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Abstract

We generalize Huberman-Rudnick universal scaling law for all periodic windows of the logis-

tic map and show the robustness of q-Gaussian probability distributions in the vicinity of chaos

threshold. Our scaling relation is universal for the self-similar windows of the map which exhibit

period-doubling subharmonic bifurcations. Using this generalized scaling argument, for all periodic

windows, as chaos threshold is approached, a developing convergence to q-Gaussian is numerically

obtained both in the central regions and tails of the probability distributions of sums of iterates.
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I. INTRODUCTION

It is well-known that many complex systems exhibit transitions from periodic motion

to chaos through period doubling route like Rayleigh-Benard system in a box [1], forced

pendulum [2], logistic map [3], Chirikov map [4] etc. The logistic map, defined as

xt+1 = 1− a x2
t , (1)

(where 0 < a ≤ 2 is the control parameter and the phase space xt is between [−1, 1]

with t = 0, 1, 2, ...), is a good example to observe Feigenbaum route generated by pitchfork

bifurcations and its universal features. This map has its critical point, denoted by ac, at

ac = 1.401155189..., which can be approached from left (i.e., from periodic region) via period

doubling procedure where 2∞ periods accumulate at this critical point usually described as

chaos threshold. This point can also be approached from right (i.e., from chaotic region)

via band merging procedure where infinite number of bands merge at the critical point [5].

A sketchy view of these approaches from left and from right to ac is given in Fig. 1a. In

the chaotic region (a > ac), there exist many windows of higher periodic cascades of s 2n

periods, where s is an integer and n is the degree of period-doublings. It is worth noting

that, within each window, reverse bifurcations of s 2n+1 bands merging into s 2n bands can

easily be detected although the width of these windows decreases rapidly as long as s 6= 1.

As an example, s = 3 case (namely, period 3 case) is illustrated in Fig. 1b.

This self-similar structure of the map is of sensible importance and leads Feigenbaum

to develop a scaling theory for the non-chaotic period-doubling region of the bifurcations,

which enables one to localize the control parameter value at the bifurcation from 2n period

to 2n+1 via scaling relation

|a− ac| ∼ δ−n, (2)

where δ = 4.699... is the Feigenbaum constant [6]. On the other hand, it is possible to obtain

Eq. (2) from the famous Huberman-Rudnick scaling law [7], which shows that the envelope

of the Lyapunov exponents near ac exhibits a universal behavior, similar to that of an order

parameter close to the critical point of phase transition. This relation can be written as

λ = λ0|a− ac|
ν , (3)
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FIG. 1: (a) Sketchy view of the standard bifurcation diagram of the logistic map. Approaching

chaos threshold (ac = 1.401155189...) from left via period-doubling route is evident with bifurcation

points denoted as an (n = 1, 2, ...,∞). Corresponding band merging approach to ac is depicted with

merging points denoted as ãn at each of which 2n bands appear. (b) Sketchy view of period 3 win-

dow in the chaotic region of the logistic map. Approaching chaos threshold (a
(3)
c = 1.779818075...)

of this periodic window from left via period-doubling route is evident with bifurcation points de-

noted as an. Corresponding band merging approach to a
(3)
c is depicted with merging points denoted

as ãn at each of which 3× 2n bands appear.
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where a > ac, ν = ln 2/ ln δ, λ is the Lyapunov exponent and λ0 is a constant. Eq. (2) can

easily be obtained from Eq. (3). For a values slightly above the chaos threshold, there exist

2n (n = 1, 2, ....,∞) chaotic bands, which approach the Feigenbaum attractor as n → ∞

by the band splitting procedure. In that region, if we start from two trajectories separated

by a distance d0 within one of these chaotic bands, the separation of trajectories increases

exponentially. If the trajectories start off in one band, after 2n iterations they will be back

in the original band. Then they will be separated by the amount

d2n = d0e
λ2n = d0e

λ0 , (4)

where λ0 = λ2n is the effective Lyapunov exponent (a constant value) [7]. Substituting the

effective Lyapunov exponent into Eq. (3) immediately gives

2−n = |a− ac|
ln 2/ ln δ, (5)

from where Eq. (2) is easily obtained.

