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MOMENTS OF THE TRANSMISSION EIGENVALUES, PROPER
DELAY TIMES AND RANDOM MATRIX THEORY I

F. MEZZADRI AND N. J. SIMM

Abstract. We develop a method to compute the moments of the eigenvalue densities
of matrices in the Gaussian, Laguerre and Jacobi ensembles for all the symmetry classes
β ∈ {1, 2, 4} and finite matrix dimension n. The moments of the Jacobi ensembles have
a physical interpretation as the moments of the transmission eigenvalues of an electron
through a quantum dot with chaotic dynamics. For the Laguerre ensemble we also evaluate
the finite n negative moments. Physically, they correspond to the moments of the proper
delay times, which are the eigenvalues of the Wigner-Smith matrix. Our formulae are well
suited to an asymptotic analysis as n → ∞.
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1. Introduction

1.1. Background. Over the past twenty years Random Matrix Theory (RMT) has pro-
vided a powerful tool to investigate quantum properties of electronic transport through
ballistic cavities (quantum dots) [6–8, 15, 31].

The purpose of this paper is to compute averages of the form

(1) M
(β)
E (k, n) =

1

C

∫

I

· · ·
∫

I

(

n
∑

j=1

xkj

)

n
∏

j=1

wβ(xj)
∏

1≤j<k≤n

|xk − xj |βdx1 · · · dxn

for finite n and k and for any value of β ∈ {1, 2, 4}. Here E labels one of the Gaussian
(G), Laguerre (Lb) or Jacobi (Ja,b) ensembles and the value of β corresponds to ensembles
of real symmetric (β = 1), complex hermitian (β = 2) or quaternion self-dual matrices
(β = 4). The function wβ(x) is the weight of the ensemble:

(2) wβ(x) =











e−βx2/2, I = (−∞,∞), Gaussian ensembles,

xβ/2(b+1)−1e−βx/2, I = [0,∞), Laguerre ensembles,

xβ/2(b+1)−1(1− x)β/2(a+1)−1, I = [0, 1], Jacobi ensembles,

where C is a normalization constant which may vary at each occurrence. The averages (1)
for the Jacobi ensembles correspond to the moments of the transmission eigenvalues of the
electric current through a ballistic cavity; the negative moments of the Laguerre ensembles
are the moments of the density of the eigenvalues of the Wigner-Smith time-delay matrix.

The physical dimensions of mesoscopic systems are such that the quantum nature of
the electron becomes important and a classical treatment of its dynamics is not accurate
anymore. Furthermore, at low temperature and voltage electron-electron interactions can
be neglected; therefore, the electron scatters elastically inside the cavity, which is attached
to two ideal leads connecting two reservoirs in equilibrium at zero temperature. If the
leads support m and n quantum channels respectively, all the information on the electric
transport is contained in the scattering matrix

(3) S =

(

rm×m t′m×n

tn×m r′n×n

)

.

The sub-blocks rm×m and tn×m are the reflection and transmission matrices through the
left lead, while t′m×n and r′n×n are those through the right lead. Without loss of generality,
throughout this paper we shall assume that m ≥ n. Since the scattering is elastic S is
unitary. This is known as the Landauer-Büttiker formalism.

The scattering matrix depends in a complicated way on macroscopic parameters like
the energy of the electron and the shape of the cavity. If the classical dynamics inside
the cavity is chaotic, then the fundamental assumption is that the electric current displays
universal features; thus, it is natural to model the scattering matrix S with a random matrix
drawn from one of Dyson’s circular ensembles: the Circular Unitary Ensemble (CUE) when
β = 2; the Circular Orthogonal Ensemble (COE) when β = 1; and the Circular Symplectic
Ensemble (CSE) when β = 4. Let K denote a time reversal operator. If the dynamics is
not time-reversal invariant then β = 2; if it is time-reversal invariant then β = 1 if K2 = 1
and β = 4 if K2 = −1.

In this paper we give a unified approach to compute the family of integrals (1) for all the
β ∈ {1, 2, 4} and give particular emphasis to those connected to statistics of the electric
current. Our formulae are exact for finite matrix dimension. Since experiments can now
be performed in quantum dots with a number of channels arbitrarily small [46], recently
there has been an increasing interest in computing finite n formulae [32, 44, 47, 54]. Some
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of these integrals have never been computed before, others are already available in the
literature [27, 30, 35, 44, 54]. In particular, most of the formulae for β = 1 and β = 4 are
original. In §2 we will discuss in detail our results and specify which of the averages (1)
are already known.

Our formulae have distinctive advantages. Firstly, we can compute ‘negative’ moments
for the Laguerre ensemble. Since the joint probability density function (j.p.d.f.) of the
inverse delay times coincides with that of the Laguerre ensemble [16], we obtain the mo-
ments of their density. Secondly, for positive moments the sums in our formulae extend to
the order of the moments k and not to the dimension of the matrices n. The sums that
express the negative moments in the Laguerre ensemble run to n, but their limit as n→ ∞
can be computed with little effort. As a consequence, although still relatively involved, our
expressions are simpler and more manageable than those in the literature. Furthermore,
our formulae provide a bridge between finite n results and their asymptotics. Indeed, in
the second part of this work [41], we compute the first three terms of the expansions as
n→ ∞ of the moments of the transmission eigenvalues and of the delay times. They agree
with those recently obtained semiclassically [9–11].

1.2. The Transmission Eigenvalues. The eigenvalues T1, . . . , Tn of the matrix tt† are
the transmission eigenvalues. The unitarity of S implies that the T1, . . . , Tn all lie in the
interval [0, 1]. The dimensionless conductance at zero temperature is defined by

(4) G := Tr tt† = Tr t′t′† = T1 + · · ·+ Tn.

Furthermore, if S belongs to one of Dyson’s circular ensembles, then the j.p.d.f. of
T1, . . . , Tn is

(5) p(β) (T1, . . . , Tn) =
1

C

n
∏

j=1

T α
j

∏

1≤j<k≤n

|Tk − Tj |β .

The parameter α = β
2
(m− n + 1)− 1 measures the asymmetry of the quantum channels

in the leads. Formula (5) was first computed when m = n by Baranger and Mello [6] and
by Jalabert et al [31]; when m 6= n it was reported in this form by Beenakker [8], where it
was attributed to unpublished work by Brouwer (1994); its general derivation appeared in
the literature for the first time in an article by Forrester [23].

In a classic article Dyson [21] classified complex many-body systems according to their
fundamental symmetries and proved that they correspond to the random matrix ensembles
labelled β ∈ {1, 2, 4}. Zirnbauer [56] extended Dyson’s classification scheme to Cartan’s
symmetric spaces and introduced new symmetry classes in Random Matrix Theory. Zirn-
bauer also argued that these non-standard ensembles appear in the stochastic modelling
of ballistic cavities in contact with a superconductor. Such mesoscopic systems are called
Andreev quantum dots. In his PhD thesis Dueñez [20] further generalized Zirnbauer’s clas-
sification. Furthermore, Altland and Zirnbauer [4] divided the symmetries of Andreev
quantum dots into four fundamental classes. These ensembles are labelled by two integers
(β, δ): as for Dyson’s ensembles, β takes values in {1, 2, 4}; instead δ ∈ {−1, 1, 2}. The
four classes are (1,−1), (2,−1), (4, 2) and (2, 1); they correspond to different combinations
of time-reversal and spin-rotation symmetries.

Our formalism applies to Andreev quantum dots too. Indeed, in a recent paper Dahlhaus
et al [18] computed the j.p.d.f. of the transmission eigenvalues. It is obtained by deforming
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the right-hand side in equation (5):

(6) p(β,δ)(T1, . . . , Tn) =
1

C

n
∏

j=1

T α
j (1− Tj)

δ/2
∏

1≤j<k≤n

|Tk − Tj |β

As for the j.p.d.f. in (5) α = β
2
(m− n + 1)− 1.

Equations (5) and (6) are particular cases of the j.p.d.f. of the eigenvalues of matrices
in the Jacobi ensembles, namely

(7) p
(β)
Ja,b

(x1, . . . , xn) =
1

C

n
∏

j=1

x
β/2(b+1)−1
j (1− xj)

β/2(a+1)−1
∏

1≤j<k≤n

|xk − xj |β ,

for 0 ≤ xj ≤ 1, (j = 1, . . . , n). We recover (6) by setting

(8) a =
2

β

(

1 +
δ

2

)

− 1 and b = m− n.

The moments of the density of the transmission eigenvalues are defined by

(9)
〈

T (β,δ)
k,n,m

〉

:=
〈

Tr
[(

tt†
)k]
〉

=M
(β)
Ja,b

(k, n),

where a and b are given in equation (8). From a physical point of view, they are important
because they are connected to the cumulants 〈〈κj〉〉 of the charge transmitted over a finite
interval of time by the generating function [36]

(10)

∞
∑

j=1

xj

j!
〈〈κj〉〉 = −

∞
∑

k=1

(−1)k

k
〈Tk〉 (ex − 1)k.

(See also [12], appendix A.) For simplicity in this formula we have omitted the dependence
on (β, δ) and on the numbers of quantum channels m and n. The charge cumulants can be
directly accessed in experiments [14]. Using the results in §2 and the generating function
in (10) we can compute the cumulants to any given order. For example, the variance and
skewness are given by

〈〈κ2〉〉 =
nm(2+δ

β
− 1 + n)(2+δ

β
− 1 +m)

(4+δ
β

− 1 + n+m)(2+δ
β

− 2 + n+m)(2+δ
β

− 1 + n+m)
(11a)

〈〈κ3〉〉
〈〈κ2〉〉

= −
(n−m− 2+δ

β
+ 1)(n−m+ 2+δ

β
− 1)

(n+m+ 2+δ
β

− 3)(n+m+ 6+δ
β

− 1)
.(11b)

The special case δ = 0 of equations (11) were computed by Savin et al [50] (see also [13]).

1.3. The Wigner-Smith Matrix. The Wigner-Smith time-delay matrix is defined as

(12) Q = −i~S−1 ∂S

∂E
.

