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Abstract. We start with a Riemann-Hilbert Problems (RHP)
with canonical normalization whose sewing functions depends
on several additional variables. Using Zakharov-Shabat theo-
rem we are able to construct a family of ordinary differential
operators for which the solution of the RHP is a common fun-
damental analytic solution. This family of operators obviously
commute. Thus we are able to construct new classes of inte-
grable nonlinear evolution equations.

1. Introduction

The development of the soliton theory revealed an important class of NLEE (non-
linear evolution equations) that describe special types of wave-wave interactions
[1, 29, 16, 4, 23, 19, 30] which play important role in various fields in physics.

A formal approach to the integrable equations started by Gel’fand and Dickey
[3, 17] and developed actively later on (see e.g. [17] and the references therein)
is well known. It allows one to construct the Lax representations for important
classes of NLEE such as the dispersionless KP hierarchy but it disregards the
spectral properties of the Lax operators.
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The topic quickly attracted mathematicians from spectral theory, dynamical
systems, Lie algebras, Hamiltonian dynamics, differential geometry, see [29, 25,
34, 35, 5, 16, 4] and the numerous references therein. It attracted also a number
of physicists because they found important applications of these NLEE in fluid
mechanics, nonlinear optics, superconductivity, plasma physics etc. As a result
many different approaches for investigating the soliton equations and construct-
ing their Lax representations, soliton solutions, integrals of motion, Hamiltonian
hierarchies etc. were developed, see [36, 25, 2, 29, 23, 35, 21]. Of course, it is
not possible in a short paper to list all important references that cover the broad
topics mentioned above.

The inverse scattering method has been applied to many physically impor-
tant multidimensional evolution equations including theN -wave equation, Davey-
Stewartson, Kadomtsev-Petviashvilli etc. [33, 21, 22, 34, 35, 36, 28]. They have
been treated by nonlocal generalizations of the Riemann-Hilbert problem and by
the ∂̄-method.

In the present paper we propose an alternative approach to the same class of
equations using as a starting point the Riemann-Hilbert problem (RHP) [38, 39,
34, 35, 29, 37]; the importance of the canonical normalization of RHP was noticed
in [10, 6]. Our aim is to show that this allows one to construct rings of commuting
operators and in addition gives a tool to study their spectral properties.

In Section 2 below we start with some preliminaries concerning the RHP. In
Section 3 we use the solutions of the RHP to construct family of jets of order
k, in Section 4 we list their simplest reductions. In the last two Sections we
demonstrate how this construction can be used to solve NLEE in two and higher
dimensional space-times. In Section 5 we use jets of order 1 to reproduce well
known results about the 3-wave equations in two- and three-dimensional space-
times. We also demonstrate the integrability of N -wave type equations in higher
dimensional space-times. In Section 6 we use jets of order 2 which allows us to
construct new types of integrable N -wave interactions whose interaction terms
contain quadratic and cubic nonlinearities, as well as x-derivatives. These equa-
tions also allow integrable extensions to three-dimensional space-time. The last
Section contains discussion and conclusions.

2. RHP with canonical normalization

Let us formulate the RHP:

ξ+(~x, t, λ) = ξ−(~x, t, λ)G(~x, t, λ), λk ∈ R, lim
λ→∞

ξ+(~x, t, λ) = 11,(1)
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where ξ±(~x, t, λ) take values in the simple Lie group G with Lie algebra g.
ξ+(~x, t, λ) (resp. ξ−(~x, t, λ)) is an analytic functions of λ for Imλk > 0 (resp.
for Imλk < 0). For simplicity we consider particular type of dependence of the
sewing function G(~x, t, λ) on the auxiliary variables:

i
∂G

∂xs
− λk[Js, G(~x, t, λ)] = 0, i

∂G

∂t
− λk[K,G(~x, t, λ)] = 0.(2)

where k ≥ 1 is a fixed integer and Js are linearly independent elements of the
Cartan subalgebra Js ∈ h ⊂ g.