This scaling relation, in fact, is exactly the one used in [8], where the probability distri-

butions of the sums of the iterates of the logistic map, as ac is approached from the band

merging region, have been shown to be well approached by q-Gaussians provided that the

appropriate number of iterations (N∗) is obtained from the above-mentioned scaling relation.

q-Gaussians, defined as,

P (y) =







P (0) [1− β(1− q)y2]
1

1−q for β(1− q)y2 < 1

0 otherwise
(6)

(where q < 3 and β > 0 are parameters and the latter controls the width of the distribution)

are the distributions that optimize, under appropriate constraints, the nonadditive entropy

Sq (defined to be Sq ≡ (1−
∑

i p
q
i ) / (q − 1)), on which nonextensive statistical mechanics is

based [9, 10]. As q → 1, q-Gaussians recover the Gaussian distribution.

Although in Nature many stochastic processes, consist of sum of many independent or

nearly independent variables, are known to converge Gaussian distribution due to the stan-

dard central limit theorem [11, 12], in recent years several complex systems such as low-

dimensional dissipative maps in the vicinity of chaos threshold [13–15], high dimensional

dissipative systems [16] and conservative maps [17, 18] are shown to exhibit probability

distributions that are well approached by q-Gaussians.
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Our main aim in this paper is two-folded: firstly, we try to generalize the Huberman-

Rudnick scaling law to all periodic windows of the logistic map, secondly, using this gen-

eralized version of the Huberman-Rudnick scaling law, we analyse the robustness of the

probability distribution of the sums of iterates of the logistic map as chaos threshold is

approached.

II. GENERALIZATION OF THE HUBERMAN-RUDNICK SCALING LAW

In order to find generalized version of the Huberman-Rudnik scaling law, let us start

by denoting the accumulation point of a particular periodic cycle s as a
(s)
c . For example,

a
(3)
c and a

(5)
c stand for the accumulation points of period 3 and period 5 windows inside the

chaotic region. These points can be found as a
(3)
c = 1.779818075... and a

(5)
c = 1.631019835... .

Then, one need to check whether the form of the Huberman-Rudnick scaling law is valid for

all other periodic cycles in the chaotic region. More precisely, one need to check whether

the exponent ν in the scaling law is equal to ln 2/ ln δ as in the standard case. Therefore,

we have first checked this and found that, for all periodic windows, the envelope of the

Lyapunov exponents, in log λ vs log(a− ac) plot, is given by a slope 0.449, which is nothing

but ln 2/ ln δ. Hence we can now write the Huberman-Rudnick scaling law for all periodic

cycles as

λ = λ0

[

a− a(s)c

]ln 2/ ln δ
. (7)

At this point, it should be recalled that, for a particular period s window, a trajectory that

starts in one band will be back in the same band after s 2n (n = 1, 2, ...,∞) iterations. If

we use this feature in the definition of the effective Lyapunov exponent, namely λ0 = λs2n,

then one can write the Huberman-Rudnick scaling law for other periodic windows as

λ = λ s 2n
[

a− a(s)c

]ln 2/ ln δ
(8)

and

2−n = s
∣

∣a− a(s)c

∣

∣

ln 2/ ln δ
. (9)

This equation enables us to obtain the generalized Huberman-Rudnick scaling law as
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∣

∣a− a(s)c

∣

∣ = δ−n− ln s
ln 2 . (10)

This new scaling relation is valid for all periodic windows including the standard case for

s = 1, which immediately recovers the standard scaling law given in Eq. (2).