The individual eigenvalues τ1, . . . , τn of Q are called proper delay times, and their average

(13) τW =
1

n
TrQ

is referred to as Wigner delay time. Here n is the total number of quantum channels in
the leads. The Wigner delay time measures the extra time an electron spends in the cavity
as a result of being scattered. If S belongs to one of the circular ensembles, then it was
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shown by Brouwer et al [16] that the j.p.d.f. of the inverses γj = τ−1
j (j = 1, . . . , n) of the

proper delay times is

(14) Pβ(γ1, . . . , γn) =
1

C

n
∏

j=1

γ
nβ/2
j e−βτHγj/2

∏

1≤j<k≤n

|γk − γj|β ,

where τH is the Heisenberg time. In our context τH = n. In a sequence of papers Savin
and collaborators [48, 49, 51] computed the probability distribution function of the proper
delay times.

The moments of the density of the proper delay times are defined by

(15)
〈

D(β)
k,n

〉

=
1

n

〈

TrQk
〉

= nk−1M
(β)
Lb

(−k, n), k < nβ/2 + 1,

where in this case b = n−1+2/β, and the right-hand side of (15) denotes negative integer
moments of the Laguerre ensemble.

The outline of the paper is the following: in §2 we present our main results; §3 is
devoted to ensembles with unitary symmetry; in §4 we discuss the approach underlying the
computations of the moments for ensembles with symplectic and orthogonal symmetries;
§5 and §6 contain the proofs of the formulae for ensembles with symplectic and orthogonal
symmetries, respectively.

In the final stages of the preparation of this article, and after the results in this paper
had been presented at two workshops,1 we received a preprint by Livan and Vivo [37], in
which some of our formulae were derived with a different method and approach. Their
expressions are different, but equivalent to ours.

Acknowledgements

We would like to express our gratitude to Peter Forrester, Yan Fyodorov, Jonathan
Keating, Jack Kuipers, Marcel Novaes and Dmitry Savin for stimulating and helpful dis-
cussions.

2. Statement of Results

2.1. The Moments of Transmission Eigenvalues and of the Proper Delay Times.
Since the transmission eigenvalues are distributed with the j.p.d.f. of the Jacobi ensemble,
their moments are the moments of the eigenvalue density of this ensemble for finite matrix
dimension. A 4-th order recurrence relation for the exact moments at β = 2 were first
reported Ledoux [34]. Explicit formulae were then obtained by Novaes [44] and by Vivo
and Vivo [54]. Bai et al [5] computed the leading order term of the asymptotic expansion
for β = 1.

From equation (14), computing the moments of the proper delay times is tantamount
to calculating the negative moments of the eigenvalue density of the Laguerre ensemble
for finite n. These negative moments have never been determined before, though positive
integer moments were calculated by Hanlon et al [29] and Haagerup and Thorbjørnsen [28].

It is worth reminding the reader that the moments of the proper delay times exist only
for

k <
nβ

2
+ 1,

because for larger k the integral MLb
(−k, n), with b = n− 1 + 2/β, diverges.

1Random Matrix Theory and Its Applications I, MSRI, 13–17 September 2010, Berkeley, USA; VI
Brunel Workshop on Random Matrix Theory, 17–18 December 2010, Brunel University, UK.

5



The general formulae for moments of the Jacobi and Laguerre ensembles are reported in
the main sections of the paper. Throughout, the notation (n)(k) = Γ(n+ k)/Γ(n) refers to
the Pochhammer symbol; the binomial coefficient can take arbitrary complex arguments,
i.e.

(16)

(

k

j

)

=
Γ(k + 1)

Γ(k − j + 1)Γ(j + 1)
.

and is defined for negative integers by the limiting form

(17)

(−k
j

)

= (−1)j
(

k + j − 1

k − 1

)

.

2.1.1. Broken Time Reversal (β = 2).

Theorem 2.1. The moments of the transmission eigenvalues and of the proper delay times
for β = 2 are

(18)
〈

T (2,δ)
k,n,m

〉

=
nm

δ/2 + n+m
−

k−1
∑

j=1

1

j

min(j,n)
∑

i=1

(

j

i

)(

j

i− 1

)

Um,n,δ
i,j

and

(19)
〈

D(2)
k,n

〉

=
nk−1

k

n−1
∑

j=0

(

k + j − 1

k − 1

)(

k + j

k − 1

)

(2n)(−k−j)

(n+ 1)(−j−1)
,

where

Um,n,δ
i,j =

(

δ/2 +m+ n− 2i+ j + 1
)(

δ/2 +m
)

(j−i+1)

(

m
)

(j−i+1)
(

δ/2 +m+ n− i
)

(j+2)

(

δ/2 +m+ n− i+ 1
)

(j)

(

δ/2 + n + 1
)

(−i)

(

n+ 1
)

(−i)

.

Remark 2.2. The moments for the Laguerre Unitary Ensemble can be defined even when
k is complex and have the following particularly simple expression:

(20) M
(2)
Lb

(k, n) =
1

k

n
∑

j=0

(

k

j

)(

k

j − 1

)

(b+ n)(k−j+1)

(1 + n)(−j)

,

of which (19) is a special case. If k is a positive integer, the sum in (20) consists of at most
k terms.

Remark 2.3. The coefficients

(21) N(k, j) =
1

k

(

k

j

)(

k

j − 1

)

in formulae (18) and (20) appear frequently in enumerative combinatorics, where they are
called Narayana numbers.

2.1.2. Conserved Time Reversal with K2 = −1 (β = 4).

Theorem 2.4. The moments of the transmission eigenvalues are

(22)
〈

T (4,δ)
k,n,m

〉

=
1

2

〈

T (2,δ−2)
k,2n,2m

〉

−
min(⌊n⌋,⌊k/2⌋)

∑

j=1

min(k−2j,2n−2j)
∑

i=0

(

k

i

)(

k

i+ 2j

)

Sδ
i,j(k,m, n)

6



The coefficient Sδ
i,j(k,m, n) is

Sδ
i,j(k,m, n) = 24j−3

(

δ/2 + 2n− i− 2j
)

(i)

(

2m
)

(k−i−2j+1)

(

δ/2 + 2m− 1
)

(k−i−2j+1)
(

δ/4 + n+ 1/2
)

(−j)

(

m
)

(1−j)

(

δ/4 +m− 1/2
)

(1−j)

(

2n− 2j + 1
)

(−i)

(

n + 1
)

(−j)

×
(

δ/2 + 2m+ 2n− 4j
)(

δ/2 + 2m+ 2n− 2i− 4j + k
)

(

δ/2 + 2m+ 2n− i− 2j
)

(1+k)

(

δ/2 + 2m+ 2n− i− 4j
)

(1+k)

.

Furthermore, the moments of the proper delay times for β = 4 are given by

(23)
〈

D(4)
k,n

〉

= nk−1M
(4)
Ln−1/2

(−k, n),
where the moments of the Laguerre Symplectic Ensemble are

M
(4)
Lb

(k, n) = 2−k−1M
(2)
L2b

(k, 2n)

−
⌊n⌋
∑

j=1

2n−2j
∑

i=0

(

k

i

)(

k

i+ 2j

)

(2b+ 2n)(k−i−2j+1)(2n− i− 2j + 1)(i)
2k−2j+2(n+ 1)(−j)(b+ n)(1−j)

.
(24)

The symbol ⌊·⌋ denotes the integer part.

Remark 2.5. The order of the moments k in equations (22) and (23) is a positive integer.
However, (24) holds even when k is complex. As for β = 2, if k is positive the sum in
equation (24) contains only k terms.

Remark 2.6. Although n is typically an integer, as it denotes the dimension of a matrix,
the expressions on the right-hand sides of equations (22) and (24) are well defined for any
half-integer n. It is useful to generalize it, because the evaluation of the moments for β = 1
requires moments for β = 4 computed at half-integer n.

2.1.3. Conserved Time Reversal with K2 = 1 (β = 1). For simplicity we assume that the
outgoing lead supports an even number of open channels.

Theorem 2.7. The moments of the transmission eigenvalues are

(25)
〈

T (1,δ)
k,m,n

〉

= 2
〈

T (4,2δ+4)
k,(n−1)/2,(m−1)/2

〉

+

min(n/2−1,k)
∑

j=0

(

2k

2j

)

I
(1,δ)
j (k,m, n) + φJ

k,n,

where

I
(1,δ)
j (k,m, n) = 4k

(δ +m+ n− 4j + 2k)(1
2
(δ +m+ 1))(k−j)(

1
2
m)(k−j)

(δ +m+ n− 2j)(2k+1)(
1
2
(δ + n+ 2))(−j)(

1
2
(1 + n))(−j)

(26a)

and

φJ
k,n =

k
∑

j=1

2δ+2Γ(1
2
(δ +m− n + 2j + 1))Γ(1

2
(δ +m+ 2))

Γ(δ + 1 +m+ j + k)Γ(j + k + 1− n)Γ(1
2
(m− n + 1 + 2j))

(26b)

× Γ(1
2
(δ + n + 2))Γ(m− n + k + j)Γ(j + k)

Γ(m
2
)Γ( δ

2
+ 1)Γ(n

2
)

.

The moments of the proper delay times are
〈

D(1)
k,n

〉

= nk−121−kM
(4)
L(n+1)/2

(−k, (n− 1)/2)

+
(n

2

)k−1
n/2−1
∑

j=0

(

2k + 2j − 1

2j

)

(n + 1/2)(−j−k)

2
(

1
2
(1 + n)

)

(−j)

+ nk−1φL
−k,n,

(27)

7



where

(28) φL
−k,n =

Γ(n)

Γ(n/2)Γ(2n)

k−1
∑

j=0

Γ(k + j + n)Γ(1 + n− k − j)

Γ(n/2 + 1− j)Γ(k + j + 1)
2j.

Remark 2.8. Due to the term Γ(j + k + 1 − n) in the denominator of (26b), the φJ
k,n’s

are identically zero for any n > 2k. By Stirling’s formula, the φL
−k,n’s in (28) decay expo-

nentially fast as n → ∞. Therefore, neither of these terms contribute to the asymptotics
of the moments as n→ ∞ at any finite algebraic order.

It is straightforward to compute the limit as n → ∞ of the formulae in this section.
They differ fundamentally from most of the known exact results in the literature, whose
asymptotic limit often involves many cancellations, which means that even the leading order
term may be out of reach. This difficulty is discussed in some detail by Krattenthaler [33],
where a solution is presented for β = 2 (see also [17]).