The canonical normalization of the RHP means that we can introduce the
asymptotic expansion

ξ±(~x, t, λ) = expQ(~x, t, λ), Q(~x, t, λ) =

∞
∑

k=1

Qk(~x, t)λ
−k.(3)

Since ξ±(~x, t, λ) are group elements then all Qk(~x, t) ∈ g. However,

Js(~x, t, λ) = ξ±(~x, t, λ)Jsξ̂
±(~x, t, λ), K(~x, t, λ) = ξ±(~x, t, λ)Kξ̂±(~x, t, λ),(4)

belong to the algebra g for any J and K from g. If in addition K also belongs to
the Cartan subalgebra h, then

[Js(~x, t, λ),K(~x, t, λ)] = 0.(5)

An important tool in our considerations plays the well known Zakharov-
Shabat theorem [38, 39] formulated below

Theorem 1. Let ξ±(x, t, λ) be solutions to the RHP (1) whose sewing func-
tion depends on the auxiliary variables ~x and t via eq. (2). Then ξ±(x, t, λ) are
fundamental solutions of the following set of differential operators:

Lsξ
± ≡i

∂ξ±

∂xs
+ Us(~x, t, λ)ξ

±(~x, t, λ) − λk[Js, ξ
±(~x, t, λ)] = 0,

Mξ± ≡i
∂ξ±

∂t
+ V (~x, t, λ)ξ±(~x, t, λ)− λk[K, ξ±(~x, t, λ)] = 0.

(6)

P r o o f. The proof follows the lines of [38, 39]. We introduce the functions:

g±s (~x, t, λ) = i
∂ξ±

∂xs
ξ̂±(~x, t, λ) + λkξ±(~x, t, λ)Jsξ̂

±(~x, t, λ),

g±(~x, t, λ) = i
∂ξ±

∂t
ξ̂±(~x, t, λ) + λkξ±(~x, t, λ)Kξ̂±(~x, t, λ),

(7)



4 V. S. Gerdjikov November 14, 2018

and using (2) prove that

g+s (~x, t, λ) = g−s (~x, t, λ), g+(~x, t, λ) = g−(~x, t, λ),(8)

which means that these functions are analytic functions of λ in the whole complex
λ-plane. Next we find that:

lim
λ→∞

g+s (~x, t, λ) = λkJs, lim
λ→∞

g+(~x, t, λ) = λkK.(9)

and make use of Liouville theorem to get

g+s (~x, t, λ) = g−s (~x, t, λ) = λkJs −

k
∑

l=1

Us;l(~x, t)λ
k−l,

g+(~x, t, λ) = g−(~x, t, λ) = λkK −
k

∑

l=1

Vl(~x, t)λ
k−l.

(10)

We shall see below that the coefficients Us;l(~x, t) and Vl(~x, t) can be expressed in
terms of the asymptotic coefficients Qs in eq. (3). �

Lemma 1. The set of operators Ls and M commute, i.e. the following set
of equations hold:

i
∂Us

∂xj
− i

∂Uj

∂xs
+ [Us(~x, t, λ)− λkJs, Uj(~x, t, λ) − λkJj ] = 0,

i
∂Us

∂t
− i

∂V

∂xs
+ [Us(~x, t, λ)− λkJs, V (~x, t, λ)− λkK] = 0.

(11)

where

Us(~x, t, λ) =

k
∑

l=1

Us;l(~x, t)λ
k−l, V (~x, t, λ) =

k
∑

l=1

Vl(~x, t)λ
k−l.(12)

P r o o f. The set of the operators Ls and M (6) have a common FAS, i.e.
they all must commute. The eqs. (11) are an immediate consequence of (6). �

3. Jets of order k

In what follows we will consider the jets of order k of J (x, λ) and K(x, λ), see
(5). We introduce them by:

Js(~x, t, λ) ≡
(

λkξ±(~x, t, λ)Jlξ̂
±(~x, t, λ)

)

+
= λkJs − Us(~x, t, λ),

K(~x, t, λ) ≡
(

λkξ±(~x, t, λ)Kξ̂±(~x, t, λ)
)

+
= λkK − V (~x, t, λ).

(13)
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The subscript + used above means that we insert the asymptotic expansions of
ξ± and their inverse (3) and cut off the terms with negative powers of λ.

Obviously Us(x) ∈ g can be expressed in terms of Qs(x). In doing this we
take into account (5) and obtain [18]

Js(~x, t, λ) = Js +

∞
∑

k=1

1

k!
adkQJs, K(~x, t, λ) = K +

∞
∑

k=1

1

k!
adkQK,(14)

and therefore for Us;l we get:

Us;1(~x, t) = −adQ1
Js, Us;2(~x, t) = −adQ2

Js −
1

2
ad2Q1

Js

Us;3(~x, t) = −adQ3
Js −

1

2
(adQ2

adQ1
+ adQ1

adQ2
) Js −

1

6
ad3Q1

Js

...