III. ROBUSTNESS OF PROBABILITY DISTRIBUTIONS

Now let us concentrate on the probability distributions of the sums of iterates of the

logistic map, which can be written as

y :=

N
∑

i=1

(xi − 〈x〉) , (11)

where xi are the iterates of the logistic map and x1 is the initial value regarded as a random

variable. It has analytically been proved that, for strongly chaotic systems, the probability

distribution of y becomes Gaussian for N → ∞ [19, 20]. Here, the average 〈...〉 is calculated

as time average. On the other hand, as mentioned before in Section I, several complex

systems of the type low and high dimensional dissipative and conservative exist where the

probability distribution does not approach to Gaussian, and therefore violating the standard

central limit theorem due to possible lack of ergodicity and mixing properties. For such

systems, it is necessary to take the average over not only a large number of N iterations but

also a large number of M randomly chosen initial values, namely,

〈x〉 =
1

M

1

N

M
∑

j=1

N
∑

i=1

x
(j)
i . (12)

As chaos threshold is approached, the logistic map has already been studied in this respect

[8, 13, 21, 22]. As it has already been argued in [8], in principle, in order to attain chaos

threshold point exactly (i.e., approaching this point with infinite precision), one needs to take

n → ∞, which, in other words, means that the necessary number of iterations to achieve the

limit distribution at the chaos threshold is N∗ → ∞ since N∗ = 22n. Since this is, no doubt,

unattainable in any numerical experiment, one can only approach to this critical point using

the appropriate values for (a,N∗) pairs coming from the Huberman-Rudnick scaling law.

As long as this scaling law is obeyed, developing q-Gaussian shape of the limit distribution,

as chaos threshold is approached, has been clearly shown in [8]. On the way of approaching
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chaos threshold, for any approximation level of finite (a,N∗) pairs, if the number of iterations

used is too much larger than N∗ and therefore violating the Huberman-Rudnick scaling law

(i.e., N >> N∗), it is of course not surprising that the probability distribution starts to

approach to Gaussian form from its central part since the system starts to feel that it is

not exactly at the chaos threshold. Such numerical examples can be found in [8, 21]. On

the other hand, if the number of iterations used is too much smaller than N∗ and therefore

violating again the Huberman-Rudnick scaling law (i.e., N << N∗), then the summation

starts to be inadequate to approach the shape of the limit probability distribution and it

exhibits a kind of peaked or multifractal distribution. Such numerical examples have already

been given in [13, 21, 22].

In the remainder of this work, we try to provide further evidence on the robustness of the

q-Gaussian probability distributions seen as the chaos threshold is approached. In order to

accomplish this task, we investigate other periodic windows (numerically chosen examples

are period 3 and 5) making use of our generalized Huberman-Rudnick law.

As separated band structure for periodic cycle 2 goes from 21 to 2∞ with 2n (n =

1, 2, ...,∞), for any periodic cycle s, the same behavior would be to go from s 20 to s 2∞

with s 2k (k = 0, 1, ...,∞). It is evident that there is k → (n− 1) transformations between k

and n mathematically. Generically, for any periodic cycle s in the chaotic region, one needs

to perform s 2k iterations of the map for a given initial value with a control parameter a

obtained from the generalized scaling law. After s 2k iterations, the system will basically fall

into the same band of the band splitting structure. This means that the sum of the iterates
∑s 2k

i=1 xi will essentially approach to a fixed value w = s 2k〈x〉 plus a small correction ∆w1

which describes the small fluctuations of the position of the s 2kth iterate within the chaotic

band. Hence, one can write

y1 =
s2k
∑

i=1

(xi − 〈x〉) = ∆w1. (13)

If we continue to iterate for another s 2k times, we obtain

y2 =
2 s2k
∑

i=s2k+1

(xi − 〈x〉) = ∆w2. (14)

The new fluctuation ∆w2 is not expected to be independent from the old one ∆w1, since

correlations of iterates decay very slowly if we are close to the critical point. Continuing
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this 2k times, we finally obtain

y2k =
s22k
∑

i=s22k−s2k+1

(xi − 〈x〉) = ∆w2k (15)

if we iterate the map s 22k times in total. The total sum of iterates

y =

s22k
∑

i=1

(xi − 〈x〉) =

2k
∑

j=1

∆wj (16)

can thus be regarded as a sum of 2k random variables ∆wj , each being influenced by the

structure of the s 2k chaotic bands at distance a − a
(s)
c = δ−n− ln s

ln 2 from the Feigenbaum

attractor. At this distance to chaos threshold, in order to see the limit distribution, appro-

priate number of iterations would be N∗ = s 22k, which corresponds to N∗ = s 22n−2 after

k → (n− 1) transformation.