Indeed, it is a simple exercise using our exact results to show that

(29) lim
n,m→∞

1

n

〈

T (β,δ)
k,m,n

〉

=
(

1 +
m

n

)

k−1
∑

j=0

(

k − 1

j

)

Cj(−1)jξj+1,

where ξ is the variable ξ = nm
(n+m)2

, which remains finite as n,m → ∞, and Cj =
1

j+1

(

2j
j

)

is the j-th Catalan number. This formula agrees with the semiclassical computation of
Berkolaiko et al [9] Furthermore, for the proper delay times we have

(30) lim
n→∞

〈

D(β)
k,n

〉

=
1

k

k
∑

j=0

(

k

j

)(

k

j − 1

)

2j,

which is the k-th Schröder number (note the appearance of the Narayana numbers (21)).
This limit was computed semiclassically by Berkolaiko and Kuipers [10], and can also be
obtained from the Marčenko-Pastur distribution [38] (see, e.g., [10, 16]). It is a simple
consequence of (19) too.

Equation (29) was first computed using RMT by Novaes [43] (see also [5]), while (30) and
(29) were recently rederived through combinatorial techniques [45]. Our exact results allow
a simple derivation of these facts, while also consenting the investigation of β-dependent
subleading corrections. We address these issues more thoroughly in the second part of this
work [41], where we show that the first two subleading terms in the asymptotic expan-
sions of the previous theorems agree with those obtained semiclassically by Berkolaiko and
Kuipers [11].

2.2. The Gaussian Ensembles. Our techniques apply equally well to the Gaussian en-
sembles. Recursion formulae for the finite n moments of the density of the eigenvalues
were derived by Harer and Zagier [30] for the Gaussian Unitary Ensemble (GUE), while
Goulden and Jackson [27] derived explicit formulae for both the Gaussian Orthogonal En-
semble (GOE) and the GUE, while the GUE moment generating function was computed
by Haagerup and Thorbjørnsen [28]. More recently, recursion formulae were obtained by
Ledoux [35] for the GOE and GSE.

Theorem 2.9. The moments of the eigenvalue density for the GUE are

(31) M
(2)
G (2k, n) =

2nΓ(n/2 + 1)Γ(n/2)√
π(2k + 1)Γ(n)

min(n/2−1,k)
∑

j=0

(

k

j

)(

k + 1

j + 1

)

(n/2− j)(k+1/2)

8



for even n, and

(32) M
(2)
G (2k, n) =

2nΓ((n+ 1)/2)2√
π(2k + 1)Γ(n)

min((n−1)/2,k)
∑

j=0

(

k

j

)(

k + 1

j

)

((n + 1)/2− j)(k+1/2)

for odd n. For the GSE we have

M
(4)
G (2k, n) = 2−k−1M

(2)
G (2k, 2n)

− Γ(n+ 1)Γ(n)

2k
√
πΓ(2n)41−n

min(n,k)
∑

j=1

min(n−j,k−j)
∑

i=0

(

k

i

)(

k

i+ j

)

(n− i− j + 1)(k−1/2)

(33)

Let n be even. Then, the moments for the GOE are

M
(1)
G (2k, n) =M

(2)
G (2k, n− 1)

−
min(n

2
−1,k)

∑

j=1

min(k,n
2
−1−j)

∑

i=0

(

k

i

)(

k

i+ j

)

(n
2
− i− j)(k+1/2)

(n
2
− j)(1/2)

+ φG
k,n.

For n ≤ 2k the quantity φG
k,n is given by

φG
k,n = 2n/2−k (2k)!

Γ(n/2)

k−n/2
∑

j=0

n/2−1
∑

i=0

(

n−1
2i

)2−j−2i(−1)j

(2j+2i+1)j!

(k − n/2− j)!

+
(2k)!

Γ(n/2)

n/2−1
∑

j=0

j
∑

i=0

(n/2− i− 1)!
(

n−1
n−2i−1

)

(j − i)!(k − j)!4k−i
.

If n > 2k we have

(34) φG
k,n = (2k)!

k
∑

j=0

(n/2 + 1/2− j)(j)
2k−3j(2j)!(k − j)!

.

3. Unitary Ensembles

We shall now compute the moments of the eigenvalues densities for the Jacobi, Laguerre
and Gaussian ensembles when β = 2. For brevity we shall refer to these ensembles with
the usual notation JUE, LUE and GUE. Except for the GUE, our expressions are valid for
complex k. Theorem 2.1 and equations (31) and (32) of theorem 2.9 are corollaries of the
results of this section.

For all the ensembles and symmetry classes that we consider the j.p.d.f. of the eigenvalues
has the form

(35) p
(β)
E (x1, . . . , xn) =

1

C

n
∏

j=1

wβ(xj)
∏

1≤j<k≤n

|xk − xj |β .

The marginal probabilities are obtained by subsequent integrations of the right-hand side
of (35); furthermore, since it is invariant under permutations of its arguments, it is ir-
relevant which variables are integrated over. Therefore, the probability density of the
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eigenvalues is obtained by integrating out all but one variable. It follows that

〈TrXk〉 =
∫

I

· · ·
∫

I

(xk1 + · · ·+ xkn)p
(β)
E (x1, . . . , xn)dx1 · · · dxn

=

∫

I

xkρβ(x)dx,

(36)

where ρβ(x) is the eigenvalue density normalized to n and I is the support of wβ(x).
We develop effective techniques to compute the integral in the right-hand side of equa-

tion (36) using ideas first introduced by Haagerup and Thorbjørnsen [28] for β = 2 and by
Adler et al [2] for β = 1, 4.

When β = 2 the density of the eigenvalues takes a particularly simple form (see, e.g., [25],
§5.1)

(37) ρ2(x) =

〈

n
∑

j=1

δ(x− xj)

〉

= w2(x)
n−1
∑

j=0

Pj(x)
2

hj
,

where the Pj(x)’s are orthogonal polynomials associated with the weight w2(x) and j =
0, 1, . . . denotes their degree. In other words, we have

(38)

∫

I

w2(x)Pj(x)Pk(x)dx = hjδjk, j, k = 0, 1, . . . .

The system of orthogonal polynomials {Pj(x)}∞j=0 is unique up to multiplicative constants
kj , which we can take to be the coefficient of the monomial of highest degree. Orthogonal
polynomials satisfy a recurrence relation of the form

(39) Pj+1(x) = (αj + xβj)Pj(x)− γjPj−1(x), j = 0, 1, . . .

where for convention P−1(x) = 0. For the classical orthogonal polynomials the constants
hj , kj, αj , βj and γj are tabulated in many books on special functions (see, e.g., [1]). A
consequence of (39) is

(40) ρ2(x) = w2(x)
kn−1

knhn−1

(

P ′
n(x)Pn−1(x)− Pn(x)P

′
n−1(x)

)

,

which is a limiting case of the Christoffel-Darboux formula. (For the proofs of formulae (39)
and (40) see, e.g., [52], §3.2).

In the rest of this article we shall assume that kj = 1, for j = 0, 1, . . . . In other words, we
only consider monic orthogonal polynomials. In order to distinguish them from the way the
classical polynomials are conventionally defined in the literature, we shall use the notation
Hn(x), Lb

n(x) and Pa,b
n (x) for the Hermite, Laguerre and Jacobi polynomials respectively.

We shall denote the generic monic polynomial by p(x). We tabulate the orthogonality
constants hj for the monic classical polynomials in appendix A. We shall also need the
following differential equations (see [1], §22.6)

(41)



















H′′
j (x)− 2xH′

j(x) + 2jHj(x) = 0,

xLj(x)
′′ + (b+ 1− x)Lb

j(x)
′ + jLb

j(x) = 0,

x(1 − x)Pa,b
j (x)′′ + (b+ 1− (a + b+ 2)x)Pa,b

j (x)′

+j(a+ b+ j + 1)Pa,b
j (x) = 0.

Haagerup and Thorbjørnsen [28] computed the moment generating function

(42) M(t) =

∫

I

ρ2(x)e
−txdx

10



in terms of hypergeometric functions for the GUE and LUE. They combined the differential
equations (41) with (40) to obtain

(43)
d

dx
(f(x)ρ2(x)) =

{

−DH
n e

−x2Hn(x)Hn−1(x), Hermite,

−DL
nx

be−xLb
n(x)Lb

n−1(x), Laguerre,

where

(44) DH
n =

2n√
πΓ(n)

and DL
n = (Γ(b+ n)Γ(n))−1.

Furthermore, f(x) = 1 for the Hermite polynomials, while f(x) = x for the Laguerre ones.
We shall use similar ideas to compute the moments (9) for β = 2.

First we need the analogue of the identities (43) for the Jacobi polynomials.

Lemma 3.1. Let ρ2(x) be the mean eigenvalue density for the JUE. We have the following
differential identity:

(45)
d

dx
(x(1 − x)ρ2(x)) = −DJ

nx
b(1− x)aPa,b

n (x)Pa,b
n−1(x),

where

(46) DJ
n =

Γ(a+ b+ 2n+ 1)Γ(a+ b+ 2n− 1)

Γ(a+ n)Γ(b+ n)Γ(a+ b+ n)Γ(n)
.

Proof. The normalization coefficient hn−1 associated with the polynomials Pa,b
n−1(x) is

(47) hn−1 =
Γ(a + n)Γ(b+ n)Γ(n)Γ(a + b+ n)

Γ(a + b+ 2n)Γ(a+ b+ 2n− 1)
.

Inserting (47) into the representation (40) and using the differential equation in (41) we
obtain

(48) x(1− x)

(

ρ2(x)

w2(x)

)′

+ (1 + b− (a+ b+ 2)x)

(

ρ2(x)

w2(x)

)

= −DJ
nPa,b

n (x)Pa,b
n−1(x),

where DJ
n is given in (46). Finally, since the weight associated with the Jacobi polynomials

is w2(x) = xb(1− x)a we arrive at

d

dx
(x(1− x)ρ2(x)) =

d

dx

(

xb+1(1− x)a+1 ρ2(x)

w2(x)

)

= xb(1− x)a
(

((b+ 1)(1− x)− x(a + 1))
ρ2(x)

w2(x)
+ x(1 − x)

(

ρ2(x)

w2(x)

)′)

= −DJ
nx

b(1− x)aPa,b
n (x)Pa,b

n−1(x).

�

Remark 3.2. For our purposes it is not helpful to compute the moment generating func-
tion (42). Although in principle one can employ a type of fractional calculus to extract
more general types of moments from (42), we will see in the following that moments for
general k are directly accessible with our method.
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3.1. Jacobi Unitary Ensemble. Lemma 3.1 allows us to compute the difference of the
moments. Then, the moments themselves can be computed by adding all the differences.
Finally, equation (18) of theorem 2.1 is obtained by setting a = δ/2 and b = m− n.