Us;k(~x, t) = −adQk
Js −

1

2

∑

s+p=k

adQsadQpJs

−
1

6

∑

s+p+r=k

adQsadQpadQrJs − · · · −
1

k!
adkQ1

Js,

(15)

and similar expressions for Vl(~x, t) with Js replaced by K.

4. Reductions of polynomial bundles

An important tool to construct new integrable NLEE is based on Mikhailov’s
group of reductions [26]. Below we will use mainly Z2 and ZN with N > 2
reduction groups. The basic Z2-examples are as follows:

(16)

a) Aξ+,†(x, t, ǫλ∗)Â = ξ̂−(x, t, λ), AQ†(x, t, ǫλ∗)Â = −Q(x, t, λ),

b) Bξ+,∗(x, t, ǫλ∗)B̂ = ξ−(x, t, λ), BQ∗(x, t, ǫλ∗)B̂ = Q(x, t, λ),

c) Cξ+,T (x, t,−λ)Ĉ = ξ̂−(x, t, λ), CQ†(x, t,−λ)Ĉ = −Q(x, t, λ),

where ǫ2 = 1 and A, B and C are elements of the group G such that A2 = B2 =
C2 = 11. As for the ZN -reductions we may have:

(17) Dξ±(x, t, ωλ)D̂ = ξ±(x, t, λ), DQ(x, t, ωλ)D̂ = Q(x, t, λ),

where ωN = 1 and DN = 11.
These relations allow us to introduce algebraic relations between the matrix

elements of Q(x, t, λ) which will be automatically compatible with the NLEE.
The classes of inequivalent reductions of the N -wave equations related to the
low-rank simple Lie algebras are given in [8, 9, 11, 12, 13, 15].



6 V. S. Gerdjikov November 14, 2018

5. On N-wave equations (k = 1) in 2 and more dimensions

The integrability of theN -wave equations has been well known for several decades
now, [25, 33, 36, 29, 14, 23, 22]. Their Lax representation involves two Lax
operators linear in λ which are particular case of (6) with k = 1:

Lξ± ≡i
∂ξ±

∂x
+ [J,Q(x, t)]ξ±(~x, t, λ)− λ[J, ξ±(~x, t, λ)] = 0,

Mξ± ≡i
∂ξ±

∂t
+ [K,Q(x, t)]ξ±(~x, t, λ)− λ[K, ξ±(~x, t, λ)] = 0.

(18)

The corresponding equations take the form:

i

[

J,
∂Q

∂t

]

− i

[

K,
∂Q

∂x

]

− [[J,Q], [K,Q(x, t)]] = 0(19)

In fact the construction of the FAS for the operator L (18) [38, 39, 36, 29] was
the important step forward, that demonstrated the importance of the RHP for
solving integrable equations.

The most important and nontrivial example of such NLEE is the 3-wave
equations in two-dimensional space-time [36, 29]. The most important and non-
trivial case corresponds to g ≃ sl(3)

(20) Q(x, t) =





0 u1 u3
−v1 0 u2
−v3 −v2 0



 ,
J = diag (a1, a2, a3),

K = diag (b1, b2, b3),

with tr J = trK = 0 and a1 > a2 > a3. We also impose the reduction (16a) with
A = diag (1, ǫ1, ǫ2) where ǫ21 = ǫ22 = 1. Then the 3-wave equations take the form:

∂u1
∂t

−
a1 − a2
b1 − b2

∂u1
∂x

+ κǫ1ǫ2u
∗
2u3 = 0,

∂u2
∂t

−
a2 − a3
b2 − b3

∂u2
∂x

+ κǫ1u
∗
1u3 = 0,

∂u3
∂t

−
a1 − a3
b1 − b3

∂u3
∂x

+ κǫ2u
∗
1u

∗
2 = 0,

(21)

where

κ = a1(b2 − b3)− a2(b1 − b3) + a3(b1 − b2).(22)

Depending on the choice of the reduction and on interrelations between the group
velocities the 3-wave interactions may describe qualitatively different processes:
soliton decay and explosive soliton instability [36, 29].



