∗(E ∩ A) + µ∗(E ∩ Ac),

for all covers,{Aj}j≥1 ⊂ A, of E. Then,

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E ∩Ac).

By subadditivity we conclude thatµ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac). That is,∀ A ∈ A ⇒ A ∈ M,

thusA ⊂ M, which proves item 1.

Now, letA ∈ A and suppose thatµ∗(A) < ∞ (if it is infinity the equality is obvious). For each

ǫ > 0, there exist a cover ofA, {An}n≥1 ⊂ A such that

µ∗(A) ≤
∑

n≥1

µ(An) ≤ µ∗(A) + ǫ. (1)

Without lost of generality, consider that the cover ofA is formed by disjoint sets (see Proposition

1.1). Note thatA =
⋃

n≥1
(A ∩ An), then there exist disjoint setsMn

1
, . . . ,Mn

rn
∈ A such that

A ∩ An =
⋃rn

i=1
Mn

i . Therefore, by the countably additive property, we have that:

µ(A) = µ

(

⋃

n≥1

rn
⋃

i=1

Mn
i

)

=
∑

n≥1

rn
∑

i=1

µ(Mn
i ).

On the other hand, there exist also disjoint setsNn
1
, . . . , Nn

wn
∈ A such thatAn∩Ac =

⋃wn

i=1
Nn

i , thus

An = (An ∩ A) ∪ (An ∩ Ac) =

( rn
⋃

i=1

Mn
i

)

∪

( wn
⋃

i=1

Nn
i

)

.

By finite additivity of the measure,

∑

n≥1

µ(An) =
∑

n≥1

rn
∑

i=1

µ(Mn
i ) +

∑

n≥1

wn
∑

i=1

µ(Nn
i ) ≥

∑

n≥1

rn
∑

i=1

µ(Mn
i )

and

µ(A) ≤
∑

n≥1

µ(An).

Then, for eachǫ > 0,

µ(A) ≤
∑

n≥1

µ(An) ≤ µ∗(A) + ǫ

implying thatµ(A) ≤ µ∗(A). We conclude thatµ(A) = µ∗(A) for all A ∈ A.
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1.2 Uniqueness of the extension

As a quasi-semi-ring is not aπ-system, the uniqueness of the extension is not guaranteed.In this

section, we prove that the extension is unique when restricted to the smallest ring generated by the

quasi-semi-ring.

PROPOSITION1.2. If A is a quasi-semi-ring, thenr(A) = {A : A = ∪k
i=1

Bi, {Bi}
k
i=1

∈ A disjoint}

is the smallest ring generated byA.

Proof. By definition of quasi-semi-ring, ifA,B ∈ A, then there exist disjoint sequencesA1, . . . , Ak,

B1, . . . , Bn ∈ A such thatA ∩ B =
⋃k

i=1
Ai andA ∩ Bc =

⋃n

i=1
Bi. By construction,A ⊂ r(A),

thusA,B,A ∩B,A ∩Bc ∈ r(A) ⇒ A ∪ B ∈ r(A) (notice thatA andB need not be disjoint sets).

Now, let A,B ∈ r(A), then there exist disjoint setsC1, . . . , Ck ∈ A andD1, . . . , Dn ∈ A

such thatA =
⋃k

i=1
Ci andB =

⋃n

i=1
Di (whereCi andDj need not be disjoint). Notice that

A∪B =
⋃n

j=1

⋃k

i=1
(Ci∪Dj) ∈ r(A), i.e.,r(A) is closed under finite unions. Note also thatA∩B =

⋃n

j=1

⋃k

i=1
(Ci ∩Dj) with Ci ∩Dj ∈ r(A) for all i = 1, . . . , k andj = 1, . . . , n, thenA∩B ∈ r(A),

sincer(A) is closed under finite unions. Finally, asA∩Bc =
⋃k

i=1
(Ci ∩Dc

n ∩Dc
n−1

∩ . . .∩Dc
1
) and

Ci ∩Dc
n ∩Dc

n−1
∩ . . . ∩Dc

1
∈ r(A) for all i = 1, . . . , k we have thatA ∩ Bc ∈ r(A). We conclude

thatr(A) is a ring generated byA. In fact,r(A) is the smallest ring generated byA, since all other

rings generated byA must be closed under finite unions of sets fromA.