Let us define

(49) ∆M
(2)
Ja,b

(k, n) =M
(2)
Ja,b

(k, n)−M
(2)
Ja,b

(k + 1, n).

Proposition 3.3. We have

(50) ∆M
(2)
Ja,b

(k, n) =
1

k

n
∑

j=0

(

k

j

)(

k

j − 1

)

Un,a,b
k,j ,

where

(51) Un,a,b
k,j =

(a+ b+ 2n− 2j + k + 1)(a+ b+ n)(k−j+1)(a + n− j + 1)(j)(b+ n)(k−j+1)

(a + b+ 2n− j)(k+2)(a+ b+ 2n− j + 1)(k)(n+ 1)(−j)
.

If k is a positive integer, equation (50) reduces to

(52) ∆M
(2)
Ja,b

(k, n) =
1

k

min(n,k)
∑

j=0

(

k

j

)(

k

j − 1

)

Un,a,b
k,j .

Proof. Integrating by parts using equation (45) leads to

(53)

∫ 1

0

xk(1− x)ρ2(x)dx =
DJ

n

k

∫ 1

0

xk+b(1− x)aPa,b
n (x)Pa,b

n−1(x)dx

Consider the identity

(54) Pa,b
n (x) =

n
∑

j=0

Ck,n
j Pa,b+k

j (x),

where

(55) Ck,n
j =

(

k

j

)

(a+ n + 1− j)(j)(a+ b+ 2n+ 1)(−j)

(a + b+ 2n− 2j + 2 + k)(j)(n + 1)(−j)

are the connection coefficients. Inserting this formula into (53) and evaluating the integrals
using orthogonality leads to

(56) ∆M
(2)
Ja,b

(k, n) =
DJ

n

k

n
∑

j=0

Ck,n
j Ck,n−1

j−1 ha,b+k
n−j .

Substituting the appropriate coefficients (see appendix A) gives immediately (50).
When k is a positive integer, the terms with j > k vanish because

(

k
j

)

= 0 if j > k,

leading immedietely to (52). �

Corollary 3.4. The integer moments of the level density for the JUE are

(57) M
(2)
Ja,b

(k, n) =M
(2)
Ja,b

(1, n)−
k−1
∑

j=1

1

j

min(j,n)
∑

i=1

(

j

i

)(

j

i− 1

)

Un,a,b
j,i .

where the first moment is

(58) M
(2)
Ja,b

(1, n) =
n(b+ n)

a + b+ 2n
.

The first moment M
(2)
Ja,b

(1, n) is an Aomoto integral. For its evaluation see, e.g., [39],

§17.3.
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3.2. Laguerre Unitary Ensemble. Since the moments of the Wigner-Smith matrix (12)
require the computation of the integral (36) for k < 0, we shall present formulae for the
moments of the LUE for general complex k.

Proposition 3.5. Suppose that neither b + n nor b + k are negative integers. Then one
has

(59) M
(2)
Lb

(k, n) =
1

k

n
∑

j=0

(

k

j

)(

k

j − 1

)

(b+ n)(k−j+1)

(n+ 1)(−j)

.

Proof. Integrating by parts the second equation in (43) gives

(60)

∫ ∞

0

xkρ2(x)dx =
DL

n

k

∫ ∞

0

xb+ke−xLb
n(x)Lb

n−1(x)dx.

For the Laguerre polynomials the connection formula is [52]

(61) Lb
n(x) =

n
∑

j=0

Ck,n
j Lb+k

j (x), where Ck,n
j =

(

k

j

)

(n+ 1)(−j).

Inserting formula (61) into (60) gives

(62) M
(2)
Lb

(k, n) =
DL

n

k

n
∑

j=0

Ck,n
j Ck,n−1

j−1 hb+k
n−j,

where we evaluated the integrals using orthogonality. Using the appropriate connection
coefficients and normalisation constants completes the proof. �

If k is a positive integer, the binomial coefficient
(

k
j

)

= 0 if j > k, leaving only a sum

with k terms. Negative moments are obtained simply by using the identity

(−k
j

)

= (−1)j
(

k + j − 1

k − 1

)

.

Corollary 3.6. Let k be a positive integer, then

(63) M
(2)
Lb

(k, n) =
1

k

min(n,k)
∑

j=0

(

k

j

)(

k

j − 1

)

(b+ n)(k−j+1)

(n+ 1)(−j)

.

Furthermore, if k < n + 1 we have

(64) M
(2)
Lb

(−k, n) = 1

k

n−1
∑

j=0

(

k + j

k − 1

)(

k + j − 1

k − 1

)

(b+ n)(−k−j)

(n + 1)(−j−1)

.

Equation (19) is a particular case of formula (64), where b = n and the scaling introduced
by the Heisenberg time τH = n has been taken into account.

Remark 3.7. The appearance of the Narayana coefficients in (63) anticipates the fact that
its leading order term as n→ ∞ is the k-th moment of the Marčenko-Pastur law [38].
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3.3. Gaussian Unitary Ensemble. In this section we give the proof of equation (31) of
theorem 2.9. The approach is the same as for the JUE and LUE. The proof for n odd is
very similar and we omit the details.

Integrating by parts the first formula in (43) gives

(65) M
(2)
G (2k, n) =

∫ ∞

−∞

x2kρ2(x)dx =
DH

n

2k + 1

∫ ∞

−∞

x2k+1e−x2Hn(x)Hn−1(x)dx.

The integral (65) can be evaluated using the Laguerre polynomials since

(66) Hn(x) = L−1/2
n/2 (x2) and Hn−1(x) = xL1/2

n/2−1(x
2).

A change of variables then leads to

(67) M
(2)
G (2k, n) =

DH
n

2k + 1

∫ ∞

0

xk+1/2e−xL1/2
n/2−1(x)L

−1/2
n/2 (x)dx.

This integral is of the same type as that one in the right-hand side of equation (60) and
can be computed in the same way.

4. Symplectic and Orthogonal Symmetries

Very few non-perturbative results are available for the moments of the densities of the
eigenvalues for β = 1 and β = 4. Our goal here is to develop a novel approach that allows
us to compute these moments for all the ensembles associated with the weights (2).

There are two possible ways of tackling this problem: the first is through the Selberg
integral; the other one is a direct computation of the moments (36). The Selberg integral
was very effective in computing the moments of the transmission eigenvalues for β = 2 [44];
when β = 1 it does not seem to produce explicit formulae [32]. It cannot be applied to
β = 4.

Following an approach of Dyson [22], Mehta and Mahoux [40] expressed the densities
for β = 1 and β = 4 in terms of skew-orthogonal polynomials. Since then several articles
have attempted to improve their formulae [2, 26, 42, 53, 55]. Tracy and Widom [53]
and Widom [55] succeeded to write such densities as sums of ρ2(x) plus correction terms
involving orthogonal polynomials. Building on the work of Adler and van Moerbeke [3],
Adler et al [2] obtained integral representations of the correction terms.

Equation (36) presents one major challenge: for finite n it is a complicated sum involving
all the orthogonal polynomials up to n−1. Further integration would lead to cumbersome
formulae whose asymptotics cannot be easily extracted. Our method relies on using the
coefficients (54) and (61) to expand the orthogonal polynomials in a convenient basis,
within which they are orthogonal with respect to the perturbed weight xkw2(x). As when
β = 2, this allows us to obtain positive moments involving sums that run to the order of
the moments and not to the dimension of the ensemble. Another interesting feature of our
results is that we are able to express the moments at β = 1 in terms of the moments at
β = 4 plus a fairly simple correction term. Like for unitary ensembles, our formulae are
sum of ratios of Gamma functions which may be studied in the limit n→ ∞.

Since our approach is based on the results in by Adler et al [2], we will discuss their
formalism in detail. For β = 1 and β = 4 a special role is played by the skew-orthogonal
polynomials. Recall that an inner product 〈A,B〉 is referred to as skew if 〈A,B〉 =−〈B,A〉.
A sequence of monic polynomials {qj(x)}∞j=0 are called skew-orthogonal with respect to
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〈A,B〉 if
〈q2m, q2n+1〉 = −〈q2n+1, q2m〉 = rmδm,n(68a)

〈q2m, q2n〉 = 〈q2m+1, q2n+1〉 = 0.(68b)

Let us introduce the potential V (x) by defining

(69) w2(x) = e−2V (x),

where w2(x) is the weight function of the associated unitary ensemble. We also assume
that

(70) 2V ′(x) =
g(x)

f(x)

is a rational function of x and take f(x) to be a monic polynomial. Now define the modified
potentials:

V1(x) = V (x) +
1

2
log f(x), β = 1,(71a)

V4(x) = V (x)− 1

2
log f(x), β = 4.(71b)

Let us introduce the inner products

〈A,B〉4 =
1

2

∫

I

e−2V4(x) (A(x)B′(x)−B(x)A′(x)) dx(72a)

and

〈A,B〉1 =
1

2

∫

I

∫

I

e−V1(x)−V1(y)sgn(y − x)A(x)B(y)dxdy.(72b)

Associated to these inner products are two systems of monic skew-orthogonal polynomials

{q̃(4)j (x)}∞j=0 and {q̃(1)j (x)}∞j=0. We shall denote their skew-norms as defined in (68) by r̃
(4)
j

and r̃
(1)
j respectively. The tilde notation indicates that the weight has been perturbed by

the transformations (71a) and (71b).
Because the skew-orthogonality relations (68) are invariant under the transformation

q̃2m+1 → q̃2m+1 + α2mq̃2m for any α2n ∈ C, a system of skew-orthogonal polynomials is
not uniquely defined. However, they can be expressed in terms of the monic polynomials
orthogonal with respect to w2(x):

p2j+1(x) = q̃
(4)
2j+1(x), p2j(x) = q̃

(4)
2j (x)−

c2j−1

c2j−2
q̃
(4)
2j−2(x),(73a)

q̃
(1)
2j (x) = p2j(x), q̃

(1)
2j+1(x) = p2j+1(x)−

γ2j−1

γ2j
p2j−1(x).(73b)

For the classical orthogonal polynomials the constants in these equations are given by

(74) cn = hn+1hnγn,

where

hnγn =











1, Hermite,
1
2
, Laguerre,

1
2
(2n+ a+ b+ 2), Jacobi.