RHP and families of commuting operators 7

In the case of 3-dimensional space-time we consider Q of the form (20), but
now let uj and vj be functions of x1 = x, x2 = y and t. Let also J1 = J and
J2 = I = diag (c1, c2.c3). Now the corresponding solution of the RHP ξ±(x, y, t, λ)
will be FAS not only of L and M above, but also of

Pξ± ≡i
∂ξ±

∂y
+ [I,Q(x, t)]ξ+(~x, t, λ)− λ[I, ξ+(~x, t, λ)] = 0,(23)

and all these three operators will mutually commute, i.e. along with [L,M ] = 0
we will have also [L,P ] = 0 and [P,M ] = 0. As a result Q(x, y, t) will satisfy two
more NLEE of the form (24). Obviously it will satisfy also

(24)

2
∂u1
∂t

−
a1 − a2
b1 − b2

∂u1
∂x

−
a1 − a2
c1 − c2

∂u1
∂y

+ (κ1 + κ2)ǫ1ǫ2u
∗
2u3 = 0,

2
∂u2
∂t

−
a1 − a3
b1 − b3

∂u2
∂x

−
a1 − a3
c1 − c3

∂u2
∂y

+ (κ1 + κ2)ǫ1u
∗
1u3 = 0,

2
∂u3
∂t

−
a2 − a3
b2 − b3

∂u3
∂x

−
a2 − a3
c2 − c3

∂u3
∂y

+ (κ1 + κ2)ǫ2u
∗
1u

∗
2 = 0.

which is linear combination of the three equations mentioned above. Here κ1 = κ
(see eq. (22) and

κ2 = a1(c2 − c3)− a2(c1 − c3) + a3(c1 − c2).(25)

These three wave equations are related to the real forms of the algebra sl(3)
which has rank 2. Therefore, trying to add more auxiliary variables to the solution
of the RHP will not be effective since only two elements of all xsJs will be linearly
independent.

For N -wave equations related to Lie algebras g of higher rank r we can add
up to r auxiliary variables. The corresponding PDE takes the form:

r
∂Q

∂t
−

r
∑

s=1

(ad−1
Js

adJ)
∂Q

∂xs
− i

r
∑

s=1

ad−1
Js

[[J,Q], [Js, Q(~x, t)]] = 0(26)

where Q is an n×n off-diagonal matrix depending on r+1 variables. We remind
that if J = diag (a1, . . . , an) then

(adJQ)jk ≡ ([J,Q])jk = (aj − ak)Qjk, (ad−1
J Q)jk =

1

aj − ak
Qjk,

and similarly for the other Js. The coefficient r multiplying the t-derivative can
be removed by rescaling of t.

Again we can use additional reductions of the type (16). More details about
these equations will be given elsewhere.



8 V. S. Gerdjikov November 14, 2018

6. New N-wave equations (k = 2) in 2 and more dimensions

Here we shall give examples of new types of N -wave equations. Let us choose
again g = sl(3). The general form of the potentials is given by

Q1(~x, t) =





0 u1 u3
−v1 0 u2
−v3 −v2 0



 , Q2(~x, t) =





q11 w1 w3

−z1 q22 w2

−z3 −z2 q33



 ,(27)

We also fix up k = 2. Then the Lax pair becomes

(28)
Lξ± ≡ i

∂ξ±

∂x
+ U(x, t, λ)ξ±(x, t, λ)− λ2]J, ξ±(x, t, λ)] = 0,

Mξ± ≡ i
∂ξ±

∂t
+ V (x, t, λ)ξ±(x, t, λ) − λ2]K, ξ±(x, t, λ)] = 0,

where using eq. (15)

U ≡ U2 + λU1 =

(

[J,Q2(x)] −
1

2
[[J,Q1], Q1(x)]

)

+ λ[J,Q1],

V ≡ V2 + λV1 =

(

[K,Q2(x)]−
1

2
[[K,Q1], Q1(x)]

)

+ λ[K,Q1].