THEOREM 1.2. LetA be a quasi-semi-ring ofΩ. Letµ1 andµ2 be two countably additive and finite

measures defined onM such thatµ1(A) = µ2(A) for all A ∈ A. Then,µ1(A) = µ2(A) for all

A ∈ r(A).

Proof. DefineC = {A ∈ r(A), µ1(A) = µ2(A)}, thenA ⊂ C ⊂ r(A). Let A ∈ r(A), then

A =
⋃k

i=1
Di, with D1, . . . , Dk ∈ A being disjoint sets. Notice thatD1, . . . , Dk ∈ C, thenµ1(Di) =

µ2(Di) for all i = 1, . . . , k and (by additive property of the involved measures)

µ1(A) = µ1

( k
⋃

i=1

Di

)

=

k
∑

i=1

µ1(Di) =

k
∑

i=1

µ2(Di) = µ2

( k
⋃

i=1

Di

)

= µ2(A)

implying thatA =
⋃k

i=1
Di ∈ C, therefore,r(A) ⊂ C andr(A) = C.

Next, we establish that ifΩ is covered by elementary sets inA of finite premeasure, then every

set inA can be represented by a union of disjoint sets inA with also finite premeasure.

PROPOSITION1.3. LetA be a quasi-semi-ring andµ a premeasure defined inA. Assume that there

exist a cover{Ai}i≥1 ⊂ A for Ω such thatµ(Ai) < ∞ for all i ≥ 1. Then, for allA ∈ A, there exist

disjoint sets{Ci}i≥1 ⊂ A such thatA =
⋃

i≥1
Ci with µ(Ci) < ∞ for i ≥ 1.
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Proof. Let {Ai}i≥1 ⊂ A such thatΩ =
⋃

i≥1
Ai with µ(Ai) < ∞ for i ≥ 1. By arguments given in

Proposition 1.1, we can consider{Ai}i≥1 disjoint sets.

If A ∈ A, thenA =
⋃

i≥1
(Ai ∩ A), sinceA ⊂

⋃

i≥1
Ai. There exist a disjoint sequence

Bi,1, . . . , Bi,ki ∈ A such thatAi ∩ A =
⋃ki

j=1
Bi,j. By monotonicity, we have thatµ(Bi,j) < ∞ for

all i, j (sinceBi,j ⊂ Ai for all i, j). Therefore, exist a disjoint sequence of sets{{Bi,j}
ki
j=1

}i≥1 ∈ A

such that

A =
⋃

i≥1

ki
⋃

j=1

Bi,j and µ(Bi,j) < ∞

for all j = 1, . . . , ki andi ≥ 1.

Now, we can extend Theorem 1.2 to the case of sigma-finite measures.

THEOREM 1.3. (Uniqueness theorem) LetA be a quasi-semi-ring ofΩ andµ a (countably additive)

sigma-finite measure (i.e., there exist{Ai}i≥1 ⊂ A such thatΩ =
⋃

i≥1
Ai with µ(Ai) < ∞ for

i ≥ 1). Then,µ∗ is the unique extension onr(A) that agrees withµ onA.

Proof. Suppose that there exist another measureν on r(A) that agrees withµ onA. By Proposition

1.3, every set inA can be expressed as union of disjoint sets inA of finite premeasure. By assumption,

ν andµ∗ must agree for each one of these elementary sets inA with finite premeasure, by countably

additive, we conclude thatν agree withµ∗ for every set in the ring (since the sets inr(A) can be

represented by finite unions of disjoint elementary sets inA of finite measures).

The smallest sigma-algebra generated byA is the smallest sigma-algebra generated byr(A). It is

known that if two sigma-finite measures agree on the ringr(A) they must agree on the smallest sigma

algebra generated byr(A). Therefore, two sigma-finite premeasures defined onA must agree in the

smallest sigma-algebra generated byA.
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