We point out that the numbers DE
n appearing in the differential identities (43) may be

expressed in terms of γn via DE
n = 2γn−1 for all the three ensembles. For each ensemble,
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we denote the mean eigenvalue density by ρ̃β(x), where the tilde indicates the ensemble
average (36) defined by the weight e−V1(x) for β = 1 or e−2V4(x) for β = 4.

Remark 4.1. Before we proceed it is worth noting that the weights e−V1(x) turn out to be
exactly equal to the weights w1(x) in equation (2). The eigenvalue densities ρ̃4(x), however,
correspond to the weights e−2V4(x), which are

e−2V4(x) =











e−x2
, Hermite,

xb+1e−x, Laguerre,

xb+1(1− x)a+1 Jacobi.

(75)

These are not quite the same as the weights in (2) for β = 4. We must make the substitution
(a, b) → (2a, 2b) for the Jacobi ensemble and b → 2b for the Laguerre ensemble. In
addition there is a missing factor of 2 in the exponentials which we take into account
by multiplying our final results for the moments by the appropriate power of 2. This
discrepancy arises because the symplectic ensembles are sets of self-dual n× n quaternion
matrices. Their representation in terms of complex matrices leads to Kramer’s degeneracy,
which is responsible for the normalisations in (75). Without loss of generality we shall still
use the notation w4(x).

Let us introduce the ǫ-transform of a suitable function f(t) by

(76) ǫ[f(t)](x) =
1

2

∫

I

sgn(x− t)f(t)dt.

In the following, I = (m1, m2) will denote the interval of orthogonality. We have the
following formulae [2]:

ρ̃4(x) =
1

2
ρ2(x)n→2n −

1

2
γ2n−1e

−V1(x)p2n(x)

∫ m2

x

e−V1(t)p2n−1(t)dt(77a)

and (for n even)

ρ̃1(x) = ρ2(x)n→n−1 + γn−2e
−V1(x)pn−1(x)ǫ[pn−2(t)e

−V1(t)](x).(77b)

For convenience we shall alter the representations (77a) and (77b) into a form which is
more suitable for the evaluation of the integrals (36). The following proposition allows us
to expand the integrals in (77a) and (77b) in terms of monic orthogonal polynomials.

Proposition 4.2. Let {pj(x)}∞j=0 be the system of monic polynomials orthogonal with re-
spect to w2(x). We have the following identities:

ǫ
[

e−V1(t)p2n+2(t)
]

(x) = −e−V4(x)

n
∑

j=0

e
(1)
j,np2j+1(x) + η(1)n ǫ

[

e−V1(t)
]

(x)(78)

and
∫ m2

x

e−V1(t)p2n+1(t)dt = −e−V4(x)
n
∑

j=0

e
(4)
j,np2j(x),(79)

where

(80) e
(4)
j,n =

h2n+1

c2n

n−1
∏

i=j

c2i+1

c2i
, e

(1)
j,n =

h2n+2

c2j+1

n
∏

i=j+1

c2i
c2i+1

, η(1)n =

n
∏

j=0

c2jh2j+2

c2j+1h2j
.
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Proof. We begin from the differential identities [2]

d

dx

(

e−V4(x)q̃
(4)
2n (x)

)

=
c2n
h2n+1

e−V1(x)p2n+1(x),(81a)

d

dx

(

e−V4(x)q̃
(4)
2n+1(x)

)

= e−V1(x)

(

c2n
h2n

p2n(x)−
c2n+1

h2n+2

p2n+2(x)

)

.(81b)

We also need e−V4(m1) = e−V4(m2) = 0, which can be easily checked from (75).
We first derive (79). Integrating equation (81a) between x and m2 gives

(82)

∫ m2

x

e−V1(t)p2n+1(t)dt = −h2n+1

c2n
e−V4(x)q

(4)
2n (x) = −e−V4(x)

n
∑

j=0

e
(4)
j,np2j(x),

where the last equality was obtained by iteratively solving equation (73a) for q̃
(4)
2n (x).

In order to derive (78), we start by integrating equation (81b) between x and m2:

(83)

∫ m2

x

e−V1(t)p2n+2(t)dt =
c2nh2n+2

c2n+1h2n

∫ m2

x

e−V1(t)p2n(t)dt−
h2n+2

c2n+1
e−V4(x)q

(4)
2n+1(x).

Integrating (81b) between m1 and x and subtracting the result from (83) gives an equation
for the ǫ-transform

(84) ǫ
[

e−V1(t)p2n+2(t)
]

=
c2nh2n+2

c2n+1h2n
ǫ
[

e−V1(t)p2n(t)
]

− h2n+2

c2n+1

e−V4(x)p2n+1(x),

where we used that q̃
(4)
2j+1 = p2j+1(x). Iterating this equation n times leads to (78). �

Remark 4.3. The coefficients e
(4)
j,n, e

(1)
j,n and η

(1)
n are tabulated in appendix A for each

ensemble.

Corollary 4.4. We have the following representations for the eigenvalue densities:

ρ̃4(x) =
1

2
ρ2(x)n→2n −

1

2
γ2n−1e

−2V (x)
n−1
∑

j=0

e
(4)
j,n−1p2j(x)p2n(x),(85a)

ρ̃1(x) = ρ2(x)n→n−1 − γn−2e
−2V (x)

n/2−2
∑

j=0

e
(1)
j,n/2−2p2j+1(x)pn−1(x)(85b)

+ γn−2e
−V1(x)pn−1(x)η

(1)
n/2−2ǫ

[

e−V1(t)
]

(x).

Proof. Substituting the integration identities (79) and (78) into (77a) and (77b) respec-
tively, and using V1(t) + V4(t) = 2V (t), gives (85a) and (85b). �

We will see in §5 and §6 that formulae (85) are particularly suited to our purposes. A
key feature of these representations is that they are expressed solely in terms of the weight
function e−2V (x) and the corresponding monic orthogonal polynomials. For the orthogonal
ensembles, there is an additional term involving the ǫ-transform of the weight e−V1(t), which
is related to the error function, incomplete gamma function or incomplete beta function
depending on the ensemble in question. We shall compute the moments for β = 1 and
β = 4 by combining the representations (85) with a variant of the technique used for
unitary ensembles.
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5. Symplectic Ensembles

The purpose of this section is to compute the integrals

(86) M̃
(4)
E (k, n) =

∫

I

xkρ̃4(x)dx

for each ensemble E defined by the weights (2).
Inserting the representation (85a) into equation (86) leads to two integrals: the first one

contains the mean eigenvalue density of a unitary ensemble, which was computed in §3;
the second one involves orthogonal polynomials. More explicitly it is given by

(87) S̃E(k, n) = γ2n−1
1

2

n−1
∑

j=0

e
(4)
j,n−1

∫

I

xke−2V (x)p2j(x)p2n(x)dx.

We know how to evaluate these integrals as they are exactly of the type that appeared in
equations (53), (60) and (65). We write the polynomials pn(x) in a basis which is orthogonal
with respect to the perturbed weight xke−2V (x); then, we can use the orthogonality of the
polynomials to write the integral in (87) as a single sum involving the connection coefficients
(54) and (61). Eventually, the moments for β = 4 become

(88) M̃
(4)
E (k, n) =M

(2)
E (k, 2n)− S̃E(k, n).

As in §4 the tilde notation indicates quantities that differ from the integrals (1) by a
factor discussed in remark 4.1.

5.1. Jacobi Symplectic Ensemble. We now compute SJa,b(k, n) for complex k. Equa-
tion (22) is then obtained by restricting k to be a positive integer and setting a = δ/4−1/2
and b = m− n.

Proposition 5.1. We have

(89) SJa,b(k, n) =

n
∑

j=1

2n−2j
∑

i=0

(

k

i+ 2j

)(

k

i

)

Sa,b
i,j (k, n),

where the coefficient Sa,b
i,j (k, n) is given by

Sa,b
i,j (k, n) =

24j−3(2a+ 2n− i− 2j + 1)(i)(2b+ 2n)(k−i−2j+1)(2a+ 2b+ 2n)(k−i−2j+1)

(2n− 2j + 1)(−i)(n+ 1)(−j)(a + n+ 1)(−j)(b+ n)(1−j)(a + b+ n)(1−j)

× (2a+ 2b+ 4n− 4j + 1)(2a+ 2b+ 4n− 2i− 4j + k + 1)

(2a+ 2b+ 4n− i− 2j + 1)(1+k)(2a+ 2b+ 4n− i− 4j + 1)(1+k)

.

(90)

Proof. By (87) we have

(91) S̃Ja,b(k, n) =
γ2n−1

2

n−1
∑

j=0

e
(4)
j,n−1

∫ 1

0

xb+k(1− x)aPa,b
2n (x)Pa,b

2j (x)dx.
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Inserting the connection formula (54) into the integrand leads to

S̃Ja,b(k, n) =
γ2n−1

2

n−1
∑

j=0

e
(4)
j,n−1

2j
∑

i=0

Ck,2j
i

2n
∑

p=0

Ck,2n
p

∫ 1

0

xb+k(1− x)aPa,b+k
2n−p (x)Pa,b+k

2j−i (x)dx

=
γ2n−1

2

n−1
∑

j=0

e
(4)
j,n−1

2j
∑

i=0

Ck,2j
i

2n
∑

p=0

Ck,2n
p ha,b+k

2j−i δ2n−p,2j−i

=
γ2n−1

2

n
∑

j=1

2n−2j
∑

i=0

e
(4)
n−j,n−1h

a,b+k
2n−2j−iCk,2n−2j

i Ck,2n
i+2j .

(92)

To obtain the above expression we have applied the orthogonality of the Jacobi polynomials
and then rearranged the indices in the sum. Substituting the coefficients Ck,n

j , ha,b+k
n and

e
(4)
j,k (see appendix A) and replacing (a, b) → (2a, 2b) completes the proof. �

Remark 5.2. The complexity of the expression (90) is mainly due to formula (54), which
relates Jacobi polynomials of different weights. The Laguerre ensemble is slightly simpler,
because the associated coefficients (61) and normalizations hj are more concise.

5.2. Laguerre Symplectic Ensemble.

Proposition 5.3. Suppose that neither 2b + k nor b + n are negative integers. Then, we
have

(93) SLb
(k, n) =

⌊n⌋
∑

j=1

2n−2j
∑

i=0

(

k

i

)(

k

i+ 2j

)

(2b+ 2n)(k−i−2j+1)(2n− i− 2j + 1)(i)
2k−2j+2(n+ 1)(−j)(b+ n)(1−j)

.