Note, that this Lax pair is independent of the diagonal elements of Q2.
If we retain the generic potentials (27) the Lax pair above will provide us

with a set of 6 new complicated equations for the 6 independent functions uj and
wj . To make the things more simple we impose a Z2-reduction of the form (16a)
with A = diag (1, ǫ, 1), ǫ2 = 1. Thus Q1 and Q2 get reduced into:

(29) Q1 =





0 u1 0
ǫu∗1 0 u2
0 ǫu∗2 0



 , Q2 =





0 0 w3

0 0 0
w∗
3 0 0



 ,

and J and K are as in (20). Now L and M involve only 3 independent functions.
Skipping the details we get a new type of integrable 3-wave equations:

i(a1 − a2)
∂u1
∂t

− i(b1 − b2)
∂u1
∂x

+ ǫκu∗2u3 + ǫ
κ(a1 − a2)

(a1 − a3)
u1|u2|

2 = 0,

i(a2 − a3)
∂u2
∂t

− i(b2 − b3)
∂u2
∂x

+ ǫκu∗1u3 − ǫ
κ(a2 − a3)

(a1 − a3)
|u1|

2u2 = 0,

i(a1 − a3)
∂u3
∂t

− i(b1 − b3)
∂u3
∂x

−
iκ

a1 − a3

∂(u1u2)

∂x

+ ǫκ

(

a1 − a2
a1 − a3

|u1|
2 +

a2 − a3
a1 − a3

|u2|
2

)

u1u2 + ǫκu3(|u1|
2 − |u2|

2) = 0,

(30)
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where the interaction constant κ is given by (22) and:

u3 = w3 +
2a2 − a1 − a3
2(a1 − a3)

u1u2.(31)

The diagonal terms in the Lax representation are λ-independent. Two of
them read:

i(a1 − a2)
∂|u1|

2

∂t
− i(b1 − b2)

∂|u1|
2

∂x
− ǫκ(u1u2u

∗
3 − u∗1u

∗
2u3) = 0,

i(a2 − a3)
∂|u2|

2

∂t
− i(b2 − b3)

∂|u2|
2

∂x
− ǫκ(u1u2u

∗
3 − u∗1u

∗
2u3) = 0,

(32)

These relations are satisfied identically as a consequence of the NLEE (30). The
third one also vanishes since tr [L,M ] = 0.

Let us now consider the case when the sewing function G of the RHP depends
on 3 variables: t, x1 = x and x2 = y with J1 = J and J2 = I = diag (c1, c2, c3).
For k = 2 we obtain a set of three ordinary differential operators: L, M (28) and

(33)

Pξ± ≡ i
∂ξ±

∂y
+W (x, y, t, λ)ξ±(x, y, t, λ) − λ2]I, ξ±(x, y, t, λ)] = 0,

W ≡ W2 + λW1

=

(

[I,Q2(x, y, t)] −
1

2
[[I,Q1], Q1(x, y, t)]

)

+ λ[I,Q1(x, y, t)],

commuting identically with respect to λ. It is obvious that [L,P ] = 0 if

i(a1 − a2)
∂u1
∂t

− i(c1 − c2)
∂u1
∂y

+ ǫκ2u
∗
2u3 + ǫ

κ2(a1 − a2)

(a1 − a3)
u1|u2|

2 = 0,

i(a2 − a3)
∂u2
∂t

− i(c2 − c3)
∂u2
∂y

+ ǫκ2u
∗
1u3 − ǫ

κ2(a2 − a3)

(a1 − a3)
|u1|

2u2 = 0,

i(a1 − a3)
∂u3
∂t

− i(c1 − c3)
∂u3
∂y

−
iκ2

a1 − a3

∂(u1u2)

∂y

+ ǫκ2

(

a1 − a2
a1 − a3

|u1|
2 +

a2 − a3
a1 − a3

|u2|
2

)

u1u2 + ǫκ2u3(|u1|
2 − |u2|

2) = 0,

(34)

where κ2 is given by eq. (25). It is not difficult to write down the third new
3-wave equation which is a consequence of the commutation [M,P ] = 0.