Now we are ready to check the shape of the probability distribution of any periodic win-

dows obeying our generalized Huberman-Rudnick scaling law. Chosen examples of possible

periodic windows are period 3 and period 5 since they are the largest two periodic win-

dows available in the chaotic region. Although conceptually nothing is changed for small

sized windows, numerical analysis is getting more difficult as windows sizes are decreasing.

Numerically used values are given in the Table for our period 3 and 5 analysis. Control

parameter values a are chosen so that the precision of corresponding n values, coming from

the generalized Huberman-Rudnick scaling law as

n = −
ln
∣

∣

∣
a− a

(s)
c

∣

∣

∣

ln δ
−

ln s

ln 2
, (17)

would be the same (see Table). This means that we are approaching the critical point with a

values located on a straight line with a given slope. Our results are given in Fig. 2 for period 3

and in Fig. 3 for period 5. In both cases four representative points systematically approaching

the chaos threshold is given. It is clear from Fig. 2a and Fig. 3a that the probability

distributions of both periodic windows approach to a q-Gaussian. It is also evident that, as

the chaos threshold is better approached, the tails of the distribution develops better on the

q-Gaussian, signaling that the limit distribution obtained at the exact chaos threshold point

would be a q-Gaussian with infinitely long tails. We also present the same data in Fig. 2b

and Fig. 3b in a different way so that a straight line would be expected for q-Gaussians.
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FIG. 2: (a) Probability distribution functions of period 3 (s = 3) for four representative cases

with different n values. As n increases, numerical convergence to a q-Gaussian with q = 1.63 and

β = 6.3 is appreciated. (b) The same distribution plotted against 1− (1− q)β[yP (0)]2 on a log-log

plot for the case which is the closest to the chaos threshold. A straight line is expected with a

slope 1/(1 − q) if the curve is a q-Gaussian. It is clearly seen how the straight line is surrounded

by the log-periodically modulated curves.
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FIG. 3: (a) Probability distribution functions of period 5 (s = 5) for four representative cases

with different n values. As n increases, numerical convergence to a q-Gaussian with q = 1.62 and

β = 6.3 is appreciated. (b) The same distribution plotted against 1− (1− q)β[yP (0)]2 on a log-log

plot for the case which is the closest to the chaos threshold. A straight line is expected with a

slope 1/(1 − q) if the curve is a q-Gaussian. It is clearly seen how the straight line is surrounded

by the log-periodically modulated curves.
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Only the closest cases to the chaos threshold for each periodic window are plotted. It is seen

from these plots that the curves develop on top of a straight line surrounded by log-periodic

modulations.

TABLE I: Parameter values used in this work. The values of n obtained from the generalized

scaling law using Eq. (17), the corresponding N∗ values and the values of q and β (estimated from

simulations) are listed. s = 1 case, already discussed in [8], has also been included in the Table for

comparison.

s a 2n N∗ q β

1.401588 10.05 210

1† 1.401248 12.05 212 1.70 6.2

1.401175 14.05 214

1.40115945 16.05 216

1.779819805038384 14.05 3× 212

3 1.779818446177396 16.05 3× 214 1.64 6.2

1.779818155150985 18.05 3× 216

1.779818092822039 20.05 3× 218

1.63102039110464 14.05 5× 212

5 1.63101995463619 16.05 5× 214 1.62 6.2

1.63101986115802 18.05 5× 216

1.63101984113785 20.05 5× 218

† Values related to s = 1 case are taken directly from the Table given in ref. [8].

IV. CONCLUSIONS

Our main results obtained in this paper can be summarized as follows: (i) For the logistic

map having self-similar structure, Huberman-Rudnick universal scaling law has been gen-

eralized, which becomes now consistent to all periodic windows in the chaotic region of the

map. This new generalized scaling law is of sensible importance since it enables us to produce
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self-similar structure of the map and to explain all band merging structures in all available

periodic windows using only one generalized formula. (ii) The standard Huberman-Rudnick

scaling law has already been used in [8, 23] and q-Gaussian probability distributions have

been observed as the standard period 2 accumulation point is approached. However, in order

to test the robustness of q-Gaussian distributions, a first straightforward attempt should be