Proof. From (87) we have

(94) S̃Lb
(k, n) =

γ2n−1

2

n−1
∑

j=0

e
(4)
j,n−1

∫ ∞

0

xb+ke−xLb
2n(x)Lb

2j(x)dx.

Proceeding as in the proof of proposition 5.1 we obtain

S̃Lb
(k, n) =

γ2n−1

2

n−1
∑

j=0

e
(4)
j,n−1

2j
∑

i=0

Ck,2j
i

2n
∑

p=0

Ck,2n
p

∫ ∞

0

xb+ke−xLb+k
2n−p(x)Lb+k

2j−i(x)dx

=
γ2n−1

2

n−1
∑

j=0

e
(4)
j,n−1

2j
∑

i=0

Ck,2j
i

2n
∑

p=0

Ck,2n
p hb+k

2j−iδ2n−p,2j−i

=
γ2n−1

2

n
∑

j=1

2n−2j
∑

i=0

e
(4)
n−j,n−1Ck,2n−2j

i Ck,2n
i+2jh

b+k
2n−2j−i

(95)

By replacing b→ 2b and multiplying both sides of this equation by 2−k gives the statement
of the proposition. �

Both the propositions 5.1 and 5.3 hold for complex values of k, except where the inte-
grals (1) diverge. In particular, the moments of the proper delay times (15) are expressed
in terms of negative moments of the Laguerre ensemble and can be obtained from (93)
using the identity

(96)

(−k
j

)( −k
i+ 2j

)

=

(

k + j − 1

k − 1

)(

k + i+ 2j − 1

k − 1

)
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and setting b = n+ 1 in (93). Thus, we arrive at the following:

Corollary 5.4. Let k be a positive integer. We have

SJa,b(k, n) =

min(⌊n⌋,⌊k/2⌋)
∑

j=1

min(2n−2j,k−2j)
∑

i=0

(

k

i+ 2j

)(

k

i

)

Sa,b
i,j (k, n)(97)

SLb
(k, n) =

min(⌊n⌋,⌊k/2⌋)
∑

j=1

min(2n−2j,k−2j)
∑

i=0

(

k

i+ 2j

)(

k

i

)

× (2b+ 2n)(k−i−2j+1)(2n− i− 2j + 1)(i)
2k−2j+2(n+ 1)(−j)(n+ b)(1−j)

.(98)

Furthermore, if k < 2n+ 1

SLb
(−k, n) =

⌊n⌋
∑

j=1

2n−2j
∑

i=0

(

k + j − 1

k − 1

)(

k + i+ 2j − 1

k − 1

)

× (2b+ 2n)(−k−i−2j+1)(2n− i− 2j + 1)(i)
2−k−2j+2(n+ 1)(−j)(n+ b)(1−j)

.

(99)

Remark 5.5. The combinatorial aspect of the sums in this corollary arises directly from
the connection coefficients Ci and Ci+2j appearing in (95) and (92), leading to the binomial
coefficients. Due to these binomial coefficients, the sums (97) only go up to k and their
complexity does not increase as n grows. This therefore permits an investigation of the
asymptotics. The n → ∞ analysis of (99) leads to certain infinite sums which also turn
out to be tractable. A similar remark holds for the GSE.

5.3. Gaussian Symplectic Ensemble. In the Gaussian case, only the even moments are
different from zero. For simplicity we only state the results for integer k.

Proposition 5.6. We have

SG(2k, n) =
Γ(n+ 1)Γ(n)

2k
√
πΓ(2n)41−n

min(n,k)
∑

j=1

min(n−j,k−j)
∑

i=0

(

k

i

)(

k

i+ j

)

(n− i− j + 1)(k−1/2)(100)

Proof. The integrals (87) give

(101) S̃G(2k, n) =
γ2n−1

2

n−1
∑

j=0

e
(4)
j,n−1

∫ ∞

−∞

x2ke−x2H2n(x)H2j(x)dx.

Applying formula (66) leads to

(102) S̃G(2k, n) =
γ2n−1

2

n−1
∑

j=0

e
(4)
j,n−1

∫ ∞

−∞

x2ke−x2L−1/2
n (x2)L−1/2

j (x2)dx.

Changing variables and inserting the connection formula (61) results in

S̃G(2k, n) =
γ2n−1

2

n−1
∑

j=0

e
(4)
j,n−1

j
∑

i=0

Ck,j
i

n
∑

p=0

Ck,n
p

∫ ∞

0

xk−1/2e−xLk−1/2
n−p (x)Lk−1/2

j−i (x)dx.

Using the orthogonality of the Laguerre polynomials gives the double sum

(103) S̃G(2k, n) =
γ2n−1

2

n
∑

j=1

n−j
∑

i=0

e
(4)
n−j,n−1Ck,n−j

i Ck,n
i+jh

k−1/2
n−i−j.
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It is worth emphasising that the coefficients Ck,n−j
i , Ck,n

i+j and hn are those of the Laguerre

polynomials, while the coefficient e
(4)
n−j,n−1 is related to the Hermite polynomials. Finally,

multiplying equation (103) by 2−k, as discussed in remark 4.1, completes the proof. �

6. Orthogonal Ensembles

In this section we compute the moments for β = 1. Theorem 2.7 and equation (34) of
Theorem 2.9 are corollaries of the results we prove here. For simplicity we assume that n
is an even integer.

The main task is to compute the integral

(104) M
(1)
E (k, n) =

∫

I

xkρ̃1(x)dx.

When β = 1 the density ρ̃1(x) coincides with ρ1(x), so the integrals (104) coincide with
the averages (1).

Substituting the representation (85b) into (104), we are left to compute three integrals:
the first one gives the moments of the corresponding unitary ensemble; the second one is
closely related to the quantity S̃E(k, n) discussed in §5, namely

(105) OE(k, n) = γn−2

n−1
∑

j=0

e
(1)
j,n/2−2

∫

I

xke−2V (x)P2j+1(x)Pn−1(x)dx;

the last one arises from the ǫ-transform in equation (85b), i.e.

(106) IE(k, n) = γn−2η
(1)
n/2−2

∫

I

xkPn−1(x)e
−V1(x)ǫ

[

e−V1(t)
]

(x)dx.

Therefore, the moments for β = 1 may be expressed as

(107) M
(1)
E (k, n) =M

(2)
E (k, n− 1)− OE(k, n) + IE(k, n)

In this section we focus on the integrals OE(k, n) and IE(k, n).

6.1. A Duality between β = 1 and β = 4. We first discuss a remarkable duality between

the quantities M
(2)
E (k, n − 1) − OE(k, n) and the moments of the symplectic ensembles

M
(4)
E (k, n), where n now can assume half integer values. Such moments are well defined

(see equation (88) and remark 2.6). Similar dualities have appeared in the literature
before [19, 24, 34].

Lemma 6.1. Let n be an even integer. We have the following dualities:

M
(1)
Lb

(k, n) = 21+kM
(4)
Lb/2

(k, (n− 1)/2) + ILb
(k, n),(108a)

M
(1)
Ja,b

(k, n) = 2M
(4)
Ja/2,b/2

(k, (n− 1)/2) + IJa,b(k, n).(108b)

Proof. Firstly, by equation (88) we observe that

(109) 21+kM
(4)
Lb/2

(k, (n− 1)/2) =M
(2)
Lb

(k, n− 1)− 2S̃Lb
(k, (n− 1)/2).

Thus, it is sufficient to check that 2S̃Lb/2
(k, (n− 1)/2) = OLb

(k, n).
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A direct computation shows that

OLb
(k, n) = γn−2

n/2−2
∑

j=0

e
(1)
j,n/2−2

∫ ∞

0

xb+ke−xLb
n−1(x)Lb

2j+1(x)dx

= γn−2

n/2−2
∑

j=0

e
(1)
j,n/2−2

2j+1
∑

i=0

Ck,2j+1
i

n−1
∑

p=0

Ck,n−1
p hb+k

2j+1−iδ2j+1−i,n−1−p

= γn−2

n/2−1
∑

j=1

n−2j−1
∑

i=0

e
(1)
n/2−1−j,n/2−2C

k,n−2j−1
i Ck,n−1

i+2j h
b+k
n−1−2j−i.

(110)

From (95) we see that

(111) 2S̃Lb
(k, (n− 1)/2) = γn−2

n/2−1
∑

j=1

n−2j−1
∑

i=0

e
(4)
n/2−1/2−j,n/2−3/2C

k,n−2j−1
i Ck,n−1

i+2j h
b+k
n−1−2j−i.

From equation (A6a) we have that

(112) e
(4)
n/2−1/2−j,n/2−3/2 = e

(1)
n/2−1−j,n/2−2.

Thus, the right-hand sides of equations (110) and (111) coincide.
In the proof of the duality (108b) one has to show that

2S̃Ja/2,b/2(k, (n− 1)/2) = OJa,b(k, n).

The strategy is the same as for the Laguerre ensemble and we omit the computation. �

We are now left with the task of computing the integrals (106). When k is a positive
integer, we find a single sum containing k terms for each ensemble; when k is negative the
sums go up to order of the matrix dimension.

6.2. Incomplete Integrals — Positive Moments. We now assume that k is a positive
integer and focus on the Laguerre and Jacobi ensembles.

Lemma 6.2. We have

(113) ILb
(k, n) = 2k

min(n/2−1,k)
∑

j=0

(

2k

2j

)

(1
2
(b+ n))(k−j)

(1
2
(1 + n))(−j)

+ φ̃L
k,n

and

IJa,b(k, n) =4k
min(n/2−1,k)
∑

j=0

(

2k

2j

)

(a + b+ 2n− 4j − 1 + 2k)(1
2
(a+ b+ n))(k−j)(

1
2
(b+ n))(k−j)

(a+ b+ 2n− 2j − 1)(2k+1)(
1
2
(a+ n+ 1))(−j)(

1
2
(1 + n))(−j)

+ φJ
k,n,

(114)

where

(115) φ̃L
k,n =

Γ(n/2 + b/2− 1/2)

Γ(n/2)Γ(b+ n− 1)

k
∑

j=1

Γ(j + k)Γ(b+ j + k)2−j

Γ(j + k − n+ 1)Γ(b/2 + 1/2 + j)
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and

φJ
k,n =

k
∑

j=1

2a+1Γ(a/2 + b/2 + j)Γ(a/2 + b/2 + 1/2 + n/2)

Γ(a+ b+ n+ j + k)Γ(j + k + 1− n)Γ(b/2 + 1/2 + j)

× Γ(a/2 + 1/2 + n/2)Γ(b+ k + j)Γ(j + k)

Γ(n/2 + b/2)Γ(a/2 + 1/2)Γ(n/2)
.