Since the three operators L, M , and N mutually commute, u1, u2 and u3
as functions of x, y and t should satisfy simultaneously the three NLEE of the
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type (30). Therefore they should satisfy also any NLEE which is obtained as, say
linear combination of the above:

2i
∂u1
∂t

− i(~v(1) · ∇)u1 + ǫ(κ1 + κ2)

(

u∗2u3
a1 − a2

+
u1|u2|

2

(a1 − a3)

)

= 0,

2i
∂u2
∂t

− i(~v(2) · ∇)u2 + ǫ(κ1 + κ2)

(

u∗1u3
a1 − a3

−
u2|u1|

2

(a1 − a3)

)

= 0,

2i
∂u3
∂t

− i(~v(3) · ∇)u3 − i
(~κ · ∇)(u1u2)

(a1 − a3)2
+

ǫ(κ1 + κ2)

a1 − a3
(|u1|

2 − |u2|
2)u3

+
ǫ(κ1 + κ2)

(a1 − a3)2
(

(a1 − a2)|u1|
2 + (a2 − a3)|u2|

2
)

u1u2 = 0.

(35)

Here ∇ = (∂x, ∂y)
T , the characteristic velocities ~v(j), j = 1, 2, 3 and ~κ are two-

component vectors given by:

(36)

~v(1) =
1

a1 − a2

(

b1 − b2
c1 − c2

)

, ~v(2) =
1

a2 − a3

(

b2 − b3
c2 − c3

)

,

~v(3) =
1

a1 − a3

(

b1 − b3
c1 − c3

)

, ~κ =

(

κ1
κ2

)

,

and κ1 = κ, see eq. (22).

7. Discussion and conclusions

We have proposed a method for constructing families of commuting operators.
Applied to jets of order 1 with g ≃ sl(3) this method reproduces the well known
results for the 3-wave equations in two- and three-dimensional space-times. It is
shown that N -wave equations related to Lie algebras of rank r allow integrable
extensions to r+1-dimensional space-times. Below we briefly discuss some open
problems and generalizations.

Using jets of order 2 gives us the simplest nontrivial examples for new types of
integrable 3-wave equation whose interaction terms contain quadratic and cubic
nonlinearities, as well as x-derivatives. These equations also allow integrable
extensions to three-dimensional space-time.

It is not difficult to obtain many other new integrable 3- and N -wave equa-
tions. Indeed, one can choose: i) higher rank simple Lie algebras; ii) different
types of grading; iii) different power k of the polynomials U(~x, t, λ) and V (~x, t, λ)
and iv) different reductions of U and V .

These new NLEEmust be Hamiltonian. It is natural to view the jets U(~x, t, λ)
as elements of more complicated co-adjoint orbits of the relevant Kac-Moody
algebra, generated by the chosen grading of f, see [24, 31, 32].
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By construction, the method allows treating multi-dimensional NLEE. In the
examples above we used the algebra sl(3) and demonstrated integrable 3-wave
equations in 2 + 1-dimensional space-time. If we want to study new types of
integrable N -wave models in r+1 space-time dimensions we have to consider Lie
algebras of rank r and accordingly larger values for N .

The method allows one also to apply Zakharov-Shabat dressing method [38,
39, 27, 20] for constructing their explicit (N -soliton) solutions. Instead of solving
the inverse scattering problem for L we would rather deal with a Riemann-Hilbert
problem with canonical normalization. For polynomials of order k the contour
on which the RHP is defined consists of k straight lines lk : arg λ = πi/k passing
through the origin. Of course, it may necessary to use dressing factors with more
specific λ-dependence.

This approach can be used also to analyze the NLEE derived by Gel’fand-
Dickey approach [3, 17]. It would provide the possibility to systematically con-
struct the spectral decompositions that linearize the relevant NLEE [7, 16]. Still
more challenging is to study the soliton interactions of the new N -wave equations.

REFERENCES

[1] F. Calogero, A. Degasperis. Novel solution of the system describing
the resonant interaction of three waves. Physica D 200 242–256 (2005).

[2] H. Cornile. Solutions of the Nonlinear Three-wave Equations in Three
Dimensions. (preprint) (1978).

[3] L. A. Dickey. Soliton Equations and Hamiltonian Systems. In: Advanced
Series in Mathematical Physics, vol. 12. World Scientific, Singapore (1991).

[4] E. V. Doktorov, S. B. Leble. Dressing method in Mathematical
Physics. Springer, Berlin, Heidelberg, New York. (2007). Mathematical
Physics Studies. M. Kontsevich, M. Porrati, V. B. Matveev, D.
Sternheimer. (Eds.) vol 28.

[5] E. V. Ferapontov. Isoparametric hypersurfaces in spheres, integrable
nondiagonalizable systems of hydrodynamic type, and N -wave systems.
Diff. Geom. Appl. 5 (1995) 335–369.