to analyse other critical points (chaos thresholds) of different periodic windows located in

the chaotic region of the logistic map. Since the generalized Huberman-Rudnick scaling law

obtained in the first part of this paper now enables us to localize appropriate (n,N∗) pairs

as the accumulation point is approached, we managed to check two representative periodic

windows. For each case studied here (and possibly for all other periodic windows) it is nu-

merically shown that the q-Gaussian probability distributions with log-periodic oscillations

are again the observed distributions and developing better as the critical point becomes

closer. These results clearly indicate the robustness of the q-Gaussian probability distribu-

tions seen in the vicinity of chaos threshold. Although the obtained q values seem to exhibit

a slow decreasing tendency as the size of the periodic window becomes smaller, we believe

that the genuine limit distribution of the chaos threshold (for all s values) would converge

to a q-Gaussian with a unique q value, which is expected to be in the interval [1.6, 1.75].

Finally it is worth mentioning that the results obtained here are expected to be valid

for all other dissipative maps sharing the same universality class with the logistic map. As

an open question that can be addressed in a future work, one can mention the analysis of

appropriate scaling law for the systems exhibiting quasi-periodic route to chaos.

Acknowlegments

This work has been supported by TUBITAK (Turkish Agency) under the Research

Project number 112T083.

[1] V.L. Gertsberg and G.I. Sivashinsky, Prog. Theor. Phys. 66 (1981) 1219.

[2] D. D’Humieres, M.R. Beasley, B.A. Huberman, A. Libchaber, Phys. Rev. A 26 (1982) 3483.

[3] R. May, Nature 261 (1976) 45.

[4] B. V. Chirikov, Phys. Rep. 52 (1979) 263.

12



[5] J. P. Crutchfield, J. D. Farmer and B. A. Huberman, Phys. Rep. 92 (1982) 45.

[6] M. Feigenbaum, J. Stat. Phys. 19 (1978) 25; 21 (1979) 669.

[7] B. A. Huberman and J. Rudnick, Phys Rev. Lett. 45 (1980) 154.

[8] U. Tirnakli, C. Tsallis and C. Beck, Phys. Rev. E 79 (2009) 056209.

[9] C. Tsallis, J. Stat. Phys. 52 (1988) 479; E.M.F. Curado and C. Tsallis, J. Phys. A 24 (1991)

L69; Corrigenda: 24 (1991) 3187 and 25 (1992) 1019; C. Tsallis, R.S. Mendes and A.R.

Plastino, Physica A 261 (1998) 534.

[10] C. Tsallis, Introduction to Nonextensive Statistical Mechanics - Approaching a Complex World

(Springer, New York, 2009).

[11] N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, Amster-

dam, 1981).

[12] A.Ya. Khinchin, Mathematical Foundations of Statistical Mechanics (Dover, New York, 1949).

[13] U. Tirnakli, C. Beck and C. Tsallis, Phys. Rev. E 75 (2007) 040106(R).

[14] G. Ruiz and C. Tsallis, Eur. Phys. J. B 67 (2009) 577.

[15] O. Afsar and U. Tirnakli, Phys. Rev. E 82 (2010) 046210.

[16] G. Miritello, A. Pluchino and A. Rapisarda, Physica A 388 (2009) 4818.

[17] S. M. Duarte Queiros, Phys. Lett. A 373 (2009) 1514.

[18] G. Ruiz, T. Bountis and C. Tsallis, Int. J. Bifur. Chaos 22 (2012) 1250208.

[19] P. Billingsley, Convergence of Probability Measures (Wiley, New York, 1968).

[20] C. Beck, Physica A 169 (1990) 324.

[21] M.A. Fuentes and A. Robledo, J. Stat. Mech. (2010) P01001.

[22] P. Grassberger, Phys. Rev. E 79 (2009) 057201.

[23] C. Tsallis and U. Tirnakli, J. Phys.: Conf. Ser. 201 (2010) 012001.

13


	I Introduction
	II Generalization of the Huberman-Rudnick scaling law
	III Robustness of Probability Distributions
	IV Conclusions
	 Acknowlegments
	 References