(116)

Furthermore, if n > 2k, φ̃L
k,n = φJ

k,n = 0.

Proof. We begin with the proof of formula (113). Equation (106) becomes

(117) ILb
(k, n) = γn−2η

(1)
n/2−2

∫ ∞

0

xk+(b−1)/2Lb
n−1(x)ǫ

[

t(b−1)/2e−t/2
]

(x)dx.

The ǫ-transform appearing in the right-hand side is the difference of the two incomplete
Gamma functions

(118) γ(a, z) =

∫ z

0

ta−1e−tdt and Γ(a, z) =

∫ ∞

z

ta−1e−tdt.

The main idea here is to expand them in a sum of incomplete Gamma functions whose
weight has been perturbed by a factor tk. To this end we insert

(119) ǫ
[

t
b−1
2 e−t/2

]

(x) =
k
∑

j=1

d
(b+1)/2
j x

b−1
2

+je−x/2 +
1

2
d
(b+1)/2
k ǫ

[

t
b−1
2

+ke−t/2
]

(x),

where dbj = 21−j Γ(b)
Γ(b+j)

. When k = 1 this identity can be found in [1], equations (6.5.21)

and (6.5.23); the formula for general k is obtained by iteration.
This leads to two integrals. The first one is

φ̃L
k,n = η

(1)
n/2−2γn−2

k
∑

j=1

∫ ∞

0

d
(b+1)/2
j xb+j+k−1e−xLb

n−1(x)dx

= η
(1)
n/2−2γn−2

k
∑

j=1

j+k−1
∑

i=0

∫ ∞

0

Cj+k−1,n−1
i d

(b+1)/2
j xb+j+k−1e−xLb+j+k−1

n−1−i (x)dx,

(120)

where we inserted the connection formula (61). Because of the orthogonality of the Laguerre
polynomials the only contribution to the inner sum occurs at i = n− 1; furthermore, since
max(i) = 2k − 1, we have that φ̃L

k,n = 0 if n > 2k. If n ≤ 2k, inserting the appropriate
coefficients (see appendix A) and using the duplication formula (see [1], §6)
(121) Γ(2z) = π−1/222z−1Γ (z) Γ

(

z + 1
2

)

gives (115).
The remaining non-trivial integral is

ψk,n = C

∫ ∞

0

x
b−1
2

+ke−x/2Lb
n−1(x)ǫ

[

t
b−1
2

+ke−t/2
]

(x)dx

= C

min(n−1,2k)
∑

j=0

∫ ∞

0

x
b−1
2

+ke−x/2C2k,n−1
j Lb+2k

n−1−j(x)ǫ
[

t
b−1
2

+ke−t/2
]

(x)dx(122a)

= C

min(n/2−1,k)
∑

j=0

C2k,n−1
2j

∫ ∞

0

x
b−1
2

+ke−x/2Lb+2k
n−2j−1(x)ǫ

[

t
b−1
2

+ke−t/2
]

(x)dx,(122b)
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where C = η
(1)
n/2−2γn−2d

(b+1)/2
k /2. To obtain (122a) we used the connection formula, while

(122b) follows from the fact that the contributions to the sum with odd indices vanish due
to the skew-orthogonality constraints (68).

Now we integrate (122b) by parts using the identity (79) and the formula

(123)
d

dx
ǫ
[

t
b−1
2

+ke−t/2
]

(x) = −x b−1
2

+ke−x/2.

This leads to

ψk,n = C

min(n/2−1,k)
∑

j=0

n/2−j−1
∑

i=0

C2k,n−1
2j e

(4),b+2k
i,n/2−j−1

∫ ∞

0

xb+2ke−xLb+2k
2i (x)dx

= C

min(n/2−1,k)
∑

j=0

C2k,n−1
2j e

(4),b+2k
0,n/2−j−1h

b+2k
0 .

(124)

Inserting all the relevant formulae for the orthogonality norms and connection coefficients
gives (113).

We sketch the proof of (114) as it follows a similar pattern; we only emphasise the
differences. For the Jacobi ensemble the ǫ-transform is expressed in terms of incomplete
Beta functions; thus, we replace (119) with the following identity:

(125) ǫ[tb(1− t)a](x) =

k
∑

j=1

da,bj xb+j(1− x)a+1 + (a+ b+ k + 1)da,bk ǫ[tb+k(1− t)a](x),

where

(126) da,bj =
Γ(a+ b+ j + 1)Γ(b+ 1)

Γ(a+ b+ 2)Γ(b+ 1 + j)
.

Equation (125) can be obtained by iteration from formulae (26.5.15) and (25.5.16) in [1].
Proceeding as for the Laguerre ensemble and using formula (121) gives (114). �

6.3. Incomplete Integrals — Negative Moments. When the moments are negative,
we focus only on the physically interesting case of the Laguerre ensemble, which leads to
moments of the proper delay times.

When the moments are positive the correction terms φ̃L
k,n and φJ

k,n vanish if n > 2k.

Now we have a similar contribution, which we shall denote φL
−k,n and which is not zero for

n > 2k; however, it turns out that φL
−k,n → 0 exponentially fast as n→ ∞.

Lemma 6.3. Let k be a positive integer. One has

(127) ILb
(−k, n) = 2−k

n/2−1
∑

j=0

(

2k + 2j − 1

2j

)

(1
2
(b+ n))(−k−j)

(1
2
(1 + n))−(j)

+ φL
−k,n,

where

(128) φL
−k,n =

Γ(n/2 + b/2− 1/2)

Γ(n/2)Γ(b+ n− 1)

k−1
∑

j=0

Γ(k + j + n)Γ(b− k − j)2j

Γ(b/2 + 1/2− j)Γ(k + j + 1)
.

Furthermore, we have

(129) φL
−k,n = O

(

e−cn
)

, n→ ∞, c > 0.
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Proof. The incomplete integral now becomes

(130) ILb
(−k, n) = η

(1)
n/2−2γn−2

∫ ∞

0

x
b−1
2

−ke−x/2Lb
n−1(x)ǫ

[

t
b−1
2 e−t/2

]

(x)dx.

As for positive moments, we insert into (130) the identity

(131) ǫ
[

t
b−1
2 e−t/2

]

(x) = −
k−1
∑

j=0

d
(b+1)/2
j x

b−1
2

−je−x/2 +
1

2
d
(b+1)/2
k ǫ

[

t
b−1
2

−ke−t/2
]

(x),

where dbj = 2j+1 Γ(b)
Γ(b−j)

. Formula (131) is obtained in the same way as equation (119). This

gives two integrals: the first one is

φL
−k,n = −η(1)n/2−2γn−2

k−1
∑

j=0

∫ ∞

0

d
(b+1)/2
j xb−j−k−1e−xLb

n−1(x)dx

= −η(1)n/2−2γn−2

k−1
∑

j=0

n−1
∑

i=0

∫ ∞

0

C−k−j−1,n−1
i d

(b+1)/2
j xb−j−k−1e−xLb−j−k−1

i (x)dx,

(132)

where we inserted the connection coefficients Ci for the Laguerre polynomials (61). Appli-
cation of orthogonality implies that the only contribution to the inner sum occurs at i = 0,
yielding equation (128). The remaining non-trivial integral is

(133)
1

2
η
(1)
n/2−2γn−2d

(b+1)/2
k

∫ ∞

0

x
b−1
2

−ke−x/2Lb
n−1(x)ǫ

[

t
b−1
2

−ke−t/2
]

(x)dx,

which can be computed in the same way as the right-hand side of equation (124). �

Remark 6.4. The sum

(134) 2−k

n/2−1
∑

j=0

(

2k + 2j − 1

2j

)

(n/2 + b/2)(−k−j)

(n/2 + 1/2)(−j)

in equation (127) is O(n−k) and of subleading order compared to M
(2)
Lb

(−k, n − 1), which
gives the main contribution to the moments of the proper delay times for β = 1. However,
it goes to zero much more slowly than the correction term φL

−k,n.

6.4. Gaussian Orthogonal Ensemble. The treatment of the GOE by our method is
slightly different from the LOE and JOE. We do not find a duality relation similar to
lemma 6.1. However, the following proposition is the analogue of equation (100) for the
GSE.

Lemma 6.5. Let k be a positive integer and suppose n is even. Then, the integral (105)
is explicitly given by

(135) OG(2k, n) =

min(n/2−1,k)
∑

j=1

min(n/2−j−1,k−j)
∑

i=0

(

k

i

)(

k

i+ j

)

(n/2− i− j)(k+1/2)

(n/2− j)(1/2)
.

Proof. By changing variable of integration and using the relation (66) we obtain

OG(2k, n) =

∫ ∞

−∞

n/2−2
∑

j=0

xkγn−2e
−x2

e
(1)
j,n/2−2Hn−1(x)H2j+1(x)dx

=

∫ ∞

0

n/2−2
∑

j=0

xk+1/2γn−2e
−xe

(1)
j,n/2−2L

1/2
n/2−1(x)L

1/2
j (x)dx.

(136)
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Inserting the connection formula (61) into (136) leads to

OG(2k, n) = γn−2

n/2−2
∑

j=0

e
(1)
j,n/2−2

j
∑

i=0

Ck,j
i

×
n/2−1
∑

p=0

Ck,n/2−1
p

∫ ∞

0

xk+1/2e−xLk+1/2
n/2−1−p(x)L

k+1/2
j−i (x)dx.

(137)

By using the orthogonality of the Laguerre polynomials and rearranging the indices we
obtain

(138) OG(2k, n) = γn−2

n/2−1
∑

j=1

e
(1)
n/2−j−1,n/2−2

n/2−j−1
∑

i=0

Ck,n/2−j−1
i Ck,n/2−1

i+j h
k+1/2
n/2−j−i−1.