[6] I. T. Gadjiev, V. S. Gerdjikov, M. I. Ivanov. Hamiltonian structures
of the nonlinear evolution equations related to the polynomial bundle. Sci.
Notes of LOMI seminars 120, 55–68, (1982). (In Russian).



12 V. S. Gerdjikov November 14, 2018

[7] V. S. Gerdjikov.Generalised Fourier transforms for the soliton equations.
Gauge covariant formulation. Inverse Problems 2, n. 1, 51–74, (1986).

[8] V. Gerdjikov, G. Grahovski, N. Kostov. Second Order Reductions
of N -wave interactions related to low–rank simple Lie algebras. In: Eds.: I.
M. Mladenov, G. L. Naber. Coral Press Scientific Publications, Sofia
(2000) pp. 55–77.

[9] V. S. Gerdjikov, G. G. Grahovski, N. A. Kostov. Reductions of N -
wave interactions related to low–rank simple Lie algebras. I: Z2- reductions.
J. Phys. A: Math & Gen. 34, 9425–9461 (2001).

[10] V. S. Gerdjikov, M. I. Ivanov. The quadratic bundle of general form
and the nonlinear evolution equations. II. Hierarchies of Hamiltonian struc-
tures. Bulgarian J. Phys. 10, No.2, 130–143, (1983). (In Russian).

[11] V. S. Gerdjikov, R. I. Ivanov, A. V. Kyuldjiev.On theN -wave equa-
tions and soliton interactions in two and three dimensions. Wave Motion
48, 791–804 (2011).doi:10.1016/j.wavemoti.2011.04.014

[12] V. S. Gerdjikov, D. J. Kaup, N. A. Kostov, T. I. Valchev. On
classification of soliton solutions of multicomponent nonlinear evolution
equations. J. Phys. A: Math. Theor. 41 (2008) 315213 (36pp).

[13] V. S. Gerdjikov, N. A. Kostov, T. I. Valchev. N -Wave Equations
with Orthogonal Algebras: Z2 and Z2 × Z2 Reductions and Soliton Solu-
tions. SIGMA 3, paper 039 (2007); 19 pages; arXiv:nlin.SI/0703002.

[14] V. S. Gerdjikov, P. P. Kulish. The generating operator for the n× n linear
system. Physica 3D, n. 3, 549–564, (1981).

[15] V. S. Gerdjikov, T. Valchev. Breather Solutions of N-wave Equations.
In: Geometry, Integrability and Quantization, Eds: I. Mladenov, M. de
Leon. pp. 184–200, Softex, Sofia (2007).

[16] V. S. Gerdjikov, G. Vilasi, A. B. Yanovski. Integrable Hamiltonian
Hierarchies. Spectral and Geometric Methods. Springer Verlag, Berlin, Hei-
delberg, New York (2008). Lecture Notes in Physics 748, ISBN: 978-3-540-
77054-1.

[17] L. Feher, J. Harnad, I. Marshall. Generalized Drinfeld-Sokolov
Reductions and KdV Type Hierarchies. arXiv:hep-th/9210037v1

http://arxiv.org/abs/nlin/0703002
http://arxiv.org/abs/hep-th/9210037


RHP and families of commuting operators 13

(1992);
L. Fehera, I. Marshall. Extensions of the matrix Gelfand-
Dickey hierarchy from generalized Drinfeld-Sokolov reduction.
arXiv:hep-th/9503217v1 (1995).

[18] S. Helgasson. Differential Geometry, Lie Groups and Symmetric Spaces.
Academic Press, New York, (1978).

[19] E. Ibragimov, A. A. Struthers, D. J. Kaup, J. D. Khaydarov, K.
D. Singer. Three-Wave Interaction Solitons in Optical Parametric Ampli-
fication. Phys. Rev. E, 59, 6122–6137, (1999).

[20] R. Ivanov. On the dressing method for the generalised Zakharov–Shabat
system, Nuclear Phys. B 694 (2004); 509–524, math-ph/0402031.

[21] D. J. Kaup. A Method for Solving the Separable Initial Value Problem of
the Full Three Dimensional Three-Wave Interaction. Stud. Appl. Math. 62,
75–83 (1980).

[22] D. J. Kaup. The inverse scattering solution for the full three-dimensional
three-wave resonant interaction. Physica 3D, No. 1, 45–67 (1980).

[23] D. J. Kaup, A. Reiman, A. Bers. Space-time evolution of nonlinear
three-wave interactions. I. Interactions in an homogeneous medium. Rev.
Mod. Phys. 51, No. 2, 275–310 (1979).

[24] P. P. Kulish, A. G. Reiman. Hamiltonian structure of polynomial bun-
dles. Sci. Notes of LOMI seminars vol. 123, pp. 67–76, (1983).

[25] S. V. Manakov, V. E. Zakharov. Soliton theory. In: Physics Review,
Vol. 1. I. M. Khalatnikov (ed.), London (1979), pp. 133-190;
S. V. Manakov, V. E. Zakharov. Exact theory of resonant interaction
of wave packets in nonlinear media. Preprint of Novosibirsk Institute of
Nuclear Physics 74-41 (1974) (unpublished).

[26] A. V. Mikhailov. The reduction problem and the inverse scattering prob-
lem. Physica D 3D, no. 1/2, 73–117 (1981).

[27] A. V. Mikhailov, V. E. Zakharov. On the integrability of classical
spinor models in two-dimensional space–time. Commun. Math. Phys., 74,
21–40 (1980).

http://arxiv.org/abs/hep-th/9503217
http://arxiv.org/abs/math-ph/0402031


14 V. S. Gerdjikov November 14, 2018

[28] A. Nachman, M. Ablowitz. Multidimensional Inverse scattering for
First-Order Systems. Stud. Appl. Math. 71 251–262 (1984).

[29] S. P. Novikov, S. V. Manakov, L. P. Pitaevsky, V. E. Zakharov.
Theory of solitons: the inverse scattering method. Plenum, New York,
(1984).

[30] P. Popivanov, A. Slavova. Nonlinear waves. An Introduction. Series
on Analysis, Applications and Computations. vol. 4. World Scientific, New
Jersey, London, Singapore (2011).

[31] A. G. Reiman. A unified Hamiltonian system on polynomial bundles, and
the structure of stationary problems. Sci. Notes of LOMI seminars vol.
131, pp. 118–127, (1983).

[32] A.G. Reiman, M. A. Semenov-Tyan-Shanskii. Current algebras and
nonlinear partial differential equations, Dokl. Akad. Nauk SSSR, 251,
1310–1312 (1980).

[33] V. E. Zakharov. ”Exact solutions of the problem of parametric inter-
action of wave packets,” Dokl. Akad. Nauk SSSR, 228, No. 6, 1314-1316
(1976).

[34] V. E. Zakharov. ”The inverse scattering method”. In: Solitons, R. K.
Bullough and P. J. Caudrey (Eds), Springer-Verlag, Berlin (1980), pp.
243-286.

[35] V. E. Zakharov. ”Integrable systems in multidimensional spaces,” In:
Mathematical Problems in Theoretical Physics, Lecture Notes in Phys.,
vol. 153, Springer-Verlag, Berlin (1982), pp. 190-216.

[36] V. E. Zakharov, S. V. Manakov. On the theory of resonance interac-
tions of wave packets in nonlinear media. Zh. Exp. Teor. Fiz. 69, 1654–1673
(1975);

[37] V. E. Zakharov, S. V. Manakov.Multidimensional nonlinear integrable
systems and methods for constructing their solutions. Sci. Notes of LOMI
seminars, vol. 133, pp. 77-91, (1984).

[38] V. E. Zakharov, A. B. Shabat. ”A scheme for integrating nonlinear evo-
lution equations of mathematical physics by the inverse scattering method.
I,” Funkts. Anal. Prilozhen., 8, No. 3, 43–53 (1974).



RHP and families of commuting operators 15

[39] V. E. Zakharov, A. B. Shabat. Integration of the nonlinear equations
of mathematical physics by the inverse scattering method, Funkts. Anal.
Prilozhen., 13, No. 3, 13–22 (1979).


	1.  Introduction
	2.  RHP with canonical normalization
	3. Jets of order k
	4. Reductions of polynomial bundles
	5.  On N-wave equations (k=1) in 2 and more dimensions
	6.  New N-wave equations (k=2) in 2 and more dimensions
	7. Discussion and conclusions