Inserting the appropriate constants from appendix A completes the proof. The coefficients

Ck,n/2−j−1
i , Ck,n/2−1

i+j and h
k+1/2
n/2−j−i−1 are those for the Laguerre polynomials; the constants

γn−2 and e
(1)
n/2−j−1,n/2−2 are those associated to the GOE. �

The remaining task is the evaluation of the integral IG(k, n) in (106). As previously,
we obtain slightly different expressions depending on whether n ≤ 2k or n > 2k. For the
latter inequality the formula simplifies considerably.

Lemma 6.6. Let n be an even integer. If n ≤ 2k we have

φG
k,n = IG(2k, n) =2n/2−k (2k)!

Γ(n/2)

k−n/2
∑

j=0

n/2−1
∑

i=0

(

n−1
2i

)2−j−2i(−1)j

(2j+2i+1)j!

(k − n/2− j)!

+
(2k)!

Γ(n/2)

n/2−1
∑

j=0

j
∑

i=0

(n/2− i− 1)!
(

n−1
n−2i−1

)

(j − i)!(k − j)!4k−i
.

When n > 2k we obtain

(139) φG
k,n = (2k)!

k
∑

j=0

(n/2 + 1/2− j)(j)2
3j−k

(2j)!(k − j)!
.

Proof. We have

(140) IG(2k, n) = C

∫ ∞

−∞

x2ke−x2/2Hn−1(x)

∫ ∞

−∞

e−t2/2sgn(x− t)dtdx

where C = η
(1)
n/2−2γn−2/2 = (2

√
πΓ(n/2))−1. Now, consider the generating function

MG(s) = C

∫ ∞

−∞

esxe−x2/2Hn−1(x)

∫ ∞

−∞

e−t2/2sgn(x− t)dtdx.

Completing the square in the exponent and changing variables leads to

(141) MG(s) = C

n−1
∑

j=0

es
2/2

∫ ∞

−∞

Hj(u)s
n−1−j

(

n− 1

j

)
∫ ∞

−∞

e−(v+s)2/2sgn(u− v)dvdu,

where we have applied the connection formula [28]

Hn−1(u+ s) =
n−1
∑

j=0

(

n− 1

j

)

Hj(u)s
n−1−j.
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Equation (141) motivates us to study the function

(142) fj(s) =

∫ ∞

−∞

e−u2/2Hj(u)

∫ ∞

−∞

e−(v+s)2/2sgn(u− v)dvdu.

In appendix B we compute fj(s) in terms of the power series

(143) f2j(s) =
∞
∑

p=j

s2p+1a+p,j, and f2j+1(s) = 2j!
√
π +

∞
∑

p=j+1

s2pa−p,j,

where

(144) a+p,j =
21−2p

√
π(−1)j−p

(2p+ 1)Γ(p− j + 1)
, and a−p,j =

22−2p
√
π(−1)j−p

(2p)Γ(p− j)
.

Thus, we can write the decomposition

(145) MG(s) = C
(

M+
G(s) +M−

G(s)
)

,

where

M+
G(s) =

n/2−1
∑

j=0

es
2/2

(

n− 1

2j

)

sn−2j−1f2j(s),(146)

M−
G(s) =

n/2−1
∑

j=0

es
2/2

(

n− 1

2j + 1

)

sn−2j−2f2j+1(s).(147)

Computing the Taylor expansions of these functions is a routine (though tedious) exercise.
Eventually, we obtain

(148) C
d2k

ds2k
M+

G(s)

∣

∣

∣

∣

s=0

= 2n/2−k (2k)!

Γ(n/2)

k−n/2
∑

j=0

n/2−1
∑

i=0

(

n−1
2i

)

2−j−2i(−1)j

(2j+2i+1)j!

(k − n/2− j)!
,

which vanishes if n > 2k. We also have

(149) C
d2k

ds2k
M−

G(s)

∣

∣

∣

∣

s=0

=
(2k)!

Γ(n/2)

min(n/2−1,k)
∑

j=0

j
∑

i=0

(n/2− i− 1)!
(

n−1
n−2i−1

)

(j − i)!(k − j)!4k−i
,

which combined with (135) gives the equation (34). Under the assumption n > 2k, equa-
tion (149) can be simplified further, leading to

IG(2k, n) =
(2k)!

Γ(n/2)

k
∑

i=0

k
∑

j=i

4i−k(n/2− i− 1)!
(

n−1
n−2i−1

)

(k − j)!(j − i)!

= (2k)!

k
∑

j=0

(n/2 + 1/2− j)(j)2
3j−k

(2j)!(k − j)!
,

where in the first equality we interchanged the order of summation, while in the second
one we have used the formula

(150)

k
∑

j=p

1

(k − j)!(j − p)!
=

2k−p

(k − p)!
.

�
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Appendix A. The Coefficients hn, e
(1)
n and e

(4)
n

The orthogonality normalisations hj defined in (38) for the classical orthogonal polyno-
mials are tabulated in any standard reference on special functions [1, 52]. However, in this
article we work with monic polynomials. This is not the standard normalization found in

the literature. Therefore, for the reader’s convenience, we report the coefficients hn, e
(1)
n ,

e
(4)
n that we use throughout this paper.
We have

(A1)











ha,bj = Γ(a+j+1)Γ(b+j+1)Γ(j+1)Γ(a+b+j+1)
Γ(a+b+2j+1)Γ(a+b+2j+2)

, Jacobi,

hbj = Γ(j + 1)Γ(b+ j + 1), Laguerre,

hj = j!2−j
√
π, Hermite.

Given these normalisations, recall that

(A2) cn = hn+1hnγn,

where

(A3) hnγn =











1, Hermite,
1
2
, Laguerre,

1
2
(2n+ a+ b+ 2), Jacobi.

In §4 for the orthogonal and symplectic ensembles we introduced the quantities

(A4) e
(1)
j,n =

h2n+2

c2j+1

n
∏

i=j+1

c2i
c2i+1

, e
(4)
j,n =

h2n+1

c2n

n−1
∏

i=j

c2i+1

c2i
, η(1)n =

n
∏

j=0

c2jh2j+2

c2j+1h2j
.

We have the following explicit formulae:

JOE and JSE,

e
(1),a,b
j,n =

16n−j2Γ(n+ 3/2)Γ(n+ 3/2 + a/2)

Γ(j + 3/2)Γ(j + 3/2 + a/2)Γ(j + 3/2 + b/2)

× Γ(n + 3/2 + a/2 + b/2)Γ(4j + 4 + a+ b)

Γ(j + 3/2 + a/2 + b/2)Γ(4n+ 5 + a+ b)
(A5a)

e
(4),a,b
j,n =

16n−j2Γ(n+ 1)Γ(n+ a/2 + 1)

Γ(j + 1)Γ(j + 1 + a/2)

× Γ(n + b/2 + 1)Γ(n+ a/2 + b/2 + 1)Γ(4j + a + b+ 2)

Γ(j + 1 + b/2)Γ(j + a/2 + b/2 + 1)Γ(4n+ a + b+ 3)
(A5b)

η(1)n =
Γ(a/2 + b/2 + 3/2 + n)Γ(b/2 + 3/2 + n)Γ(a/2 + 3/2 + n)

2−4n−4−a−bπΓ(a+ b+ 4n+ 5)

× Γ(a/2 + b/2 + 1)Γ(n+ 3/2)

Γ(b/2 + 1/2)Γ(a/2 + 1/2)
;(A5c)
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LOE and LSE,

e
(1),b
j,n =

4n−j2Γ(n+ 3/2)Γ(n+ 3/2 + b/2)

Γ(j + 3/2)Γ(j + 3/2 + b/2)
(A6a)

e
(4),b
j,n =

4n−j2Γ(n+ 1)Γ(n+ b/2 + 1)

Γ(j + 1)Γ(j + 1 + b/2)
(A6b)

η(1)n = 4n+1Γ(n+ 3/2)Γ(n+ b/2 + 3/2)√
πΓ(b/2 + 1/2)

;(A6c)

GOE and GSE,

(A7) e
(1)
j,n =

Γ(n+ 3/2)

Γ(j + 3/2)
, e

(4)
j,n = n!/j! and η(1)n =

Γ(n+ 3/2)√
π

.

Appendix B. The Generating Function fj(s)

In the proof of lemma 6.6 we needed to study the generating function

(B1) fj(s) =

∫ ∞

−∞

e−u2/2Hj(u)

∫ ∞

−∞

e−(v+s)2/2sgn(u− v)dvdu.

The signed integral in the equation (B1) is closely related to the error function, for which
the kth derivative can be expressed in terms of the monic Hermite polynomial Hk−1(u).
Differentiating under the integral, we find

(B2)
1

(2k)!

d2k

ds2k
f2j(s)

∣

∣

∣

∣

s=0

=
−2k

(2k)!

√
2

∫ ∞

−∞

e−u2H2j(u)H2k−1(u/
√
2)du = 0,

which follows from the oddness of the integrand.
For the odd derivatives we get

1

(2k + 1)!

d2k+1

ds2k+1
f2j(s)

∣

∣

∣

∣

s=0

=
2k+1

(2k + 1)!

∫ ∞

−∞

e−u2H2j(u)H2k(u/
√
2)du

=
2k+1

(2k + 1)!

∫ ∞

0

e−uu−1/2L−1/2
j (u)L−1/2

k (u/2)du(B3a)

=
k
∑

i=0

(

k − 1/2

k − i

)

k!

i!

2

(2k + 1)!

∫ ∞

0

e−uu−1/2L−1/2
j (u)L−1/2

i (u)du(B3b)

=
2(−1)k−j

√
π4−k

(2k + 1)(k − j)!
.(B3c)

The expression in line (B3a) was obtained by means of the relations (66), while (B3b)
follows from applying the connection formula

(B4) Lb
k(x/2) = 2−k

k
∑

i=0

(

b+ k

k − i

)

k!

i!
(−1)i−kLb

i(x).

The last line (B3c) then follows from the orthogonality (38). Thus, we have

(B5) f2j(s) =
∞
∑

p=j

s2p+1 21−2p
√
π(−1)j−p

(2p+ 1)Γ(p− j + 1)
.
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In a similar fashion we find

(B6) f2j+1(s) = 2j!
√
π +

∞
∑

p=j+1

s2p
22−2p

√
π(−1)j−p

(2p)Γ(p− j)
,

which required the double integral

(B7)

∫ ∞

−∞

e−u2/2H2j+1(u)

∫ ∞

−∞

e−v2/2sgn(u− v)dvdu = 2j!
√
π.
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